
Published as a conference paper at ICLR 2025

SCRUTINIZE WHAT WE IGNORE: REINING IN TASK
REPRESENTATION SHIFT OF CONTEXT-BASED OFFLINE
META REINFORCEMENT LEARNING

Hai Zhang1, Boyuan Zheng1, Tianying Ji2, Jinhang Liu1, Anqi Guo1

Junqiao Zhao1∗, Lanqing Li3,4∗

1 Tongji University, 2 Tsinghua University, 3 Zhejiang Lab, 4 The Chinese University of HongKong

{zhanghai12138, zhengboyuan, jinhangliu, zhaojunqiao}@tongji.edu.cn
jity20@mails.tsinghua.edu.cn
{anqiguo098, lanqingli1993}@gmail.com

ABSTRACT

Offline meta reinforcement learning (OMRL) has emerged as a promising approach
for interaction avoidance and strong generalization performance by leveraging pre-
collected data and meta-learning techniques. Previous context-based approaches
predominantly rely on the intuition that alternating optimization between the con-
text encoder and the policy can lead to performance improvements, as long as
the context encoder follows the principle of maximizing the mutual information
between the task variable M and its latent representation Z (I(Z;M)) while the
policy adopts the standard offline reinforcement learning (RL) algorithms condition-
ing on the learned task representation. Despite promising results, the theoretical
justification of performance improvements for such intuition remains underex-
plored. Inspired by the return discrepancy scheme in the model-based RL field,
we find that the previous optimization framework can be linked with the general
RL objective of maximizing the expected return, thereby explaining performance
improvements. Furthermore, after scrutinizing this optimization framework, we
observe that the condition for monotonic performance improvements does not
consider the variation of the task representation. When these variations are con-
sidered, the previously established condition may no longer be sufficient to ensure
monotonicity, thereby impairing the optimization process. We name this issue
task representation shift and theoretically prove that the monotonic performance
improvements can be guaranteed with appropriate context encoder updates. We
use different settings to rein in the task representation shift on three widely adopted
training objectives concerning maximizing I(Z;M) across different data qualities.
Empirical results show that reining in the task representation shift can indeed im-
prove performance. Our work opens up a new avenue for OMRL, leading to a better
understanding between the task representation and performance improvements. 1

1 INTRODUCTION

RL has driven impressive advances in many complex decision-making problems in recent years (Silver
et al., 2018; Schrittwieser et al., 2020; Zhang et al., 2023b; 2024; Ma et al., 2024b;a), primarily
through online RL methods. However, the extensive interactions required by online RL entail high
costs and safety concerns, posing significant challenges for real-world applications. Offline RL (Wu
et al., 2019; Levine et al., 2020) offers an appealing alternative by efficiently leveraging pre-collected
data for policy learning, thereby circumventing the need for online interaction with the environment.
This advantage extends the application of RL, covering healthcare (Fatemi et al., 2022; Tang et al.,
2022), robotics (Sinha et al., 2022; Kumar et al., 2022) and games (Schrittwieser et al., 2021).

∗Corresponding Author
1Code: https://github.com/betray12138/Task-Representation-Shift

1

Published as a conference paper at ICLR 2025

Though demonstrating its superiority, offline RL holds a notable drawback towards generalizing to
the unknown (Ghosh et al., 2021).

As a remedy, by combining the meta-learning techniques, OMRL (Li et al., 2020; Mitchell et al.,
2021; Xu et al., 2022) has emerged as an effective training scheme toward strong generalization
performance and fast adaptation capability while maintaining the merits of offline RL. Among the
OMRL research, context-based OMRL (COMRL) algorithms (Li et al., 2020; 2024) hold a popular
paradigm that seeks optimal meta-policy conditioning on the context of Markov Decision Processes
(MDPs). Specifically, these methods (Li et al., 2020; Gao et al., 2024; Li et al., 2024) propose to train
a context encoder via maximizing I(Z;M) to learn the task representation from the collected context
(e.g. trajectories) and train the downstream policy with standard offline RL algorithms conditioning
on the task representation, as shown in Figure 1 left. The context encoder and policy are trained
in an alternating manner, with each being updated once per cycle. Despite promising results, the
theoretical justification of performance improvements for such intuition remains underexplored.

Tasks

z

Replay
Buffer

Context Encoder
z

Update
 Policy②

I(Z,M)
Maximize

offline RL
algorithm

Update Z

Condition①

Update Z

met not
met

ours

Alternating update process：①->②->①->②->...->①->②

Tasks

z

Replay
Buffer

Context Encoder
z

Update Z①

Update
 Policy②

I(Z,M)
Maximize

offline RL
algorithm

original

Figure 1: Our training framework compared to the previous training framework. They both
adopt the alternating optimization framework to train the context encoder and the policy. However, our
training framework considers the previously ignored variation of task representation by introducing
an extra condition to decide whether the context encoder should be updated.

Intriguingly, we formalize this training framework as an alternating two-stage optimization framework
and then link it with the general RL objective of maximizing the expected return. To be specific,
maximizing I(Z;M) and adopting standard offline RL algorithms can be interpreted as consistently
raising the lower bound of the expected return conditioning on the optimal task representation
distribution (See Section 4.1). This is achieved by extending the return discrepancy scheme (Janner
et al., 2019) to the COMRL framework. Thus, this analysis provides a feasible explanation for the
performance improvement guarantee.

More importantly, after scrutinizing this optimization framework, we find it ignores the impacts
stemming from the variation of the task representation in the alternating process. This would cause the
optimization framework to incorrectly conclude that the monotonic performance improvement can be
guaranteed with a better approximation to the optimal task representation distribution. By explicitly
modeling the variation of task representation, we conclude that it is a critical part of monotonic
performance improvement. To highlight the characteristic, we name this issue task representation
shift and theoretically prove that it is possible to achieve monotonic performance improvement with
appropriate context encoder updates (See Section 4.2).

To show the impacts of this issue, we use different settings to rein in the task representation shift
on three widely adopted objectives concerning maximizing I(Z;M), covering the upper bound,
the lower bound, and the direct approximation. Empirical results show that reining in the task
representation shift can indeed improve performance. Our work opens up a new avenue for OMRL,
leading to a better understanding between the task representation and performance improvements.

2

Published as a conference paper at ICLR 2025

2 RELATED WORKS

Context-Based Offline Meta RL. As the marriage between context-based meta RL and offline RL,
COMRL combines the merits of both sides. Specifically, COMRL methods (Li et al., 2020; Yuan &
Lu, 2022; Gao et al., 2024; Li et al., 2024) leverage the offline dataset to train a context encoder to
learn robust task representations, and then pass the representation to the policy and value function
as input. At test time, COMRL methods leverage the generalization ability of the learned context
encoder to perform meta-adaptation. According to the theoretical insights from (Li et al., 2024), prior
COMRL works (Li et al., 2020; Yuan & Lu, 2022; Gao et al., 2024; Li et al., 2024) mainly focus on
designing a context encoder learning algorithm to better approximate I(Z;M). However, our work
turns the focus to refining the condition of monotonic performance improvements based on a given
context encoder learning algorithm. Centering around this motivation, we identify a new issue called
task representation shift, which is ignored by the previous COMRL endeavors.

Performance Improvement Guarantee. Ensuring performance improvement is a key concern
in both online and offline reinforcement learning settings. In online RL, performance improvement
guarantees are often established through methods such as performance difference bounds (Kakade &
Langford, 2002; Schulman et al., 2015; Ji et al., 2022; Zhang et al., 2023a), return discrepancy (Luo
et al., 2018; Janner et al., 2019), and regret bounds (Osband & Van Roy, 2014; Curi et al., 2020).
In offline RL, CQL-based methods (Kumar et al., 2020; Yu et al., 2021) also enjoy safe policy
improvement guarantees. However, most works focus on the single-task setting, leaving the perfor-
mance improvement guarantees in the context-based meta-RL settings largely unexplored. While
ContrBAR (Choshen & Tamar, 2023) also benefits from the performance improvement guarantee,
the theoretical insight focuses on the online setting. Additionally, it is tailored to one particular
approximation of I(Z;M) as it makes assumptions specific to this approximation. In contrast, our
work focuses on the general offline setting, addressing a broader class of algorithms that maximize
various bounds of I(Z;M).

3 PRELIMINARIES

3.1 PROBLEM STATEMENT

A task in RL is generally formalized as a fully observed MDP (Puterman, 2014), which is represented
by a tuple (S,A, P, ρ0, R, γ) with state space S, action space A, transition function P (s′|s, a),
reward function R(s, a), initial state distribution ρ0(s) and discount factor γ ∈ [0, 1]. For arbitrary
policy π(a|s), we denote the state-action distribution at timestep t as dπ,t(s, a) ≜ Pr(st = s, at =
a|s0 ∼ ρ0, at ∼ π, st+1 ∼ P,∀t ≥ 0). The discounted state-action distribution of given π(a|s) is
denoted as dπ(s, a) ≜ (1 − γ)

∑∞
t=0 γ

tdπ,t(s, a). The ultimate goal is to find an optimal policy
π(a|s) to maximize the expected return E(s,a)∼dπ

[R(s, a)].

It is widely assumed that the task m in the meta RL setting is randomly sampled from the task
distribution p(M) (Li et al., 2020; Yuan & Lu, 2022; Gao et al., 2024; Li et al., 2024). We denote
the number of training tasks as N . For each task i ∈ [0, 1, ..., N − 1], an offline dataset Di =
{(si,j , ai,j , s′i,j , ri,j)}Kj=1 is collected in advance, where K denotes the number of transitions. The
learning algorithm is required to train a meta-policy πmeta with access only to the given offline datasets.
At test time, given an unseen task, the meta policy πmeta performs task adaptation to get a task-specific
policy and then will be evaluated in the environment.

