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Orsay, France
{malik.tiomoko}@u-psud.fr

Hafiz Tiomoko Ali
Huawei Technologies Research and Development (UK)
London, UK
{hafiz.tiomoko.ali@}@huawei.com

Romain Couillet∗
Gipsa Lab
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ABSTRACT

This document contains the main technical arguments omitted in the core of the
article due to space limitation and is organized as follows. Section 1 details the
derivation of the solution of MTL LS-SVM optimization problem. Section 2 derives
the asymptotic classification score of MTL LS-SVM. To this end, the necessary
deterministic equivalents are given and proved in Lemma 1 which is further used
to prove Theorem 1 of the main article (which in turn provides the asymptotic
performance of MTL LS-SVM in the most general case of concentrated random
vectors with arbitrary means and covariances). Practical remarks used in the main
article as well as the algorithm for multi class extension are provided in Section 3.
Supplementary experiments are provided in Section 4.

1 SOLUTION OF MTL LS SVM OPTIMIZATION

Let us recall the optimization problem, stated as:

min
(ω0,V,b)∈Rp×Rp×k×Rk

J (ω0, V, b) (1)

where

J (ω0, V, b) ≡
1

2λ
‖ω0‖2 +

1

2

k∑
i=1

‖vi‖2

γi
+

1

2

k∑
i=1

‖ξi‖2

ξi = yi − (X̊T
i ωi + bi1ni

), ∀i ∈ {1, . . . , k}.

The Lagrangian of the constrained optimization problem using the relatedness assumption (ωi =
ω0 + vi) reads:

L(ω0, vi, ξi, αi, bi) =
1

2λ
‖ω0‖2 +

1

2

k∑
i=1

‖vi‖2

γi
+

1

2

k∑
i=1

‖ξi‖2 +

k∑
i=1

αT
i

(
yi − X̊T

i ω0 − X̊T
i vi − bi1ni

− ξi
)

with αi ∈ Rni the Lagrangian parameter attached to task i.

∗Couillet’s work is partially supported by MIAI at University Grenoble-Alpes (ANR-19-P3IA-0003) and the
HUAWEI LarDist project.
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Differentiating with respect to the unknowns ω0, vi, ξi, αi, and bi leads to the following system of
equations:

1

λ
ω0 −

k∑
i=1

X̊iαi = 0 (2)

1

γi
vi − X̊iαi = 0 (3)

ξi − αi = 0 (4)

yi − X̊T
i ω0 − X̊T

i vi − bi1ni
− ξi = 0 (5)

αT
i 1ni = 0. (6)

Plugging the expression of ω0 (equation 2), vi (equation 3) and ξi (equation 4) into equation 5 leads
to:

yi = (λ+ γi)X
T
i Xiαi + λ

∑
j 6=i

XT
i Xjαj + bi1ni

+ αi

1T
ni
αi = 0.

With y = [yT1 , . . . , y
T
k ]T ∈ Rn, α = [αT

1 , . . . , α
T
k ]T ∈ Rn, Z =

∑k
i=1 e

[k]
i e

[k]
i

T
⊗ X̊i ∈ Rkp×n

and P ∈ Rn×k such that the j-th column is P.j = [0Tn1+...+nj−1
,1T
nj
, 0Tnj+1+...+nk

]T, this system of
equations can be written under the compact form:

Pb+Q−1α = y

PTα = 0k

with Q =
(
ZTAZ
kp + In

)−1

∈ Rn×n, and A =
(
Dγ + λ1k1T

k

)
⊗ Ip ∈ Rkp×kp.

Solving for α and b then gives:

α = Q(y − Pb)
b = (PTQP )−1PTQy.

Moreover, using ωi = ω0 + vi, equation 2 and equation 3, the expression of ωi becomes:

ωi =

(
e

[k]
i

T
⊗ Ip

)
AZα.

With this formulation for the solution pair (ωi, b), the prediction of the class of any new data point
x ∈ Rp for Task i is then obtained from the classification score gi(x) given by

gi(x) =
1

kp

(
e

[k]
i ⊗ x̊i

)T
ωi + bi =

1

kp

(
e

[k]
i ⊗ x̊i

)T
AZα+ bi (7)

where x̊ = (x− 1
ni
Xi1ni

) is a centered version of x with respect to the training dataset for Task i

and
(
e

[k]
i ⊗ x̊i

)T
specifies that the classification score of x is computed for Task i.

2 ASYMPTOTIC CLASSIFICATION SCORE STATISTICS

2.1 PRELIMINARIES

Using the definition of α, gi(x) can be expanded as

gi(x) =
1

kp

(
e

[k]
i ⊗ x

)T
AZQ(y − Pb) + bi.
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By the identity (I +DB)
−1
D = D (I +BD)

−1 for matricesD andB, one can further conveniently
write gi(x) as:

gi(x) =
1

kp

(
e

[k]
i ⊗ x

)T
A

1
2 Q̃A

1
2Z(y − Pb) + bi (8)

where Q̃ =

(
A

1
2 ZZTA

1
2

kp + Ikp

)−1

.