3.2 CONTEXT-BASED OMRL

Previous COMRL endeavors employ a compact representation z to capture/quantify the variation
over tasks (Yuan & Lu, 2022). In practice, they choose to train a context encoder Z(·|x;ϕ) to extract
the task information (Li et al., 2020; Dorfman et al., 2021), where x denotes the given context and ϕ
denotes the parameters of the context encoder. Then, the policy is learned by conditioning on the
task representation as π(a|s, Z(·|x;ϕ); θ). We assume there exists an optimal task representation
distribution Z(·|x;ϕ∗) that meets the optimal expected return for any policy parameter θ is determined
by π(a|s, Z(·|x;ϕ∗); θ). Hence, the objective of COMRL is formalized as:

max
θ

J∗(θ) = Em,x[E(s,a)∼dπ(·|s,Z(·|x;ϕ∗);θ)
[Rm(s, a)]] (1)

3

Published as a conference paper at ICLR 2025

where Rm(s, a) denotes the ground-truth reward function of the task m.

Previous COMRL works (Li et al., 2020; 2021; Yuan & Lu, 2022; Gao et al., 2024; Li et al., 2024)
are proven to optimize the context encoder by maximizing the approximate bounds of I(Z;M), as
shown in Theorem 3.1. They hold the intuition that using such kind of approach to optimize the
context encoder and adopting the standard offline RL algorithms to optimize the policy can lead
to performance improvements. However, the theoretical justification of performance improvement
for such intuition has been less explored. For later use, we denote Z(·|x;ϕmutual) as the optimal
solution for maximizing I(Z;M). Whether Z(·|x;ϕmutual) is equivalent to Z(·|x;ϕ∗) remains an
open problem. To avoid confusion, we introduce an extra notation here.
Theorem 3.1 ((Li et al., 2024)). Denote Xb and Xt are the behavior-related (s, a)-component and
task-related (s′, r)-component of the context X , with X = (Xb, Xt). We have:

I(Z;Xt|Xb) ≤ I(Z;M) ≤ I(Z;X) (2)

where 1) LFOCAL ≡ −I(Z;X) = −I(Z;Xt|Xb)− I(Z;Xb); 2) LCORRO ≡ −I(Z;Xt|Xb); 3)
LCSRO ≥ (λ− 1)I(Z;X)− λI(Z;Xt|Xb), and ≡ denotes equality up to a constant.

4 METHODS

We first introduce a Lipschitz assumption, a widely used technique in both model-free (Song & Sun,
2019; Ghosh et al., 2022) and model-based (Ji et al., 2022; Zhang et al., 2023a) RL frameworks.
Assumption 4.1. The policy function is Lz− Lipschitz w.r.t some norm || · || in the sense that

∀Z(·|x;ϕ1), Z(·|x;ϕ2) ∈ Z, |π(·|s, Z(·|x;ϕ1); θ)− π(·|s, Z(·|x;ϕ2); θ)| ≤ Lz · |Z(·|x;ϕ1)− Z(·|x;ϕ2)|
(3)

The proofs for all the following sections are provided in Appendix Section 8.2.

4.1 A PERFORMANCE IMPROVEMENT PERSPECTIVE TOWARDS PRIOR WORKS

Our goal is to arrive at an optimization objective for COMRL to get the performance improvement
guarantee. Motivated by the return discrepancy scheme (Janner et al., 2019) in the model-based RL
field, we can similarly build a tractable lower bound for J∗(θ).
Definition 4.2 (Return discrepancy in COMRL). The return discrepancy in the COMRL setting can
be defined as

J∗(θ)− J(θ) ≥ −|J(θ)− J∗(θ)| (4)

where J(θ) = Em,x[E(s,a)∼dπ(·|s,Z(·|x;ϕ);θ)
[Rm(s, a)]] is the expected return of the policy π condi-

tioning on the learned task representation Z(·|x;ϕ).

From Definition 4.2, we know that if the estimation error |J∗(θ) − J(θ)| can be upper-bounded,
the lower bound for J∗(θ) can be established simultaneously. Then, Eq. (4) can be interpreted as a
unified training objective for both the context encoder and the policy. Specifically, we can alternate
the optimization target to lift the lower bound for J∗(θ), where the whole optimization process can
be seen as a two-stage alternating framework with the first stage updating the context encoder to
minimize |J∗(θ)−J(θ)| and the second stage updating the policy to maximize J(θ)−|J∗(θ)−J(θ)|
as J∗(θ) ≥ J(θ)− |J∗(θ)− J(θ)|. Hence, the performance improvement guarantee can be achieved.

The following theorem induces a tractable upper bound for |J∗(θ) − J(θ)|, bridging the gap be-
tween the intuition of previous works and the theoretical justification concerning the performance
improvement guarantee.
Theorem 4.3 (Return bound in COMRL). Assume the reward function is upper-bounded by Rmax.
For an arbitrary policy parameter θ, when meeting Assumption 4.1, the return bound in COMRL can
be formalized as:

|J∗(θ)− J(θ)| ≤ 2RmaxLz

(1− γ)2
Em,x(|Z(·|x;ϕ)− Z(·|x;ϕmutual)|+ |Z(·|x;ϕmutual)− Z(·|x;ϕ∗)|)

(5)

4

Published as a conference paper at ICLR 2025

By directly unrolling the Theorem 4.3, we can establish the lower bound of J∗(θ) as:

J∗(θ) ≥ J(θ)− 2RmaxLz

(1− γ)2
Em,x(|Z(·|x;ϕ)− Z(·|x;ϕmutual)|+ |Z(·|x;ϕmutual)− Z(·|x;ϕ∗)|)

(6)

Note that |Z(·|x;ϕmutual)− Z(·|x;ϕ∗)| is a constant w.r.t the learned task representation Z(·|x;ϕ).
Hence, this term can be ignored when optimizing Z(·|x;ϕ). Admittedly, there may exist a smarter
algorithm to further reduce the gap of |Z(·|x;ϕmutual)− Z(·|x;ϕ∗)|, but this is not our main focus
and we leave this to future work.

Theorem 4.3 and Eq. (6) indicate the following two principles for the context encoder and the
policy. For the context encoder learning, we should minimize the return bound, namely minimizing
Em,x|Z(·|x;ϕ) − Z(·|x;ϕmutual)|. For the policy learning, we should lift the lower bound of
J∗(θ), namely maximizing J(θ)− 2RmaxLz

(1−γ)2 Em,x(|Z(·|x;ϕ)−Z(·|x;ϕmutual)|+|Z(·|x;ϕmutual)−
Z(·|x;ϕ∗)|) ≡ J(θ), as the task representation related terms are constants for policy optimization.
To maximize J(θ), we can adopt standard offline RL algorithms (Wu et al., 2019; Kumar et al., 2020;
Fujimoto & Gu, 2021) similar to (Yang et al., 2022).

Recall that previous COMRL works adopt alternatingly training the context encoder by maximizing
I(Z;M), which can be approximately seen as minimizing Em,x|Z(·|x;ϕ)− Z(·|x;ϕmutual)| and
training the policy by conditioning on the learned task representation as well as applying the standard
offline RL algorithms. Therefore, we argue that our theoretical analyses provide an explanation for
the performance improvement guarantee of previous COMRL works.

However, this optimization framework only considers the discrepancy between Z(·|x;ϕ) and
Z(·|x;ϕmutual), without considering the variation of Z(·|x;ϕ). In the next section, we will show
that this may violate the monotonicity of the performance improvements.

4.2 MONOTONIC PERFORMANCE IMPROVEMENT CONCERNING TASK REPRESENTATION
SHIFT

In this section, we aim to demonstrate that as the previous optimization framework in Section
4.1 doesn’t model the variation of task representation explicitly, this framework would provide
an insufficient condition for monotonic performance improvement. We first show conditions for
monotonic performance improvement of the previous framework.

Corollary 4.4 (Monotonic performance improvement condition for previous COMRL works). When
meeting Assumption 4.1, the condition for monotonic performance improvement of previous COMRL
works is:

ϵ∗12 ≜ J∗(θ2)− J∗(θ1) ≥
4RmaxLz

(1− γ)2
Em,x(|Z(·|x;ϕ)− Z(·|x;ϕ∗)|) (7)

As shown in Corollary 4.4, Z(·|x;ϕ) should be close to Z(·|x;ϕ∗) such that the lower bound is small
enough for finding a policy to achieve monotonic performance improvement. Next, we will introduce
the performance difference bound framework to model variation of task representation.

Definition 4.5 (Performance difference bound in COMRL). For an alternating update process,
we denote J1(θ1) = Em,xE(s,a)∼dπ(·|s,Z(·|x;ϕ1);θ1)

[Rm(s, a)] as the expected return of the policy
π(·|s, Z(·|x;ϕ1); θ1) before update of the context encoder and the policy. Similarly, denote J2(θ2) =
Em,xE(s,a)∼dπ(·|s,Z(·|x;ϕ2);θ2)

[Rm(s, a)] as the expected return of the policy π(·|s, Z(·|x;ϕ2); θ2)
after update of the context encoder and the policy. The performance difference bound in the COMRL
setting can be defined as

J2(θ2)− J1(θ1) ≥ C (8)

when C is non-negative, the algorithm allows a monotonic performance improvement.

According to Definition 4.5, we need to find a positive C to improve the performance monotonically.
To achieve this, we can derive the lower bound of the performance difference.

5

Published as a conference paper at ICLR 2025

Theorem 4.6 (Lower bound of performance difference in COMRL). Assume the reward function
is upper-bounded by Rmax. When meeting Assumption 4.1, the lower bound of the performance
difference in COMRL can be formalized as:

J2(θ2)− J1(θ1) ≥ ϵ∗12 −
2RmaxLz

(1− γ)2
Em,x[2|Z(·|x;ϕ2)− Z(·|x;ϕ∗)|+ |Z(·|x;ϕ2)− Z(·|x;ϕ1)|]

(9)

For achieving the monotonic performance improvement guarantee, we further let the right-hand side
of Eq. (9) be positive. Then, we would have the following condition to achieve monotonicity.

ϵ∗12 −
2RmaxLz

(1− γ)2
Em,x[2|Z(·|x;ϕ2)− Z(·|x;ϕ∗)|+ |Z(·|x;ϕ2)− Z(·|x;ϕ1)|] ≥ 0 (10)

Compared to the condition in Corollary 4.4, Eq. 10 presents an additional term |Z(·|x;ϕ2) −
Z(·|x;ϕ1)| to achieve monotonic performance improvement, which corresponds exactly to the previ-
ous ignored impacts stemming from the variation of the task representation. To achieve monotonic
performance improvements, the optimization of task representation should consider not only the
approximation to Z(·|x;ϕ∗), but also the magnitude of the update. For example, if we assume
that Z(·|x;ϕ1) is trained from scratch and the update process from Z(·|x;ϕ1) to Z(·|x;ϕ2) brings
Z(·|x;ϕ2) close to Z(·|x;ϕ∗), then with the condition in Corollary 4.4, the monotonic performance
improvement can be easily achieved with small ϵ∗12. However, for the condition in Eq. (10), small ϵ∗12
may cause the violation of monotonicity as |Z(·|x;ϕ1)− Z(·|x;ϕ2)| remains large.

To highlight the impacts of |Z(·|x;ϕ2)− Z(·|x;ϕ1)|, we name this issue Task Representation Shift.
Under some mild assumptions, we can conclude that it is possible to achieve monotonic performance
improvement with sufficient policy improvement ϵ∗12 on the condition of appropriate encoder updates,
as shown in Theorem 4.10.
Assumption 4.7. The impacts of task representation shift are upper-bounded by β and less than the
policy improvement ϵ∗12 with a certain coefficient.
Assumption 4.8. The space of the task representation is discrete and limited.

Assumption 4.9. There exists an α for any given Z(·|x;ϕ1), |Z(·|x;ϕ2)− Z(·|x; ϕ̃2)|2 ≤ α
b , where

Z(·|x;ϕ2) denotes the context encoder updated by maximizing I(Z;M) with the data size b randomly
sampled from the training dataset based on Z(·|x;ϕ1) and Z(·|x; ϕ̃2) denotes the context encoder
updated by fitting the empirical distribution on b i.i.d samples from Z(·|x;ϕ∗) based on Z(·|x;ϕ1)

2.
Theorem 4.10 (Monotonic performance improvement guarantee on training process). Denote κ as
(1−γ)2

4RmaxLz
ϵ∗12 − 1

2β and |Z| as the cardinality of the task representation space. Given that the context
encoder has already been trained by maximizing I(Z;M) to some extent. When meeting Assumption
4.1, 4.7, 4.8 and 4.9, with a probability greater than 1− ξ, we can get the monotonic performance
improvement guarantee by updating the context encoder via maximizing I(Z;M) from at least extra
k samples, where:

k =
1

κ2
(

√
2 log

2|Z| − 2

ξ
+
√
α)2 (11)

Here, ξ ∈ [0, 1] is a constant.

Theorem 4.10 shows the connection between the needed update data size k and the performance
improvement brought only by the policy update ϵ∗12. If the calculated k is larger than the given
batch size, the context encoder should avoid this update and wait for the accumulation of ϵ∗12. As
ϵ∗12 increases, k decreases. When k is smaller than the given batch size, the monotonic performance
improvement can be achieved by updating the context encoder. Notice that this updating process
can be performed multiple times, as long as satisfying Assumption 4.7. The updating process is
visualized in Figure 1 right. Compared to the original alternating framework, Theorem 4.10 unveils
that the core part for better performance improvement is to adjust the update of the context encoder
to rein in the task representation shift, thereby showcasing the advantage over the previous works.
The general algorithmic framework is shown in Algorithm 1, where the way to adjust the update of
the context encoder is colored by red.

2For more details to justify these assumptions, please refer to Appendix 8.3.

6

Published as a conference paper at ICLR 2025

Algorithm 1 General Algorithmic Framework Towards Reining In The Task Representation Shift
Input: Offline training datasets X , initialized policy πθ, context encoder Zϕ, given task representa-

tion shift threshold β and given training batch size for context encoder Nbs.
1: for iter in alternating iterations do
2: // Update the context encoder
3: Estimate the conditions (e.g.use Eq. (11) to approximate k)
4: if Conditions for updating the context encoder are met (e.g. k <= Nbs) then
5: while Accumulated task representation shift is less than β do
6: Sample context from X
7: Obtain task representations from Zϕ with inputting the sampled context
8: Compute Lencoder concerning maximizing I(Z;M)
9: Update ϕ to minimize Lencoder

10: end while
11: end if
12: // Update the policy
13: Detach the task representations
14: Sample training data from X
15: Compute Lpolicy via standard offline RL algorithms
16: Update θ to minimize Lpolicy
17: end for

4.3 PRACTICAL IMPLEMENTATION

As outlined in Algorithm 1, the way to rein in the task representation shift can be seen as two aspects,
namely 1) when to update the context encoder determined by k and 2) how many times to update
the context encoder determined by β. To cover these two aspects, we introduce two parameters Nk
and Nacc. Here, Nk = n denotes that the context encoder needs to be updated every n updates of
the policy, and Nacc = n denotes when the context encoder needs to be updated, it is updated n
times. Our settings include 1) Nk = 2, Nacc = 1, 2) Nk = 3, Nacc = 1, 3) Nk = 1, Nacc = 2, and
4) Nk = 1, Nacc = 3. All settings as well as the original setting, namely Nk = 1, Nacc = 1, are
performed for 8 different random seeds.

With respect to the specific context encoder learning algorithms concerning maximizing I(Z;M), we
choose three representative algorithms that have been widely adopted in previous COMRL endeavors.
The details of these algorithms are shown in Appendix Section 8.4.

Contrastive-based is applied in (Li et al., 2020; Gao et al., 2024; Li et al., 2024) and it is proven to
be the upper bound of I(Z;M).

Reconstruction-based is applied in (Zintgraf et al., 2019; Dorfman et al., 2021; Li et al., 2024) and
it is proven to be the lower bound of I(Z;M), which is equivalent to CORRO (Yuan & Lu, 2022)
under the offline setting.

Cross-entropy-based is proposed in our work and it is a direct approximation w.r.t I(Z;M).

With respect to the policy learning algorithm, to maintain the consistency of previous COMRL works,
we directly adopt BRAC (Wu et al., 2019) to train the policy.

5 EXPERIMENT

Our experiments are conducted to show that the previous optimization framework that ignores the
impacts of task representation shift is not sufficient. We hope to illustrate the potential of reining in
the task representation shift, laying the foundation for further research towards better performance
improvement of COMRL.

5.1 ENVIRONMENTS SETTINGS

We adopt MuJoCo (Todorov et al., 2012) and MetaWorld (Yu et al., 2020) benchmarks to evaluate
the algorithms. Following the protocol of UNICORN (Li et al., 2024), we randomly sample 20

7

Published as a conference paper at ICLR 2025

training tasks and 20 testing tasks from the task distribution. We train the SAC (Haarnoja et al., 2018)
agent from scratch for each task and use the collected replay buffer as the offline dataset. During the
meta-testing phase, we adopt a fully offline setting in a few-shot manner like (Li et al., 2020) that
randomly samples a trajectory from the dataset as the context to obtain the task representation and
then passes it to the meta-policy to complete the testing in the true environments.

5.2 MAIN RESULTS

Ant-Dir Walker-Param Reach Dial-Turn Button-Press Push

original Nk=3,Nacc=1 Nk=2,Nacc=1 Nk=1,Nacc=3 Nk=1,Nacc=2

cr
os
s-
en

tro
py

co
nt
ra
st
iv
e

re
co
ns
tru

ct
io
n

Figure 2: Testing returns of different settings to rein in the task representation shift. Solid curves
refer to the mean performance of trials over 8 random seeds, and the shaded areas characterize the
standard deviation of these trials.

Figure 2 and Table 3 illustrate the performance of our different settings to rein in the task repre-
sentation shift on 20 testing tasks. We find that these specific objectives exhibit clear trends across
all benchmarks that the best setting showcases statistically significant performance improvements
compared to the worst setting, thereby emphasizing the indispensability of considering the task repre-
sentation shift issue. We also notice that the previous training framework, namely Nk = 1, Nacc = 1 ,
fails to deliver the best asymptotic performance across all benchmarks. Though Nk = 1, Nacc = 1
can be seen as an implicit way to rein in the task representation shift, the lack of explicit control
still hinders the capability of these base algorithms to reach their full potential. Furthermore, as
shown in Table 3, we observe that settings with Nk > 1, Nacc = 1 achieve better performance more
frequently than those with Nk = 1, Nacc > 1 w.r.t the original setting Nk = 1, Nacc = 1. Based on
this observation, we recommend prioritizing the adjustment of Nk when tuning parameters. This not
only tends to yield better performance but also offers the advantage of reducing training time. In
contrast, increasing Nacc would increase training time due to the need for multiple context encoder
updates within a single alternating step.

5.3 CAN THE RESULTS SHOW CONSISTENCY ACROSS DIFFERENT DATA QUALITIES?

To make our claim more universal, we conduct the experiment on different data qualities. We collect
three types of datasets with size being equal to the dataset used in Section 5.2. Depending on the
quality of the behavior policies, we denote these datasets as random, medium, and expert respectively.

Figure 3 and Table 3 demonstrate the performance of our different settings to rein in the task
representation shift on Ant-Dir. We find that the contrastive-based algorithm fails on the random
dataset. Except for this case, the others show consistent results that reining in the task representation
shift can lead to better performance improvements.

Based on these impressive results, we believe that developing a smarter algorithm to control the task
representation shift automatically is an appealing direction and we leave this to future work.

8

Published as a conference paper at ICLR 2025

Random Medium Expert

original Nk=3,Nacc=1 Nk=2,Nacc=1 Nk=1,Nacc=3 Nk=1,Nacc=2

cr
os
s-
en

tro
py

co
nt
ra
st
iv
e

re
co
ns
tru

ct
io
n

Figure 3: Testing returns of different settings to rein in the task representation shift on different
data qualities in Ant-Dir. Solid curves refer to the mean performance of trials over 8 random seeds,
and the shaded areas characterize the standard deviation of these trials.

6 DISCUSSION

This section seeks to raise some interesting issues derived from our work. We hope these issues can
further enable pondering on the significance of the task representation shift.

cross-entropy contrastive reconstruction

pretrain original

Figure 4: Testing returns of the pre-training scheme against training from scratch in Ant-Dir.
Solid curves refer to the mean performance of trials over 8 random seeds, and the shaded areas
characterize the standard deviation of these trials.

6.1 CAN THE PRETRAINING SCHEME BE ADOPTED TO ACHIEVE BETTER PERFORMANCE
IMPROVEMENT?

According to our analysis, the task representation shift issue only happens in the case that the context
encoder needs to be trained from scratch. Hence, a question is raised naturally. If we train the
context encoder in advance and use this pre-trained context encoder to train the policy directly, can
we achieve better performance improvement?