The mean mij and the variance σij of gi(x) for any data vector x such that E[x] = µij and
Cov[x] = Σij are respectively given by:

mij = E

[
1

kp

(
e

[k]
i ⊗ µij

)T
A

1
2 Q̃A

1
2Z(y − Pb) + bi

]
σ2
ij = E

[
1

(kp)2
(y − Pb)TZTA

1
2 Q̃A

1
2SijA

1
2 Q̃A

1
2Z(y − Pb)

]
.

with Sij = e
[k]
i e

[k]
i

T
⊗ Σij .

To compute the statistics of gi(x), we shall resort to determining so-called deterministic equivalents
for the matrices Q̃, Q̃A

1
2Z, etc., which appear at the core of the formulation of mij and σ2

ij .

Definition 1 (Deterministic equivalents). A deterministic equivalent, say F̄ ∈ Rn×p, of a given
random matrix F ∈ Rn×p, denoted F ↔ F̄ , is defined by the fact that, for any deterministic
linear functional f : Rn×p → R, f(F − F̄ )→ 0 almost surely (for instance, for u, v of unit norm,
uT(F − F̄ )v

a.s.−→ 0 and, for A ∈ Rp×n deterministic of bounded operator norm, 1
n trA(F − F̄ )

a.s.−→
0).

Deterministic equivalents are thus particularly suitable to handle bilinear forms involving the random
matrix F .

Since the statistics of gi(x) are bilinear forms involving Q̃A
1
2Z and ZTA

1
2 Q̃A

1
2SijA

1
2 Q̃A

1
2Z,

Lemma 1 will provide the deterministic equivalent of the first and second order statistics.

To this end, we first specify in the following assumptions the distribution of the data matrix X and
the test data x and the growth rate of n and p.
Assumption 1 (Distribution of X). There exist two constants C, c > 0 (independent of n, p) such
that, for any 1-Lipschitz function f : Rp×n → R,

∀t > 0 : P(|f(X)− E[f(X)]| ≥ t) ≤ Ce−(t/c)2 .

We further define E[xij ] = µij and Cov[xij ] = Σij , which only depend on (i, j).
Assumption 2 (Distribution of x). There exist two constants C, c > 0 (independent of n, p) such
that, for any 1-Lipschitz function f : Rp → R,

∀t > 0 : P(|f(x)− E[f(x)]| ≥ t) ≤ Ce−(t/c)2 .

and x is independent from the columns of data matrix X .

Assumptions 1 and 2 are more general than the Gaussian assumption considered in the core article.
This wide class of random vectors known as concentrated random vectors (see Ledoux (2001) for
details) notably encompasses the following scenarios: xij ∈ Rp are (i) independent Gaussian random
vectors with covariance of bounded norm, (ii) independent random vectors uniformly distributed on
the Rp sphere of radius

√
p, and most importantly (iii) any Lipschitz transformation φ(xij) of the

above two cases, with bounded Lipschitz norm. Scenario (iii) is particularly relevant to model very
realistic data settings, issued from generative models, as was recently demonstrated in Seddik et al.
(2019) with the specific example of concentrated random vectors arising from generative adversarial
networks (GANs).
Assumption 3 (Growth Rate). As n → ∞, n/p → c0 > 0 and, for 1 ≤ i ≤ k, 1 ≤ j ≤ m,
nij

n → cij > 0. We further denote ci = ci1 + ci2 and c = [c1, . . . , ck]T ∈ Rk. Besides, for each i,
letting ∆µi ≡ µi1 − µi2.

Under the two aforementioned assumptions, deterministic equivalents needed to compute the statistics
of gi(x) are derived in the following lemma.
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2.2 DETERMINISTIC EQUIVALENTS

Lemma 1 (Deterministic equivalents). Define, for class j in Task i, the data deterministic matrices

M =
(
e

[k]
1 ⊗ [µ11, µ12], . . . , e

[k]
k ⊗ [µk1, µk2]

)
Cij = A

1
2

(
e

[k]
i e

[k]
i

T
⊗ (Σij + µijµ

T
ij)

)
A

1
2 .

Then we have the deterministic equivalents of first order

Q̃↔ ¯̃Q ≡

 k∑
i=1

2∑
j=1

cij
c0

Cij
1 + ∆ij

+ Ikp

−1

A
1
2 Q̃A

1
2Z ↔ A

1
2

¯̃QA
1
2M∆J

T

and of second order

Q̃A
1
2 SijA

1
2 Q̃↔ Bij

ZTA
1
2 Q̃A

1
2 SijA

1
2 Q̃A

1
2Z ↔ JMT

∆A
1
2 (BijA

1
2M∆JT − ¯̃QA

1
2M∆Wij) + Eij

in which we defined

Wij = [w11, . . . , wk2]T, wsl =

[
0Tn11+...+n(s−1)l

,
2tr (BijCsl)

kp(1 + ∆sl)
1T
nsl
, 0T
n(s+1)l+...+nk2

]T
Eij =

∑
l,m

tr(ClmBij)

(1 + ∆lm)2
e

[2k]
lm e

[2k]
lm

T

Bij = ¯̃QA
1
2SijA

1
2

¯̃Q+

k∑
a=1

2∑
b=1

dabT
(ij)
ab [ ¯̃QCab

¯̃Q]