To answer this question, we conduct the experiment in Ant-Dir and still use the cross-entropy,
contrastive, and reconstruction based objectives to pre-train the context encoder. As shown in Figure
4, there is a significant performance gap between pre-training and training from scratch. To better
theoretically interpret this, we introduce the following Corollary.
Corollary 6.1 (Monotonic performance improvement condition for pre-training scheme). Denote
Z(·|x;ϕpretrain) as the task representation distribution after pre-training. When meeting Assumption
4.1, the monotonic performance improvement condition for pre-training scheme is:

ϵ∗12 −
4RmaxLz

(1− γ)2
Em,x[|Z(·|x;ϕpretrain)− Z(·|x;ϕ∗)|] ≥ 0 (12)

While maximizing I(Z;M) can help Z(·|x;ϕpretrain) to approach Z(·|x;ϕmutual), the sub-optimal
gap between Z(·|x;ϕmutual) and Z(·|x;ϕ∗) still persists. Furthermore, given the inherent approxima-

9

Published as a conference paper at ICLR 2025

tion error between Z(·|x;ϕpretrain) and Z(·|x;ϕmutual), the discrepancy between Z(·|x;ϕpretrain)
and Z(·|x;ϕ∗) maybe large. Hence, according to Corollary 6.1, pre-training cannot actually achieve
monotonic performance improvements. As the task representation cannot be changed under the
pre-training scheme, compared to training from scratch, this scheme loses some degrees of freedom
to improve performance.

Additionally, this scheme can be intuitively regarded as degrading to the problem that how to design
a pre-training algorithm to better approximate Z(·|x;ϕ∗). Notice that there exists the decomposi-
tion |Z(·|x;ϕpretrain)− Z(·|x;ϕ∗)| ≤ |Z(·|x;ϕpretrain)− Z(·|x;ϕmutual)|+ |Z(·|x;ϕmutual)−
Z(·|x;ϕ∗)|. Since the cross-entropy-based objective is the direct approximation of I(Z;M), holding
better performance under the pre-training scheme is also in line with expectation.

This analysis further enhances the importance of considering the impacts of task representation shift
|Z(·|x;ϕ2)− Z(·|x;ϕ1)| in the alternating process. Nevertheless, how to achieve better performance
under the pre-training scheme is also an interesting problem.

6.2 CAN THE VISUALIZATION OF TASK REPRESENTATION BE STRONGLY RELIED UPON TO
IMPLY THE ASYMPTOTIC PERFORMANCE?

cross-entropy; pretrain; 300K; performance≈195 reconstruction; Nk=3, Nacc=1; 300K; performance≈245

Figure 5: The 2D projection of the learned task
representation space in Ant-Dir. Points are uni-
formly sampled from the evaluation datasets. Tasks
of given goals from 0 to 6 are mapped to rainbow
colors, ranging from purple to red.

Previous COMRL endeavors (Li et al., 2020;
Yuan & Lu, 2022; Gao et al., 2024) mostly apply
t-SNE on the learned task representation to show
the differentiation of the tasks. They hold the be-
lief that better performance corresponds to better
differentiation of the tasks. However, based on
our analysis, the visualization result only de-
pends on the task representation at convergence
and ignores the task representation shift during
the whole optimization process. According to
the illustration shown in Figure 5, less desirable
differentiation results can also lead to better per-
formance. Hence, the visualization results may
represent the true task distribution but cannot
sufficiently imply the final performance.

7 CONCLUSION & LIMITATION

Finding that the performance improvement guarantee of the COMRL training framework remains
under-explored, we constructively provide a theoretical framework to link the training scheme in
COMRL with the general RL objective of maximizing the expected return. After scrutinizing this
framework, we further find it ignores the variation of the task representation, which may impair
performance improvement. Based on this finding, we propose a new issue called task representation
shift, refine the condition for monotonicity, and prove that monotonic performance improvements can
be achieved with appropriate context encoder updates. We prospect that deeply exploring the role
of task representation shift can make a profound difference in the COMRL setting. Naturally, one
limitation is that there may exist more advanced algorithms to control the task representation shift.
Additionally, our work focuses on the representation part for monotonic performance improvement,
leaving the policy learning part alone. Hence, one direction that merits further research is to design a
policy learning algorithm to achieve better policy improvements conditioning on the optimal task
representation distribution. We leave these interesting problems to future work.

ACKNOWLEDGMENTS

The work is supported by the National Key Research and Development Program of China (No.
2020YFA0711402), by the Young Scientists Fund of National Natural Science Foundation of
China (No. 62406295), and by the "Pioneer" and "Leading Goose" R&D Program of Zhejiang
(2024SSYS0007).

10

Published as a conference paper at ICLR 2025

REFERENCES

Era Choshen and Aviv Tamar. Contrabar: Contrastive bayes-adaptive deep rl. In International
Conference on Machine Learning, pp. 6005–6027. PMLR, 2023.

Sebastian Curi, Felix Berkenkamp, and Andreas Krause. Efficient model-based reinforcement learning
through optimistic policy search and planning. Advances in Neural Information Processing Systems,
33:14156–14170, 2020.

Ron Dorfman, Idan Shenfeld, and Aviv Tamar. Offline meta reinforcement learning–identifiability
challenges and effective data collection strategies. Advances in Neural Information Processing
Systems, 34:4607–4618, 2021.

Mehdi Fatemi, Mary Wu, Jeremy Petch, Walter Nelson, Stuart J Connolly, Alexander Benz, Anthony
Carnicelli, and Marzyeh Ghassemi. Semi-markov offline reinforcement learning for healthcare. In
Conference on Health, Inference, and Learning, pp. 119–137. PMLR, 2022.

Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning.
Advances in neural information processing systems, 34:20132–20145, 2021.

Yunkai Gao, Rui Zhang, Jiaming Guo, Fan Wu, Qi Yi, Shaohui Peng, Siming Lan, Ruizhi Chen,
Zidong Du, Xing Hu, et al. Context shift reduction for offline meta-reinforcement learning.
Advances in Neural Information Processing Systems, 36, 2024.

Arnob Ghosh, Xingyu Zhou, and Ness Shroff. Provably efficient model-free constrained rl with linear
function approximation. Advances in Neural Information Processing Systems, 35:13303–13315,
2022.

Dibya Ghosh, Jad Rahme, Aviral Kumar, Amy Zhang, Ryan P Adams, and Sergey Levine. Why
generalization in rl is difficult: Epistemic pomdps and implicit partial observability. Advances in
neural information processing systems, 34:25502–25515, 2021.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International conference
on machine learning, pp. 1861–1870. PMLR, 2018.

Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When to trust your model: Model-based
policy optimization. Advances in neural information processing systems, 32, 2019.

Tianying Ji, Yu Luo, Fuchun Sun, Mingxuan Jing, Fengxiang He, and Wenbing Huang. When
to update your model: Constrained model-based reinforcement learning. Advances in Neural
Information Processing Systems, 35:23150–23163, 2022.

Sham Kakade and John Langford. Approximately optimal approximate reinforcement learning. In
Proceedings of the Nineteenth International Conference on Machine Learning, pp. 267–274, 2002.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. Advances in Neural Information Processing Systems, 33:1179–1191, 2020.

Aviral Kumar, Anikait Singh, Stephen Tian, Chelsea Finn, and Sergey Levine. A workflow for
offline model-free robotic reinforcement learning. In Aleksandra Faust, David Hsu, and Ger-
hard Neumann (eds.), Proceedings of the 5th Conference on Robot Learning, volume 164 of
Proceedings of Machine Learning Research, pp. 417–428. PMLR, 08–11 Nov 2022. URL
https://proceedings.mlr.press/v164/kumar22a.html.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tutorial,
review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

Lanqing Li, Rui Yang, and Dijun Luo. Focal: Efficient fully-offline meta-reinforcement learning via
distance metric learning and behavior regularization. arXiv preprint arXiv:2010.01112, 2020.

Lanqing Li, Yuanhao Huang, Mingzhe Chen, Siteng Luo, Dijun Luo, and Junzhou Huang. Provably
improved context-based offline meta-rl with attention and contrastive learning. arXiv preprint
arXiv:2102.10774, 2021.

11

https://proceedings.mlr.press/v164/kumar22a.html

Published as a conference paper at ICLR 2025

Lanqing Li, Hai Zhang, Xinyu Zhang, Shatong Zhu, Yang YU, Junqiao Zhao, and Pheng-Ann Heng.
Towards an information theoretic framework of context-based offline meta-reinforcement learning.
In The Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024. URL
https://openreview.net/forum?id=QFUsZvw9mx.

Yuping Luo, Huazhe Xu, Yuanzhi Li, Yuandong Tian, Trevor Darrell, and Tengyu Ma. Algorithmic
framework for model-based deep reinforcement learning with theoretical guarantees. arXiv preprint
arXiv:1807.03858, 2018.

Haozhe Ma, Kuankuan Sima, Thanh Vinh Vo, Di Fu, and Tze-Yun Leong. Reward shaping for
reinforcement learning with an assistant reward agent. In Forty-first International Conference on
Machine Learning, 2024a. URL https://openreview.net/forum?id=a3XFF0PGLU.

Haozhe Ma, Thanh Vinh Vo, and Tze-Yun Leong. Mixed-initiative bayesian sub-goal optimization
in hierarchical reinforcement learning. In Proceedings of the 23rd international conference on
autonomous agents and multiagent systems, pp. 1328–1336, 2024b.

Eric Mitchell, Rafael Rafailov, Xue Bin Peng, Sergey Levine, and Chelsea Finn. Offline meta-
reinforcement learning with advantage weighting. In International Conference on Machine
Learning, pp. 7780–7791. PMLR, 2021.

Ian Osband and Benjamin Van Roy. Model-based reinforcement learning and the eluder dimension.
Advances in Neural Information Processing Systems, 27, 2014.

Long Peng, Yang Cao, Yuejin Sun, and Yang Wang. Lightweight adaptive feature de-drifting for
compressed image classification. IEEE Transactions on Multimedia, 2024.

Long Peng, Wenbo Li, Renjing Pei, Jingjing Ren, Jiaqi Xu, Yang Wang, Yang Cao, and Zheng-
Jun Zha. Towards realistic data generation for real-world super-resolution. In The Thirteenth
International Conference on Learning Representations, 2025. URL https://openreview.
net/forum?id=JkCJBoNUcU.

Martin L Puterman. Markov decision processes: discrete stochastic dynamic programming. John
Wiley & Sons, 2014.

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon
Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, et al. Mastering atari,
go, chess and shogi by planning with a learned model. Nature, 588(7839):604–609, 2020.

Julian Schrittwieser, Thomas Hubert, Amol Mandhane, Mohammadamin Barekatain, Ioannis
Antonoglou, and David Silver. Online and offline reinforcement learning by planning with a
learned model. Advances in Neural Information Processing Systems, 34:27580–27591, 2021.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In International conference on machine learning, pp. 1889–1897. PMLR,
2015.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez,
Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. A general reinforcement
learning algorithm that masters chess, shogi, and go through self-play. Science, 362(6419):
1140–1144, 2018.

Samarth Sinha, Ajay Mandlekar, and Animesh Garg. S4rl: Surprisingly simple self-supervision for
offline reinforcement learning in robotics. In Conference on Robot Learning, pp. 907–917. PMLR,
2022.

Zhao Song and Wen Sun. Efficient model-free reinforcement learning in metric spaces. arXiv preprint
arXiv:1905.00475, 2019.

Shengpu Tang, Maggie Makar, Michael Sjoding, Finale Doshi-Velez, and Jenna Wiens. Leveraging
factored action spaces for efficient offline reinforcement learning in healthcare. Advances in Neural
Information Processing Systems, 35:34272–34286, 2022.

12

https://openreview.net/forum?id=QFUsZvw9mx
https://openreview.net/forum?id=a3XFF0PGLU
https://openreview.net/forum?id=JkCJBoNUcU
https://openreview.net/forum?id=JkCJBoNUcU

Published as a conference paper at ICLR 2025

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ international conference on intelligent robots and systems, pp. 5026–5033.
IEEE, 2012.

Tsachy Weissman, Erik Ordentlich, Gadiel Seroussi, Sergio Verdu, and Marcelo J Weinberger.
Inequalities for the l1 deviation of the empirical distribution. Hewlett-Packard Labs, Tech. Rep, pp.
125, 2003.

Yifan Wu, George Tucker, and Ofir Nachum. Behavior regularized offline reinforcement learning.
arXiv preprint arXiv:1911.11361, 2019.

Mengdi Xu, Yikang Shen, Shun Zhang, Yuchen Lu, Ding Zhao, Joshua Tenenbaum, and Chuang Gan.
Prompting decision transformer for few-shot policy generalization. In international conference on
machine learning, pp. 24631–24645. PMLR, 2022.

Shentao Yang, Shujian Zhang, Yihao Feng, and Mingyuan Zhou. A unified framework for alternating
offline model training and policy learning. Advances in Neural Information Processing Systems,
35:17216–17232, 2022.

Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and Sergey
Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning.
In Conference on robot learning, pp. 1094–1100. PMLR, 2020.

Tianhe Yu, Aviral Kumar, Rafael Rafailov, Aravind Rajeswaran, Sergey Levine, and Chelsea Finn.
Combo: Conservative offline model-based policy optimization. Advances in neural information
processing systems, 34:28954–28967, 2021.

Haoqi Yuan and Zongqing Lu. Robust task representations for offline meta-reinforcement learning
via contrastive learning. In International Conference on Machine Learning, pp. 25747–25759.
PMLR, 2022.

Di Zhang, Bowen Lv, Hai Zhang, Feifan Yang, Junqiao Zhao, Hang Yu, Chang Huang, Hongtu
Zhou, Chen Ye, and changjun jiang. Focus on what matters: Separated models for visual-based
RL generalization. In The Thirty-eighth Annual Conference on Neural Information Processing
Systems, 2024. URL https://openreview.net/forum?id=wz2KvvEk44.

Hai Zhang, Hang Yu, Junqiao Zhao, Di Zhang, Chang Huang, Hongtu Zhou, Xiao Zhang, and
Chen Ye. How to fine-tune the model: Unified model shift and model bias policy optimization.
In Thirty-seventh Conference on Neural Information Processing Systems, 2023a. URL https:
//openreview.net/forum?id=d7a5TpePV7.

Xiao Zhang, Hai Zhang, Hongtu Zhou, Chang Huang, Di Zhang, Chen Ye, and Junqiao Zhao. Safe
reinforcement learning with dead-ends avoidance and recovery. IEEE Robotics and Automation
Letters, 9(1):491–498, 2023b.

Luisa Zintgraf, Kyriacos Shiarlis, Maximilian Igl, Sebastian Schulze, Yarin Gal, Katja Hofmann, and
Shimon Whiteson. Varibad: A very good method for bayes-adaptive deep rl via meta-learning.
arXiv preprint arXiv:1910.08348, 2019.

13

https://openreview.net/forum?id=wz2KvvEk44
https://openreview.net/forum?id=d7a5TpePV7
https://openreview.net/forum?id=d7a5TpePV7

Published as a conference paper at ICLR 2025

8 APPENDIX

8.1 USEFUL LEMMAS

Lemma 8.1 (Return bound.(Zhang et al., 2023a)). Let Rmax denote the bound of the reward function,
ϵπ denote maxs DTV (π1||π2) and ϵM2

M1
denote E(s,a)∼d

π1
M1

[DTV (pM1 ||pM2)]. For two arbitrary
policies π1, π2 ∈ Π, the expected return under two arbitrary models M1,M2 ∈M can be bounded
as,

|V π2

M2
− V π1

M1
| ≤ 2Rmax(

ϵπ
(1− γ)2

+
γ

(1− γ)2
ϵM2

M1
) (13)

Proof:

|V π2

M2
− V π1

M1
| = |

∞∑
t=0

γt
∑
s,a

(pπ2

t,M2
(s, a)− pπ1

t,M1
(s, a))r(s, a)|

≤ Rmax

∞∑
t=0

γt
∑
s,a

|pπ2

t,M2
(s, a)− pπ1

t,M1
(s, a)|

= 2Rmax

∞∑
t=0

γtDTV (p
π1

t,M1
(s, a)||pπ2

t,M2
(s, a))

(14)

According to Theorem 2 (Return Bound) in (Zhang et al., 2023a),
∞∑
t=0

γtDTV (p
π1

t,M1
(s, a)||pπ2

t,M2
(s, a)) ≤ (

ϵπ
(1− γ)2

+
γ

(1− γ)2
ϵM2

M1
) (15)

.

We bring this result back and can draw the conclusion.

Lemma 8.2 (Inequility for L1 deviation of the empirical distribution.(Weissman et al., 2003)). Let P
be a probability distribution on the set A = {1, ..., a}. For a sequence of samples x1, ..., xm ∼ P ,
let P̂ be the empirical probability distribution on A defined by P̂ (j) = 1

m

∑m
i=1 I(xi = j). The

L1-deviation of the true distribution P and the empirical distribution P̂ over Â from m independent
identically samples is bounded by,

Pr(|P − P̂ | ≥ ϵ) ≤ (2|A| − 2) exp (−mϵ2/2) (16)

Proof:

According to the inequality for L1 deviation of the empirical distribution (Weissman et al., 2003), they
conclude that Pr(|P − P̂ |1 ≥ ϵ) ≤ (2|A| − 2) exp(−mϕ(πP)ϵ

2/4), where ϕ(p) = 1
1−2p log

1−p
p

and πP = maxA∈A min(P (A), 1 − P (A)). The paper (Weissman et al., 2003) point out that 0 ≤
πP ≤ 1/2,∀P . Based on this, we can derive the function ϕ(p) and find that ϕ(p) is monotonically
decreasing on (0, 1/2). Therefore, we can get ϕ(p) ≥ ϕ(1/2) = 2. Then, we bring this result back
and can conclude that Pr(|P − P̂ |1 ≥ ϵ) ≤ (2|A| − 2) exp(−mϵ2/2).

8.2 MISSING PROOFS

Theorem 8.3 (Return bound in COMRL). Assume the reward function is upper-bounded by Rmax.
For an arbitrary policy parameter θ, when meeting Assumption 4.1, the return bound in COMRL can
be formalized as:

|J∗(θ)− J(θ)| ≤ 2RmaxLz

(1− γ)2
Em,x(|Z(·|x;ϕ)− Z(·|x;ϕmutual)|+ |Z(·|x;ϕmutual)− Z(·|x;ϕ∗)|)

(17)

14

Published as a conference paper at ICLR 2025

Proof:
|J(θ)− J∗(θ)|
= |Em,x[E(s,a)∼dπ(·|s,Z(·|x;ϕ);θ)

[Rm(s, a)]]− Em,x[E(s,a)∼dπ(·|s,Z(·|x;ϕ∗);θ)
[Rm(s, a)]]| (18)

= |Em,x[E(s,a)∼dπ(·|s,Z(·|x;ϕ);θ)
[Rm(s, a)]− E(s,a)∼dπ(·|s,Z(·|x;ϕ∗);θ)

[Rm(s, a)]]| (19)

= |Em,x[E(s,a)∼dπ(·|s,Z(·|x;ϕ);θ)
[Rm(s, a)]− E(s,a)∼d

π(·|s,Z(·|x;ϕmutual);θ)
[Rm(s, a)]

+ E(s,a)∼d
π(·|s,Z(·|x;ϕmutual);θ)

[Rm(s, a)]− E(s,a)∼dπ(·|s,Z(·|x;ϕ∗);θ)
[Rm(s, a)]]| (20)

≤ Em,x[|E(s,a)∼dπ(·|s,Z(·|x;ϕ);θ)
[Rm(s, a)]− E(s,a)∼d

π(·|s,Z(·|x;ϕmutual);θ)
[Rm(s, a)]|

+ |E(s,a)∼d
π(·|s,Z(·|x;ϕmutual);θ)

[Rm(s, a)]− E(s,a)∼dπ(·|s,Z(·|x;ϕ∗);θ)
[Rm(s, a)]|] (21)

= Em,x[|V π(·|s,Z(·|x;ϕ);θ)
m − V π(·|s,Z(·|x;ϕmutual);θ)

m |+ |V π(·|s,Z(·|x;ϕmutual);θ)
m − V π(·|s,Z(·|x;ϕ∗);θ)

m |]
(22)