D =
∑
i,j

dije
[2k]
ij e

[2k]
ij

T
, dij =

nij
kp(1 + ∆ij)2

J = [j11, . . . , jk2],

jlm =
(

0Tn11+...+n(i−1)2
,1T
nij
, 0Tn(i+1)1+...+nk2

)T
,

M∆ = M
∑
ij

1

1 + ∆ij
e

[2k]
ij e

[2k]T
ij

Sij = e
[k]
i e

[k]
i

T
⊗ Σij

T = T̄ (Ik −DC)−1, C(jm)
(il) =

1

kp
tr(Cij

¯̃QClm
¯̃Q), T̄

(ij)
ab =

1

kp
tr
(
Cab

¯̃QA
1
2SijA

1
2

¯̃Q
)

and the (∆11, . . . ,∆k2) are the unique positive solution of

∆ij =
1

kp
tr(Cij

¯̃Q), ∀i, j.

2.3 PROOF OF LEMMA 1

First order deterministic equivalent A deterministic equivalent for Q̃ is provided in Louart &
Couillet (2018). Our objective is then to find, based on this result, a deterministic equivalent for the
random matrix A

1
2 Q̃A

1
2Z. To this end, consistently with Definition 1, we will evaluate the scalar

quantity E
[
uTA

1
2 Q̃A

1
2Zv

]
for any deterministic vector u ∈ Rkp and v ∈ Rn such that ‖u‖ = 1 and

‖v‖ = 1, which we can write

E
[
uTA

1
2 Q̃A

1
2Zv

]
=

n∑
i=1

viE
[
uTA

1
2 Q̃A

1
2 zi

]
. (9)

4



Published as a conference paper at ICLR 2021

Furthermore, let us define for convenience the matrix Z−i, which is the matrix Z with a vector of
zeros on its i-th column such that ZZT = Z−iZ

T
−i + ziz

T
i . Using the Sherman-Morrison matrix

inversion lemma (i.e.,
(
A+ uvT

)−1
= A−1 − A−1uvTA−1

1+vTA−1u
), we find:

Q̃ =

(
A

1
2ZZTA

1
2

kp
+ Ikp

)−1

= Q̃−i −
1

kp

Q̃−iA
1
2 ziz

T
i A

1
2 Q̃−i

1 + 1
kpz

T
i A

1
2 Q̃−iA

1
2 zi

(10)

with Q̃−i = (
A

1
2 Z−iZ

T
−iA

1
2

kp + Ikp)
−1. Furthermore,

Q̃A
1
2 zi =

Q̃−iA
1
2 zi

1 + 1
kpz

T
i A

1
2 Q̃−iA

1
2 zi

. (11)

Plugging equation 11 into equation 9 leads to

E
[
uTA

1
2 Q̃A

1
2Zv

]
=

n∑
i=1

viE

[
uT

A
1
2 Q̃−iA

1
2 zi

1 + 1
kpz

T
i A

1
2 Q̃−iA

1
2 zi

]
. (12)

Moreover, following the same line of reasoning as in (Seddik et al., 2020, Proposition A.3), based on
Assumption 1 and tools from concentration of measure theory (see also (Ledoux, 2001; Louart et al.,
2018)), one can show that:

n∑
i=1

viE

[
uT

A
1
2 Q̃−iA

1
2 zi

1 + 1
kpz

T
i A

1
2 Q̃−iA

1
2 zi

]
=

n∑
i=1

viE

[
uT
A

1
2 Q̃−iA

1
2 zi

1 + ∆ij

]
+O

(√
log p

p

)
(13)

with ∆ij ≡ E
[

1
kpz

T
i A

1
2 Q̃−iA

1
2 zi

]
. Note that ∆ij can be estimated in the large n, p limit as the

solution of the fixed point equation (with O(·) part discarded)

∆ij =
1

kp
E
[
tr
(
A

1
2 ziz

T
i A

1
2 Q̃−i

)]
=

1

kp
tr
(
Cij

¯̃Q
)

+O
(

1
√
p

)

where we used the fact that zi is independent from Q̃−i.

We then conclude that:

E
[
uTA

1
2 Q̃A

1
2Zv

]
=

n∑
i=1

viu
T

E
[
A

1
2 Q̃−iA

1
2 zi

]
1 + ∆ij

+O

(√
log p

p

)
= uTA

1
2

¯̃QA
1
2M∆v +O

(√
log p

p

)

where in the last equality, we again used the fact that Q̃−i is independent from zi. This concludes the
proof.

Second order deterministic equivalent We aim in the following section to prove that
ZTA

1
2 Q̃A

1
2SijA

1
2 Q̃A

1
2Z ↔ JMT

∆A
1
2 (BijA

1
2M∆J

T − ¯̃QA
1
2M∆Wij) + Eij .

Let us define for convenience C(i) the class of the i-th sample (i.e, C(i) ∈ {1, . . . , 2k}).
Similarly as done for the first order deterministic equivalents, the focus will be on
E[uTZTA

1
2 Q̃A

1
2SijA

1
2 Q̃A

1
2Zv].