≤ Em,x[
2Rmax

(1− γ)2
max

s
DTV (π(·|s, Z(·|x;ϕ); θ)||π(·|s, Z(·|x;ϕmutual); θ))

+
2Rmax

(1− γ)2
max

s
DTV (π(·|s, Z(·|x;ϕmutual); θ)||π(·|s, Z(·|x;ϕ∗); θ))] (23)

≤ 2RmaxLz

(1− γ)2
Em,x(|Z(·|x;ϕ)− Z(·|x;ϕmutual)|+ |Z(·|x;ϕmutual)− Z(·|x;ϕ∗)|) (24)

Eq. (23) is the result of directly applying Lemma 8.1 and Eq. (24) is the result of directly applying
Assumption 4.1.
Corollary 8.4 (Monotonic performance improvement condition for previous COMRL works). When
meeting Assumption 4.1, the condition for monotonic performance improvement of previous COMRL
works is:

ϵ∗12 ≜ J∗(θ2)− J∗(θ1) ≥
4RmaxLz

(1− γ)2
Em,x(|Z(·|x;ϕ)− Z(·|x;ϕ∗)|) (25)

Proof:
J(θ2)− J(θ1) = J(θ2)− J∗(θ2) + J∗(θ2)− J∗(θ1) + J∗(θ1)− J(θ1) (26)

Denote 2Rmax

(1−γ)2 as κ. Taking Lemma 8.1 and Assumption 4.1 into the above formulation, we can get:

J(θ2)− J∗(θ2) + J∗(θ2)− J∗(θ1) + J∗(θ1)− J(θ1) (27)
≥ Em,x[−κmax

s
DTV (π(·|s, Z(·|x;ϕ); θ2)||π(·|s, Z(·|x;ϕ∗); θ2))] + ϵ∗12 (28)

− κmax
s

DTV (π(·|s, Z(·|x;ϕ); θ1)||π(·|s, Z(·|x;ϕ∗); θ1))] (29)

≥ Em,x[−2κLz|Z(·|x;ϕ)− Z(·|x;ϕ∗)|+ ϵ∗12] (30)
To get the monotonic performance improvement, we need Eq. (30) to be larger than 0. Hence, we
can get:

ϵ∗12 −
4RmaxLz

(1− γ)2
Em,x[|Z(·|x;ϕ)− Z(·|x;ϕ∗)|] ≥ 0 (31)

Theorem 8.5 (Lower bound of performance difference in COMRL). Assume the reward function
is upper-bounded by Rmax. When meeting Assumption 4.1, the lower bound of the performance
difference in COMRL can be formalized as:

J2(θ2)− J1(θ1) ≥ ϵ∗12 −
2RmaxLz

(1− γ)2
Em,x[2|Z(·|x;ϕ2)− Z(·|x;ϕ∗)|+ |Z(·|x;ϕ2)− Z(·|x;ϕ1)|]

(32)

Proof: We can introduce the following decomposition
J2(θ2)− J1(θ1) (33)
= Em,xE(s,a)∼dπ(·|s,Z(·|x;ϕ2);θ2)

[Rm(s, a)]− Em,xE(s,a)∼dπ(·|s,Z(·|x;ϕ1);θ1)
[Rm(s, a)] (34)

= Em,x[E(s,a)∼dπ(·|s,Z(·|x;ϕ2);θ2)
[Rm(s, a)]− E(s,a)∼dπ(·|s,Z(·|x;ϕ1);θ1)

[Rm(s, a)]] (35)

15

Published as a conference paper at ICLR 2025

Denote E(s,a)∼dπ(·|s,Zi(·|x);θj)
[Rm(s, a)]] as Gθj

Zi
, then we can get the following derivation. Here, we

only consider the value within the brackets.
= E(s,a)∼dπ(·|s,Z(·|x;ϕ2);θ2)

[Rm(s, a)]− E(s,a)∼dπ(·|s,Z(·|x;ϕ1);θ1)
[Rm(s, a)] (36)

= Gθ2
Z2
−Gθ1

Z1
(37)

= Gθ2
Z2
−Gθ2

Z∗ +Gθ2
Z∗ −Gθ1

Z∗ +Gθ1
Z∗ −Gθ1

Z2
+Gθ1

Z2
−Gθ1

Z1
(38)

Denote 2Rmax

(1−γ)2 as κ. Taking Lemma 8.1 and Assumption 4.1 into the above formulation, we can get:

Gθ2
Z2
−Gθ2

Z∗ +Gθ2
Z∗ −Gθ1

Z∗ +Gθ1
Z∗ −Gθ1

Z2
+Gθ1

Z2
−Gθ1

Z1
(39)

≥ −κmax
s

DTV (π(·|s, Z(·|x;ϕ2); θ2)||π(·|s, Z(·|x;ϕ∗); θ2)) + ϵ∗12

− κmax
s

DTV (π(·|s, Z(·|x;ϕ∗); θ1)||π(·|s, Z(·|x;ϕ2); θ1))

− κmax
s

DTV (π(·|s, Z(·|x;ϕ2); θ1)||π(·|s, Z(·|x;ϕ1); θ1)) (40)

≥ −κLz|Z(·|x;ϕ2)− Z(·|x;ϕ∗)|+ ϵ∗12
− κLz|Z(·|x;ϕ2)− Z(·|x;ϕ∗)| − κLz|Z(·|x;ϕ2)− Z(·|x;ϕ1)| (41)

Simplifying Eq. (41) we can get:

J2(θ2)− J1(θ1) ≥ ϵ∗12 −
2RmaxLz

(1− γ)2
Em,x[2|Z(·|x;ϕ2)− Z(·|x;ϕ∗)|+ |Z(·|x;ϕ2)− Z(·|x;ϕ1)|]

(42)

Theorem 8.6 (Monotonic performance improvement guarantee on training process). Denote κ as
(1−γ)2

4RmaxLz
ϵ∗12 − 1

2β and |Z| as the cardinality of the task representation space. Given that the context
encoder has already been trained by maximizing I(Z;M) to some extent. When meeting Assumption
4.1, 4.7, 4.8 and 4.9, with a probability greater than 1− ξ, we can get the monotonic performance
improvement guarantee by updating the context encoder via maximizing I(Z;M) from at least extra
k samples, where:

k =
1

κ2
(

√
2 log

2|Z| − 2

ξ
+
√
α)2 (43)

Here, ξ ∈ [0, 1] is a constant.

Proof:

Let Z1 have already been trained by maximizing I(Z;M) to some extent. Given that to get Z2, we
need to train Z1 by extra k samples from the training dataset by maximizing I(Z;M) to get the
monotonic performance improvement guarantee.

We begin with the following inequality:

|Z(·|x;ϕ2)− Z(·|x;ϕ∗)| ≤ |Z(·|x;ϕ2)− Z(·|x; ϕ̃2)|+ |Z(·|x; ϕ̃2)− Z(·|x;ϕ∗)| (44)

where Z(·|x; ϕ̃2) denotes the context encoder updated by fitting the empirical distribution on k i.i.d
samples from Z(·|x;ϕ∗) based on Z(·|x;ϕ1).

According to Assumption 4.9, we have:

|Z(·|x;ϕ2)− Z(·|x; ϕ̃2)| ≤
√

α

k
(45)

Now, we move our focus on solving |Z(·|x; ϕ̃2)− Z(·|x;ϕ∗)|.

By applying Lemma 8.2, the L1 deviation of the empirical distribution Z(·|x; ϕ̃2) and true Z(·|x;ϕ∗)
over |Z| is bounded by:

Pr(|Z(·|x; ϕ̃2)− Z(·|x;ϕ∗)| ≥ ϵ) ≤ (2|Z| − 2) exp (−kϵ2/2) (46)

Pr(|Z(·|x; ϕ̃2)− Z(·|x;ϕ∗)| <= ϵ) ≥ 1− (2|Z| − 2) exp (−kϵ2/2) (47)

16

Published as a conference paper at ICLR 2025

Then for a fixed x, with probability greater than 1− ξ, we have:

|Z(·|x; ϕ̃2)− Z(·|x;ϕ∗)| ≤

√
2

k
log

2|Z| − 2

ξ
(48)

Hence, we can get:

|Z(·|x;ϕ2)− Z(·|x;ϕ∗)| ≤

√
2

k
log

2|Z| − 2

ξ
+

√
α

k
(49)

Let ϵ = (1−γ)2

4RmaxLz
ϵ∗12 − 1

2β, and recall that κ denotes (1−γ)2

4RmaxLz
ϵ∗12 − 1

2β, then we can get the k as:√
2

k
log

2|Z| − 2

ξ
+

√
α

k
≤ (1− γ)2

4RmaxLz
ϵ∗12 −

1

2
β (50)

k ≥ 1

κ2
(

√
2 log

2|Z| − 2

ξ
+
√
α)2 (51)

Since we need the least number of samples that update the context encoder, we take k =
1
κ2 (

√
2 log 2|Z|−2

ξ +
√
α)2.

Corollary 8.7 (Monotonic performance improvement condition for pre-training scheme). Denote
Z(·|x;ϕpretrain) as the task representation distribution after pre-training. When meeting Assumption
4.1, the monotonic performance improvement condition for pre-training scheme is:

ϵ∗12 −
4RmaxLz

(1− γ)2
Em,x[|Z(·|x;ϕpretrain)− Z(·|x;ϕ∗)|] ≥ 0 (52)

Proof: Denote Jpretrain(θ1) as the expected return of the policy π(·|s, Z(·|x;ϕpretrain); θ1) be-
fore update of the policy. Similarly, denote Jpretrain(θ2) as the expected return of the policy
π(·|s, Z(·|x;ϕpretrain); θ2) after update of the policy.

Jpretrain(θ2)− Jpretrain(θ1) (53)

= Jpretrain(θ2)− J∗(θ2) + J∗(θ2)− J∗(θ1) + J∗(θ1)− Jpretrain(θ1) (54)

Denote 2Rmax

(1−γ)2 as κ. Taking Lemma 8.1 and Assumption 4.1 into the above formulation, we can get:

Jpretrain(θ2)− J∗(θ2) + J∗(θ2)− J∗(θ1) + J∗(θ1)− Jpretrain(θ1) (55)

≥ Em,x[−κmax
s

DTV (π(·|s, Z(·|x;ϕpretrain); θ2)||π(·|s, Z(·|x;ϕ∗); θ2))] + ϵ∗12 (56)

− κmax
s

DTV (π(·|s, Z(·|x;ϕpretrain); θ1)||π(·|s, Z(·|x;ϕ∗); θ1))] (57)

≥ Em,x[−2κLz|Z(·|x;ϕpretrain)− Z(·|x;ϕ∗)|+ ϵ∗12] (58)

To get the monotonic performance improvement, we need Eq. (58) to be larger than 0. Hence, we
can get:

ϵ∗12 −
4RmaxLz

(1− γ)2
Em,x[|Z(·|x;ϕpretrain)− Z(·|x;ϕ∗)|] ≥ 0 (59)

8.3 JUSTIFICATION OF ASSUMPTIONS

Assumption 4.7:

As our aim is to rein in the task representation shift, setting a threshold to bound the task representation
shift is natural. Nevertheless, how to set this threshold smartly or automatically adjust this threshold
would need further research and we leave this to future work. The task representation shift less

17

Published as a conference paper at ICLR 2025

than the policy improvement ϵ∗12 with a certain coefficient is to help us ensure κ in Theorem 4.10
is larger than 0. Since we can update the policy consistently (e.g. k determines when to update the
context encoder, but the policy is updated normally), ϵ∗12 can accumulate gradually. Therefore, this
assumption is reasonable.

Assumption 4.8:

Since the task representation is obtained through sampling, whether during the guidance of the
downstream policy or the training of the context encoder by maximizing I(Z;M), it is reasonable to
assume that the space of the task representation is discrete and limited. We think this assumption is
general as it can cover various cases, e.g. sampling, generated from the deterministic network, or
discretization.

Assumption 4.9:

Figure 6: The numerical experiments on Ant-Dir and Walker-Param.

To justify this assumption in practice, we design a numerical experiment.

Firstly, notice that the sub-optimality gap between Z(·|x;ϕmutual) and Z(·|x;ϕ∗) is a constant. We
can introduce a notation Z(·|x; ϕ̂2) that denotes the context encoder updated by fitting the empirical
distribution on b i.i.d samples from Z(·|x;ϕmutual) based on Z(·|x;ϕ1). Similar to Eq. (48), we can
get the upper bound of the discrepancy between Z(·|x; ϕ̂2) and Z(·|x; ϕ̃2):

|Z(·|x; ϕ̂2)− Z(·|x; ϕ̃2)| (60)

≤ |Z(·|x; ϕ̂2)− Z(·|x;ϕmutual)|+ |Z(·|x;ϕmutual)− Z(·|x;ϕ∗)|+ |Z(·|x;ϕ∗)− Z(·|x; ϕ̃2)|
(61)

=

√
constant1

b
+ |Z(·|x;ϕmutual)− Z(·|x;ϕ∗)|︸ ︷︷ ︸

sub-optimality gap

+

√
constant2

b
(62)

=

√
constant3

b
+ constant4 (63)

Secondly, we use the pre-trained context encoder to be Z(·|x;ϕmutual), use the initialized context
encoder to be Z(·|x;ϕ1) and simulate two update processes: 1) use the specific objective w.r.t
maximizing I(Z;M) to update Z(·|x;ϕ1) to get Z(·|x;ϕ2); 2) use task representations randomly
sampled from the pre-trained context encoder to update Z(·|x;ϕ1) to get Z(·|x; ϕ̂2). We set different
numbers of samples to complete these two update processes.

To express the discrepancy, we compute nn.MSE loss of the task representation randomly sampled
from Z(·|x;ϕ2) and Z(·|x; ϕ̂2). As shown in Figure 6, it does fit an inversely proportional trend as
the training size increases. Therefore, we can practically denote the discrepancy between Z(·|x;ϕ2)

18

Published as a conference paper at ICLR 2025

and Z(·|x; ϕ̂2) as:

|Z(·|x;ϕ2)− Z(·|x; ϕ̂2)| ≤
√

constant5
b

(64)

By combining the above formulations, we can get:

|Z(·|x;ϕ2)− Z(·|x; ϕ̃2)| (65)

≤ |Z(·|x;ϕ2)− Z(·|x; ϕ̂2)|+ |Z(·|x; ϕ̂2)− Z(·|x; ϕ̃2)| (66)

=

√
constant6

b
+ constant4 (67)

Since the training sample is finite, the discrepancy would not converge to 0. Hence, with an
appropriate α, Assumption 4.9 can be grounded in practice.

Furthermore, even if we assume the discrepancy would converge to 0 and take the constant into
Assumption 4.9, it only needs to modify the formulation of κ in Theorem 4.10.

Proof: If we take the constant c into Assumption 4.9, then it becomes:

|Z(·|x;ϕ2)− Z(·|x; ϕ̃2)| ≤ |Z(·|x;ϕ2)− Z(·|x; ϕ̂2)|+ |Z(·|x; ϕ̂2)− Z(·|x; ϕ̃2)| =
√

α

b
+ c

(68)

Therefore, we need to modify Eq. (49) as:

|Z(·|x;ϕ2)− Z(·|x;ϕ∗)| ≤

√
2

k
log

2|Z| − 2

ξ
+

√
α

k
+ c (69)

Let ϵ = (1−γ)2

4RmaxLz
ϵ∗12 − 1

2β, and update the notation of κ as (1−γ)2

4RmaxLz
ϵ∗12 − 1

2β − c, then we can get
the k as: √

2

k
log

2|Z| − 2

ξ
+

√
α

k
+ c ≤ (1− γ)2

4RmaxLz
ϵ∗12 −

1

2
β (70)

k ≥ 1

κ2
(

√
2 log

2|Z| − 2

ξ
+
√
α)2 (71)

Since we need the least number of samples that update the context encoder, we take k =
1
κ2 (

√
2 log 2|Z|−2

ξ +
√
α)2.

To further enhance the theoretical rigor, we can even set the bound of Assumption 4.9 as a constant
since the bound between Z(·|x;ϕ2) and Z(·|x; ϕ̃2) will be reduced consistently with larger data sizes.
Setting this as a constant only needs the accumulation of ϵ∗12 to become larger, which is also acceptable
under our theoretical framework. For specific algorithms, e.g. contrastive, reconstruction,..., if there
exist theoretical guarantees for the convergence bound, it is nice to derive a more precise calculation
method for k.

Proof: If we set the bound in Assumption 4.9 to be a constant α, then Eq. (49) becomes:

|Z(·|x;ϕ2)− Z(·|x;ϕ∗)| ≤

√
2

k
log

2|Z| − 2

ξ
+
√
α (72)

Let ϵ = (1−γ)2

4RmaxLz
ϵ∗12 − 1

2β, and update the notation of κ as (1−γ)2

4RmaxLz
ϵ∗12 − 1

2β −
√
α, then we can

get the k as: √
2

k
log

2|Z| − 2

ξ
+
√
α ≤ (1− γ)2

4RmaxLz
ϵ∗12 −

1

2
β (73)

k ≥ 2

κ2
log

2|Z| − 2

ξ
(74)

19

Published as a conference paper at ICLR 2025

Since we need the least number of samples that update the context encoder, we take k = 2
κ2 log

2|Z|−2
ξ .

8.4 IMPLEMENTATION DETAILS

In this section, we report the details of all the objectives in our main paper.

Contrastive-based (Li et al., 2020). The contrastive-based algorithm uses the task representation to
compute distance metric learning loss. We adopt the open-source code of FOCAL3.

Reconstruction-based (Li et al., 2024). The reconstruction-based algorithm passes the state, action,
and task representation through the decoder to reconstruct the next state and the reward signal. We use
the open-source code of UNICORN 4 and adopt UNICORN-0 as the reconstruction-based objective
training framework.

Cross-entropy-based. The cross-entropy-based algorithm is a straightforward discrete approximation
to I(Z;M). Specifically, after extracting from the context encoder, the task representation would
be passed through a fully connected layer to get the probabilities for each task. Then, the context
encoder is trained by the supervision of the task label and back-propagation of the cross-entropy loss.

According to Theorem 3.1, the previous methods are optimizing the approximate bounds of I(Z;M).
To better approximate I(Z;M), we choose to face this term directly. Notice that I(Z;M) =
H(M)−H(M |Z). For the first part, it is a constant w.r.t the variable Z. Hence, it can be ignored.
For the second part, we have:

H(M |Z) = −Ez[
∑
m

p(m|z) log p(m|z)] (75)

The ideal condition is task representation Z can uniquely identify the task M . Hence, minimizing
H(M |Z) is equivalent to maximizing Ez[log p(m|z)], as we need p(m|z) to approach 1. As maxi-
mizing log p(m|z) can be instantiated as the cross-entropy-loss, we claim that cross-entropy-loss is a
direct approximation towards optimizing I(Z;M).

Built upon the code base of FOCAL, cross-entropy-based only replaces the distance metric learning
loss with cross-entropy loss.

To maintain fairness, we make sure all benchmark-irrelevant parameters are consistent, as shown in
Table 1.

Table 1: Benchmark-irrelevant parameters setting in the training process.

training tasks 20

testing tasks 20

task training batch size 16

rl batch size 256

context size 1 trajectory

actor-network size [256, 256]

critic-network size [256, 256]

task encoder network size [64, 64]

learning rate 3e-4

For each environment, we make the benchmark-relevant parameters the same for each algorithm, as
shown in Table 2.

Table 3 reports the performance in our experimental setting. The results are averaged by 8 random
seeds with each seed averaged by the last 5 evaluation performances. Furthermore, to demonstrate
whether the performance improvement w.r.t the worst case is statistically significant, we conduct a
paired t-test for the experimental results. The statistically significant results are highlighted in red
while others are colored in blue.

3https://github.com/FOCAL-ICLR/FOCAL-ICLR/
4https://github.com/betray12138/UNICORN.git/

20

Published as a conference paper at ICLR 2025

Table 2: Benchmark-relevant parameters setting in the training process.