5



Published as a conference paper at ICLR 2021

Using successively equation 10 and equation 13 on i and j , we have for i 6= j,
n∑

i,j=1
i 6=j

uiviE
[
zTi A

1
2 Q̃A

1
2SijA

1
2 Q̃A

1
2 zj

]

=

n∑
i,j=1
i 6=j

uiviE

[
zTi A

1
2 Q̃−iA

1
2SijA

1
2 Q̃−jA

1
2 zj

(1 + ∆C(i))(1 + ∆C(j))

]
+O

(√
log p

p

)

=

n∑
i,j=1
i 6=j

uiviE

zTi A 1
2 Q̃−i
−j
A

1
2SijA

1
2 Q̃−j
−i
A

1
2 zj

(1 + ∆C(i))(1 + ∆C(j))
−
zTi A

1
2 Q̃−i
−j
A

1
2SijA

1
2 Q̃−j
−i
A

1
2 ziz

T
i A

1
2 Q̃−jA

1
2 zj

kp(1 + ∆C(i))(1 + ∆C(j))

−
zTi A

1
2 Q̃−i
−j
A

1
2 zjz

T
j A

1
2 Q̃−iA

1
2SijA

1
2 Q̃−jA

1
2 zj

kp(1 + ∆C(i))(1 + ∆C(j))

+O

(√
log p

p

)

=

n∑
i,j=1
i 6=j

uiviE

zTi A 1
2 Q̃−i
−j
A

1
2SijA

1
2 Q̃−j
−i
A

1
2 zj

(1 + ∆C(i))(1 + ∆C(j))
−
zTi A

1
2 Q̃−i
−j
A

1
2SijA

1
2 Q̃−j
−i
A

1
2 ziz

T
i A

1
2 Q̃−j
−i
A

1
2 zj

kp(1 + ∆C(i))(1 + ∆C(j))(1 + ∆C(i))

−
zTi A

1
2 Q̃−i
−j
A

1
2 zjz

T
j A

1
2 Q̃−i
−j
A

1
2SijA

1
2 Q̃−j
−i
A

1
2 zj

kp(1 + ∆C(i))(1 + ∆C(j))(1 + ∆C(j))

+
1

(kp)2

zTi A
1
2 Q̃−i
−j
A

1
2 zjz

T
j A

1
2 Q̃−iA

1
2SijA

1
2 Q̃−j
−i
A

1
2 ziz

T
i A

1
2 Q̃−j
−i
A

1
2 zj

(1 + ∆C(i))(1 + ∆C(j))(1 + ∆C(i))

+O

(√
log p

p

)

=

n∑
i,j=1
i 6=j

uiviE

zTi A 1
2 Q̃−i
−j
A

1
2SijA

1
2 Q̃−j
−i
A

1
2 zj

(1 + ∆C(i))(1 + ∆C(j))
−
zTi A

1
2 Q̃−i
−j
A

1
2SijA

1
2 Q̃−j
−i
A

1
2 ziz

T
i A

1
2 Q̃−j
−i
A

1
2 zj

kp(1 + ∆C(i))(1 + ∆C(j))(1 + ∆C(i))

−
zTi A

1
2 Q̃−i
−j
A

1
2 zjz

T
j A

1
2 Q̃−i
−j
A

1
2SijA

1
2 Q̃−j
−i
A

1
2 zj

kp(1 + ∆C(i))(1 + ∆C(j))(1 + ∆C(j))

+O

(√
log p

p

)
.

where the term 1
(kp)2

zTiA
1
2 Q̃−i
−j
A

1
2 zjz

T
jA

1
2 Q̃−iA

1
2 SijA

1
2 Q̃−j
−i
A

1
2 ziz

T
iA

1
2 Q̃−j
−i
A

1
2 zj

(1+∆C(i))(1+∆C(j))(1+∆C(i))
is proved to be order

O( 1√
p ) using (Seddik et al., 2020, Lemma A.2).

The deterministic equivalent for the off-diagonal entries of ZTA
1
2 Q̃A

1
2SijA

1
2 Q̃A

1
2Z is then :

Eq = JMT
∆A

1
2BijA

1
2M∆J

T −
(
JMT

∆A
1
2

¯̃QA
1
2M∆Wij

)
with A

1
2 Q̃A

1
2SijA

1
2 Q̃A

1
2 ↔ Bij and Wij = [w11, . . . , wk2]T, wsl =[

0Tn11+...+n(s−1)l
,

2tr(BijCsl)
kp(1+∆sl)

1T
nsl
, 0T
n(s+1)l+...+nk2

]T
Similarly as for the non diagonal element, the diagonal element is proved to be

Eij =
∑
l,m

tr(ClmBij)

(1 + ∆lm)2
e

[2k]
lm e

[2k]
lm

T
.

Put together, the complete deterministic equivalent is then:

JMT
∆A

1
2BijA

1
2M∆J

T − JMT
∆A

1
2

¯̃QA
1
2M∆Wij +

∑
l,m

tr(ClmBij)

(1 + ∆lm)2
e

[2k]
lm e

[2k]
lm

T
.

6
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This proves that ZTA
1
2 Q̃A

1
2SijA

1
2 Q̃A

1
2Z ↔ JMT

∆A
1
2 (BijA

1
2M∆J

T − ¯̃QA
1
2M∆Wij) + Eij . It

then remains to retrieve the deterministic equivalent Bij of Q̃A
1
2SijA

1
2 Q̃.

Calculus of Bij Similar derivations and results are provided in detail in Louart et al. (2018).
For conciseness, we sketch the most important elements of the proof. The interested reader can
refer to (Louart et al., 2018, Section 5.2.3). Let us evaluate E

[
uTQ̃A

1
2SijA

1
2 (Q̃− ¯̃Q)v

]
for any

deterministic vector u ∈ Rn and v ∈ Rn such that ‖u‖ = 1 and ‖v‖ = 1 by using successively
equation 13 and equation 10,

E
[
uTQ̃A

1
2SijA

1
2 (Q̃− ¯̃Q)v

]
= E

[
uTQ̃A

1
2SijA

1
2 Q̃(−A

1
2ZZTA

1
2

kp
+ C∆) ¯̃Qv

]

= − 1

kp

∑
i

E

[
uTQ̃A

1
2SijA

1
2 Q̃−iA

1
2 ziz

T
i A

1
2

¯̃Qv

1 + ∆ij

]
+ E

[
uTQ̃A

1
2SijA

1
2 Q̃−iC∆

¯̃Qv
]

− 1

kp
E
[
uTQ̃A

1
2SijA

1
2 Q̃−iA

1
2 ziz

T
i A

1
2 Q̃C∆

¯̃Qv
]

+O

(√
log p

p

)
.

Using Assumption 1 and following the work of Louart & Couillet (2018),
1
kpE

[
uTQ̃A

1
2SijA

1
2 Q̃−iA

1
2 ziz

T
i A

1
2 Q̃C∆

¯̃Qv
]

= O( 1
p ) and where C∆ =

∑
ij

cij
c0

Cij

1+∆ij
. Fur-

thermore,

E
[
uTQ̃A

1
2SijA

1
2 (Q̃− ¯̃Q)v

]
= − 1

kp

∑
i

E

[
uTQ̃−iA

1
2SijA

1
2 Q̃−iA

1
2 ziz

T
i A

1
2

¯̃Qv

1 + ∆ij

]

+
1

kp

∑
i

E

[
uTQ̃−iA

1
2 ziz

T
i A

1
2 Q̃−iA

1
2SijA

1
2 Q̃−iA

1
2 ziz

T
i A

1
2

¯̃Qv

kp(1 + ∆ij)2

]

+ E
[
uTQ̃A

1
2SijA

1
2Q−iC∆

¯̃Qv
]

+O

(√
log p

p

)

=
1

kp

∑
i

E
tr
(
CC(i)Q̃A

1
2SijA

1
2 Q̃
)

(1 + ∆C(i))2
E
[
uT ¯̃QCC(i)

¯̃Qv
]

+O

(√
log p

p

)

where − 1
kp

∑
i

E

[
uTQ̃−iA

1
2 SijA

1
2 Q̃−iziz

T
i

¯̃Qv
1+∆ij

]
+ E

[
uTQ̃−iA

1
2SijA

1
2QC∆

¯̃Qv
]

= O
(

1√
p

)
, follow-

ing again Louart & Couillet (2018).

Let us then denote dab = nab

kp(1+∆ab)2 . We have the following identity involving E
[
Q̃A

1
2SijA

1
2 Q̃
]

E[Q̃A
1
2SijA

1
2 Q̃] = ¯̃QA

1
2SijA

1
2

¯̃Q+

k∑
a=1

2∑
b=1

dab
kp

E
[
tr
(
CabQ̃A

1
2SijA

1
2 Q̃
)]

¯̃QCab
¯̃Q+O‖·‖(

√
log p
√
p

),

(14)
where A = B+O‖·‖(α(p)) means that ‖A−B‖ = O(α(p)), and where the norm ‖ · ‖ is understood
as the euclidean norm for vectors and the operator norm for matrices.

Further introduce two matrices T̄ and T defined as: T̄
(ij)
ab = 1

kp tr
(
Cab

¯̃QA
1
2SijA

1
2

¯̃Q
)

and

T
(ij)
ab = 1

kpE
[
tr
(
CabQ̃A

1
2SijA

1
2 Q̃
)]

. These satisfy the following equations (i.e., by right mul-
tiplying equation 14 by Cab and taking the trace)

T
(ij)
ab = T̄

(ij)
ab +

k∑
e=1

2∑
f=1

defT
(ij)
ef C

(ab)
ef ,

so that T = T̄ (Ik −DC)−1 by denoting D = D[d11,...,dk2]T and C(ab)
ef = 1

kp tr
(
Cef

¯̃QCab
¯̃Q
)

.
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Finally,

Q̃A
1
2SijA

1
2 Q̃↔ ¯̃QA

1
2SijA

1
2

¯̃Q+

k∑
a=1

2∑
b=1

dabT
(ij)
ab E[ ¯̃QCab

¯̃Q]

with T = T̄ (Ik −DC)−1.