Configurations Reach Ant-Dir Button-Press Dial-Turn Walker-Param Push

dataset size 3e5 9e4 3e5 3e5 4.5e5 3e5

task representation dimension 5 5 5 5 5 5

Table 3: The performance in our experiments section. Each result is averaged by 8 random seeds.

Benchmark Algorithms Nk = 1, Nacc = 3 Nk = 1, Nacc = 2 Nk = 1, Nacc = 1 (original) Nk = 2, Nacc = 1 Nk = 3, Nacc = 1

Reach
Cross-entropy 2856.35± 315.30 (p = 0.017) 2573.235± 245.25 (p = 0.482) 2470.25± 300.93 (p = 0.948) 2457.77± 309.70 2688.17± 166.59 (p = 0.034)

Contrastive 2622.02± 228.00 (p = 0.667) 2787.83± 148.31 (p = 0.043) 2580.39± 141.73 2802.88± 163.66 (p = 0.006) 2616.68± 418.95 (p = 0.828)
Reconstruction 2692.67± 289.51 (p = 0.033) 2650.42± 162.62 (p = 0.044) 2405.53± 190.28 2614.61± 340.11 (p = 0.215) 2533.80± 393.97 (p = 0.409)

Dial-Turn
Cross-entropy 1365.08± 229.77 (p = 0.049) 1126.04± 249.26 (p = 0.402) 1015.07± 300.47 1167.92± 208.74 (p = 0.200) 1127.70± 358.05 (p = 0.633)

Contrastive 1314.06± 330.98 (p = 0.024) 1034.83± 322.80 1146.31± 265.92 (p = 0.550) 1118.64± 270.86 (p = 0.599) 1050.41± 300.35 (p = 0.941)
Reconstruction 1420.08± 193.14 (p = 0.008) 1337.72± 256.86 (p = 0.081) 1353.98± 198.90 (p = 0.046) 1111.40± 215.29 1740.45± 51.78 (p = 0.0002)

Button-Press
Cross-entropy 1164.41± 424.59 (p = 0.645) 1422.94± 517.74 (p = 0.132) 1236.10± 187.42 (p = 0.253) 1588.21± 301.15 (p = 0.002) 1048.96± 327.52

Contrastive 1573.33± 138.66 (p = 0.0001) 1167.91± 396.01 (p = 0.060) 1206.87± 328.34 (p = 0.014) 645.23± 338.07 1296.29± 439.07 (p = 0.014)
Reconstruction 2947.89± 271.49 (p = 0.003) 2121.66± 601.57 2361.82± 517.93 (p = 0.367) 2496.67± 594.00 (p = 0.282) 2297.39± 559.90 (p = 0.561)

Push
Cross-entropy 1279.85± 300.24 (p = 0.175) 889.64± 158.81 1103.52± 323.49 (p = 0.139) 1461.72± 157.71 (p = 0.0007) 1338.57± 259.27 (p = 0.034)

Contrastive 661.95± 176.91 941.42± 192.44 (p = 0.277) 839.05± 267.61 (p = 0.394) 1557.84± 495.95 (p = 0.019) 1172.82± 387.91 (p = 0.039)
Reconstruction 1357.04± 327.87 (p = 0.038) 1146.68± 465.36 (p = 0.737) 1063.80± 266.31 1071.75± 194.36 (p = 0.977) 1289.08± 354.33 (p = 0.114)

Walker-Param
Cross-entropy 365.22± 69.27 (p = 0.127) 337.73± 121.10 (p = 0.629) 284.56± 103.71 399.87± 87.20 (p = 0.042) 371.48± 96.95 (p = 0.093)

Contrastive 301.70± 59.35 (p = 0.859) 333.35± 40.14 (p = 0.283) 299.00± 35.42 450.47± 19.71 (p = 0.002) 432.61± 77.14 (p = 0.022)
Reconstruction 281.50± 97.94 (p = 0.339) 240.56± 88.25 (p = 0.763) 232.64± 78.06 370.97± 103.82 (p = 0.030) 292.53± 134.26 (p = 0.178)

Ant-Dir
Cross-entropy 245.01± 18.20 252.73± 19.95 (p = 0.413) 253.83± 9.56 (p = 0.320) 291.29± 15.69 (p = 0.002) 283.56± 17.48 (p = 0.002)

Contrastive 187.72± 19.64 211.31± 20.04 (p = 0.138) 207.92± 18.01 (p = 0.107) 268.23± 19.74 (p = 0.00004) 259.47± 16.19 (p = 0.0001)
Reconstruction 205.77± 21.88 222.21± 19.71 (p = 0.205) 213.78± 31.88 (p = 0.434) 244.52± 16.20 (p = 0.003) 247.81± 23.60 (p = 0.001)

Ant-Dir-Random
Cross-entropy 55.04± 13.56 (p = 0.486) 54.09± 9.75 (p = 0.760) 52.06± 12.51 77.47± 22.20 (p = 0.043) 52.18± 26.82 (p = 0.991)

Contrastive −0.13± 0.40 −0.16± 0.38 0.05± 0.30 0.04± 0.39 −0.07± 0.27
Reconstruction 53.55± 17.94 (p = 0.029) 45.61± 10.05 (p = 0.696) 43.34± 10.90 (p = 0.922) 51.71± 9.08 (p = 0.086) 42.63± 17.37

Ant-Dir-Middle
Cross-entropy 185.10± 15.83 (p = 0.003) 156.89± 30.80 (p = 0.028) 140.64± 37.23 (p = 0.021) 152.72± 46.76 (p = 0.049) 113.96± 34.49

Contrastive 203.53± 19.65 (p = 0.003) 166.72± 17.95 (p = 0.481) 156.66± 26.05 199.96± 29.38 (p = 0.042) 178.09± 33.00 (p = 0.312)
Reconstruction 166.75± 26.74 (p = 0.798) 193.11± 18.21 (p = 0.036) 185.11± 24.86 (p = 0.321) 178.75± 25.70 (p = 0.350) 160.72± 46.56

Ant-Dir-Expert
Cross-entropy 207.21± 22.30 218.31± 21.36 (p = 0.288) 228.97± 18.16 (p = 0.144) 261.42± 19.32 (p = 0.003) 237.93± 28.75 (p = 0.037)

Contrastive 219.29± 16.16 246.19± 26.44 (p = 0.056) 261.71± 21.06 (p = 0.008) 286.68± 26.53 (p = 0.003) 317.66± 23.25 (p = 0.0001)
Reconstruction 216.05± 32.18 219.70± 18.40 (p = 0.803) 230.49± 26.76 (p = 0.478) 281.18± 7.71 (p = 0.001) 262.63± 18.95 (p = 0.012)

8.5 ADDITIONAL RESULTS

8.5.1 PERFORMANCE CONTROL

Classifier Contrastive Reconstruction

Performance Control
original

Nk = 3,Nacc = 1
Nk = 2,Nacc = 1

Nk = 1,Nacc = 3
Nk = 1,Nacc = 2

Figure 7: The experimental results of using the evaluation performance to guide the learning of the
context encoder on Ant-Dir. Each result of Performance Control is averaged by 6 random seeds.

Here, we give a potential way to achieve better performance. As shown in Theorem 4.10, k has a
close connection with ϵ∗12. When ϵ∗12 is sufficient, k would become less than the given batch size, then
the context encoder can be updated. The straightforward way is to use the performance evaluated
through online interaction with the environment as the guideline. Specifically, we use the evaluation
performance of the learned policy conditioning on the pre-trained task representation to approximate
J∗(θ), thereby providing a way to approximate ϵ∗12. To resolve performance fluctuations, we calculate
ϵ∗12 through ϵ∗12 ← ϵ∗12 +max(J∗(θ2) − J∗(θ1), 0). According to Theorem 4.10, we simply set a
hyper-parameter α to calculate k as k = α

(ϵ∗12)
2+1e−9 . During this experiment, we set α = 0.07. As

for β, we simply set the context encoder to be updated once when an update is required.

As shown in Figure 7, we observe that all three algorithms exhibit improved asymptotic performance
on Ant-Dir. This suggests a potential way to reduce parameter sensitivity by leveraging performance
to guide the training of the context encoder.

21

Published as a conference paper at ICLR 2025

Nevertheless, the current method is not practically feasible. Calculating online performance evalua-
tions across 20 training tasks for each training step would require up to a month on an NVIDIA 3090
GPU. To speed up the process, we randomly select only 3 training tasks for calculating, reducing the
training time to approximately 3–6 days, depending on the algorithm. Note that the performance
on learning curves is still averaged by 20 testing tasks. Exploring methods to guide the training of
the context encoder through more efficient performance estimation techniques could be a promising
direction for future work. We also envision our work being generalized into other areas Peng et al.
(2024); Zhang et al. (2024); Peng et al. (2025) that use the (context) encoder.

8.5.2 EVALUATION OF CSRO

Since our goal is to validate that reining in the task representation shift also makes a difference for
CSRO Gao et al. (2024), we do not carefully tune its hyper-parameters. As shown in Figure 8 and
Figure 9, the conclusions still hold in CSRO.

Ant-Dir Walker-Param Reach Dial-Turn Button-Press Push

original Nk=3,Nacc=1 Nk=2,Nacc=1 Nk=1,Nacc=3 Nk=1,Nacc=2

Figure 8: Testing returns of different settings to rein in the task representation shift of CSRO.

Random Medium Expert

original Nk=3,Nacc=1 Nk=2,Nacc=1 Nk=1,Nacc=3 Nk=1,Nacc=2

Figure 9: Testing returns of different settings to rein in the task representation shift on different
data qualities in Ant-Dir of CSRO.

22

	Introduction
	Related Works
	Preliminaries
	Problem Statement
	Context-based OMRL

	Methods
	A Performance Improvement Perspective Towards Prior Works
	Monotonic Performance Improvement Concerning Task Representation Shift
	Practical Implementation

	Experiment
	Environments Settings
	MAIN RESULTS
	Can The Results Show Consistency Across Different Data Qualities?

	Discussion
	Can The Pretraining Scheme Be Adopted To Achieve Better Performance Improvement?
	Can The Visualization Of Task Representation Be Strongly Relied Upon to Imply The Asymptotic Performance?

	Conclusion & Limitation
	Appendix
	Useful Lemmas
	Missing Proofs
	Justification Of Assumptions
	Implementation Details
	Additional Results
	Performance Control
	Evaluation of CSRO