2.4 CLASSIFICATION SCORE ASYMPTOTICS

Theorem 2. Under Assumptions 1–3 and the notations of Lemma 1,

E[gi(x)]−mij → 0, V ar[gi(x)]− σ2
ij → 0

where, letting m = [m11, . . . ,mk2]T,

m = ỹ −D−
1
2

∆̄
ΓD

1
2

∆̄
˚̃y

σ2
ij =

1

(kp)2
ỹTD

1
2

∆̃

(
ΓDκΓ + ΓMT ¯̃Q0Vij

¯̃Q0MΓ
)
D

1
2

∆̃
ỹ

with Γ =
(
I2k + MT ¯̃Q0M

)−1

, ¯̃Q0 =

[
k∑
i=1

(Dγ + λ1k1k)
1
2 eie

T
i (Dγ + λ1k1k)

1
2 ⊗

(
∆̃i1Σi1 + ∆̃i2Σi2

)
+ Ikp

]−1

,

Vij = A
1
2SijA

1
2 +

k∑
a=1

2∑
b=1

κabA
1
2SabA

1
2 , M = [M11, . . . ,Mk2] with

Mij = (Dγ + λ1k1k)
1
2 ei ⊗

√
∆̃ijµij , ∆̃ij =

cij
c0(1+∆ij) and κ(ij)

ab = dabT
(ij)
ab .

Besides for independent Gaussian random variables [X,x],

gi(x)−Gij → 0, Gij ∼ N (mij , σ
2
ij)

in law.

2.4.1 PROOF OF THEOREM 2

Proof of the convergence in distribution The convergence in distribution of the statistics of the
classification score gi(x) is identical to the CLT derived in Appendix B of Liao & Couillet (2019) by
writing the classification score gi(x) in polynomial form of a Gaussian vector and resorting to the
Lyapounov CLT Billingsley (2008) under a Gaussian vector assumption.

Mean of the classification score Using the definition of the classification score, the mean is

mij = E

[
1

kp

(
e

[k]
i ⊗ µij

)T
A

1
2 Q̃A

1
2Z(y − Pb)

]
+ bi

Using Lemma 1, the mean then reads:

mij =
1

kp

(
e

[k]
i ⊗ µij

)T
A

1
2

¯̃QA
1
2M∆J

T(y − P b̄) + bi (15)

Since Cij = A
1
2

(
e

[k]
i e

[k]
i

T
⊗ (Σij + µijµ

T
ij)

)
A

1
2 is a rank-one update of Σij , one can fur-

ther use Woodbury’s matrix identity (i.e (A+ UCV )
−1

= A−1 + A−1UC(I + V CU)V A−1

for matrices A, U , C, and V ) to write ¯̃Q as: ¯̃Q = ¯̃Q0 − ¯̃Q0M
(
Ikp + MT ¯̃Q0M

)−1

MT ¯̃Q0,

with ¯̃Q0 =

[
k∑
i=1

(Dγ + λ1k1k)
1
2 eie

T
i (Dγ + λ1k1k)

1
2 ⊗

(
∆̃i1Σi1 + ∆̃i2Σi2

)
+ Ikp

]−1

, M =

[M11, . . . ,Mk2] with Mij = (Dγ + λ1k1k)
1
2 ei ⊗

√
∆̃ijµij and ∆̃ij =

cij
c0(1+∆ij)

Plugging the expression of ¯̃Q in equation 15, the mean reads:

mij = vT(I2k − Γ)
eij√
∆̃ij

+ bi
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with v = D
1
2

∆̃
ỹ, Γ =

(
I2k + MT ¯̃Q0M

)−1

and eij is the canonical vector. Finally, let us conclude by
remarking that one can show using deterministic equivalent for Q provided in Louart & Couillet

(2018) that bi =
1T
ni
yi

ni
+O

(
1√
p

)
.

Letting m = [m11, . . . ,mk2]T, one can further show using notations of the main paper:

m = ỹ −D−
1
2

∆̄
ΓD

1
2

∆̄
˚̃y.

In the particular case treated in the main article where Σij = Ip, one can further simplify MTQ̃0M
using elementary properties of the Kronecker matrix product (in particular, using (A⊗B)(C⊗D) =

AC ⊗ BD) so that MTQ̃0M =
(
A⊗ 1T

2 12

)
� M with the notations of the main paper. Thus,

elementary algebraic manipulations provide the result of the mean of the main article. In the case of
generic Σij’s, the expression of MT ¯̃Q0M is somewhat less trivial and cannot further be simplified.

Variance of the classification score Using the expression of the classification score, the variance
of the score is given by

σ2
ij = E

[
1

(kp)2
(y − Pb)TZTA

1
2 Q̃A

1
2SijA

1
2 Q̃A

1
2Z(y − Pb)

]
.

Using Lemma 1, the expression further gives

σ2
ij =

1

(kp)2
(y−P b̄)T

(
JMT

∆A
1
2BijA

1
2M∆J + Eij

)
(y−P b̄)− 1

p2
(y−P b̄)TJMT

∆A
1
2

¯̃QA
1
2M∆Wij(y−P b̄).

Similarly as done for the mean, using again ¯̃Q = ¯̃Q0 − ¯̃Q0M
(
Ikp + MT ¯̃Q0M

)−1

MT ¯̃Q0, one can
show that the variance reads:

σ2
ij =

1

∆̃i

ỹTD
1
2

∆̃

(
ΓDκΓ + ΓMT ¯̃Q0Vij

¯̃Q0MΓ
)
D

1
2

∆̃
ỹ

with Vij = A
1
2SijA

1
2 +

k∑
a=1

2∑
b=1

κ
(ij)
ab A

1
2SabA

1
2 and κ(ij)

ab = dabT
(ij)
ab .

In the particular case of Σij = Ip, one can show using again the Kronecker product formulas that

MT ¯̃Q0Vij
¯̃Q0M = 1

c0

(
AD c0Ki·

c +e
[k]
i
A⊗ 121T

2

)
�M with the notations of the main paper; this then

leads to the result of the variance in the core of the paper.

3 PRACTICAL REMARKS AND ALGORITHM

In this section, the remark about the shift invariance of the scores is presented. Moreover Matlab and
Julia codes are available in the supplementary files provided.
Remark 1 (Shift invariance of the scores). If the score vectors yi ∈ Rni are shifted by some
constant vector P ȳ for some matrix ȳ ∈ Rk i.e., if all data of the same task are affected by the
same shift of their scores (or labels), then we find that the Lagrangian parameter αshift after
the shift is αshift = Q

(
In − P (PTQP )−1PTQ

)
(y + P ȳ) = α. As such, the normal vectors

ωi = (e
[k]T
i ⊗ Ip)AZα, and as a consequence the performance of MTL LS-SVM, are insensitive to a

constant shift in all the scores of each task.

4 SUPPLEMENTARY EXPERIMENTS

4.1 BINARY DECISION

We here apply the results of MTL LS-SVM to a hypothesis test on a target task t based on training
samples from both a source task s and the target task t. That is, instead of relying on the “averaged-

mean” decision procedure (i.e gi(x)
C1
≷
C2

1
2 (mi1 +mi2)) , we instead consider the test

gt(x)
H1

≷
H0

ζ

9
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10−6 10−5 10−4 10−3

10−2

10−1

100

P (x→ C2|x ∈ C1)

P
(x
→
C 1
|x
∈
C 2

)

Non Opt (Sim)
Non Opt (Th)

Opt (Th)
Opt (Sim)

Figure 1: ROC curve for proposed versus non-optimized MTL LS-SVM on synthetic data with
p = 128, n11 = 384, n12 = 256, n21 = 64, n22 = 40, µ11 = −µ12 = [1, 0, . . . , 0]T, µ21 =
−µ22 = [.87, .5, 0, . . . , 0]T.

where H0 is the null hypothesis (say, Class 2) and H1 the alternative (say, Class 1) and ζ = ζ(η)
is a decision threshold selected in such a way to have the false alarm constraint rate P (gt(x) ≥
ζ | x ∈ H0) ≤ η, for some given η. The objective is then here to maximize the correct detection rate
P (gt(x) ≥ ζ | x ∈ H1).

Figure 1 depicts the algorithm performance through a receiver-operating curve (ROC) for false alarm
rates η on synthetic data. Both theoretical (Th) asymptotics (used to set the decision threshold
ζ) and actual performances (Sim) are displayed for optimal (Opt) choices of ỹ (Opt) and for ỹ =
[−1, 1,−1, 1] (Non-Opt).

The synthetic data is a two-task (k = 2) setting in which x1j ∼ N (±µ11, Ip) (i.e., µ12 = −µ11)
and x2j ∼ N (±µ21, Ip), where µ21 = βµ11 +

√
1− β2µ⊥11, µ11 is a unit-norm vector and µ⊥11 any

unit-norm vector orthogonal to µ11. We take here β = 0.5, so that both tasks are “slightly” correlated.

The graph confirms, here in the hypothesis testing problem, the large superiority of our proposed
optimized MTL LS-SVM over the standard non optimized alternative. Besides, the theoretical
classification error prediction is an accurate fit to the actual empirical performance, even for not so
large values of p, nij .

4.2 EXPERIMENTS ON MULTI-CLASS IMAGE CLASSIFICATION

Similarly as in the main article, we now turn to the popular Office+Caltech256 multi-task image
classification benchmark (Saenko et al., 2010; Griffin et al., 2007) often exploited for transfer learning.
The overall database consists of 10 categories shared by both Office and Caltech256 datasets. As in
Table 1 of the main article, we consider in sequence the transfer learning of one out of four possible
source tasks, each of which consisting in classifying data from one sub-database (images issued from
the Caltech set (c), Webcam images (w), Amazon pictures (a) or dslr images (d)), towards another
task; this boils down to 4× (4− 1) = 12 source-target comparison pairs.)

The results in Table 1 of the main article using VGG features for the image representations are
extremely close to 100%. For better discrimination, for the present experiment, we compare the
more challenging (since less discriminating) p = 800 SURF-BoW features of the Office+Caltech256
images instead of their VGG features. Table 2 here also demonstrates that our proposed improved
MTL-LSSVM, despite its simplicity, has stable performances and is highly competitive. The perfor-
mance difference versus CDLS is nonetheless less accute than for VGG features, which is likely due
to SUF-BoW features being less “concentrated” (i.e., not appropriately modelled by concentrated
random vectors as per Assumption 1) than VGG features.1

1Those arising from deep neural network training exhibit better regularity Seddik et al. (2020).
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Table 1: Classification accuracy for transfer learning on the Office+Caltech256 database, against state-
of-the-art alternatives. Here with c(Caltech), w(Webcam), a(Amazon), d(dslr) based on SURF-BoW
features. Our proposed approach is systematically best or second to best and best on average.

S/T c→
w

w→
c

c→
a

a→
c

w→
a

a→
d

d→
a

w→
d

c→
d

d→
c

a→
w

d→
w

Mean
score

LSSVM 79.47 47.70 68.10 49.65 68.13 57.50 70.00 73.75 67.50 46.45 74.83 84.11 65.60
MMDT 69.47 42.55 68.95 39.70 65.24 59.50 62.16 86.06 56.94 27.92 68.54 87.88 61.24
ILS 24.5 20.92 25.21 21.10 22.92 26.25 27.08 43.75 30.00 26.95 15.23 57.62 28.46
CDLS 82.28 54.21 73.75 54.49 71.52 68.56 70.54 69.44 69.44 53.86 81.59 82.78 69.37
Ours 86.09 49.65 75.00 50.35 68.83 73.75 71.25 72.50 77.50 48.05 80.13 85.43 69.88

4.3 EXPERIMENTS ON NATURAL LANGUAGE DATA

We next experiment our findings on the Multi Domain Sentiment Dataset (Blitzer et al., 2007) which
consists in a benchmark made of reviews of Amazon products. This dataset contains Amazon
product reviews from four different domains: Books, DVD, Electronics, and Kitchen appliances
from Amazon.com. Each review is originally associated with a rating of 1 to 5 stars. For simplicity,
we are only concerned with whether or not a review is positive (more than 3 stars) or negative (3
stars or lower). Reviews are encoded in 400-dimensional tf*idf feature vectors of bag-of-words
unigrams and bigrams. From this data, we construct 12 cross-domain binary classification tasks.
Each task consists of 2 000 labeled source examples and 1 000 labeled target examples. The test data
contains 1 000 samples. To show the influence of label optimization, we improve the standard MTL
LSSVM algorithm by choosing the optimal threshold ζ? obtained from theoretical analysis, rather
than ζ = 0 (leading to much worse results). Table 2 reports the accuracy of the classification for our
proposed method versus CDLS and the non-optimized LS-SVM2. The table shows again that the
proposed method is highly competitive. Furthermore, we represent in figure 2 the empirical and the

Table 2: Classification accuracy for transfer learning on the multi domain sentiment classification
database, against state-of-the-art alternatives. Here with b(Book), d(Dvd), e(Elec), k(Kitchen). Our
proposed approach is systematically best or second-to-best, and best on average.

S/T b→
d

b→
e

b→
k

d→
b

d→
e

d→
k

e→
b

e→
d

e→
k

k→
b

k→
d

k→
e

Mean
score

LSSVM 79.70 80.98 81.60 79.30 82.98 82.00 76.40 77.50 83.60 78.30 79.60 81.18 80.26
CDLS 78.80 85.28 83.70 77.60 82.88 84.4 79.3 80.10 83.90 78.00 80.00 82.68 81.38
Ours 78.70 83.98 84.50 79.10 83.78 82.60 80.50 79.00 84.00 80.10 81.60 82.08 81.66

theoretical score distribution for three scenarios of Transfer Learning (Book-DVD, Book-Electronics
and Book-Kitchen). The figure illustrates the close fit between theoretical and empirical predictions
even for data such as language data thereby suggesting that the Gaussian mixture model is sufficient
to tackle a wide range of realistic data. Furthermore, a systematic improvement is remarked between
the classical label (±1) and the optimized one.

4.4 IMPACT OF THE HYPERPARAMETER CHOICE

In this section, we investigate empirically the impact of the hyperparameter λ on the MTL perfor-
mance. To that end, we consider the MNIST dataset (Deng, 2012). The setting is that of a binary
classification for two tasks, mimicking a transfer learning setting: there, the “target” Task 2 aims
to discriminate Class C1 and Class C2 respectively composed of images of digit 1 and digit 4. The
“source” Task 1 is here used as a support for classification in the target task, and consists of the
classification of other pairs of digits: either (5, 9), (9, 5), (6, 2) or (8, 3) (recall that the order of
the set of digits (X,Y ) is important for the non-optimized MTL-LSSVM since source and target
tasks labels are “paired”; thus (5, 9) or (9, 5) digits for the source task will bring different results).
We compare here again the non-optimized MTL-LSSVM with labels ybin = [−1, 1,−1, 1]T to our
proposed optimized scheme (as detailed in the core of the article). For both methods, the optimal

2MMDT and ILS methods are only designed for multi class classification.
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Figure 2: Scores g2(x) [empirical histogram vs. theory in solid lines] for x of Class C1 (red) or Class
C2 (blue) for Task 2 in a 2-task (k = 2) setting for: (top) classical MTL-LSSVM with y ∈ {±1} and
threshold ζ = 0; (bottom) proposed optimized MTL-LSSVM with ỹ? and estimated threshold ζ; deci-
sion thresholds ζ represented in dashed vertical lines; red numbers are misclassification rates; chosen
task between Book, DVD, Elec and Kitchen; p = 400, [c11, c12, c21, c22] = [0.25, 0.25, 0.25, 0.25],
γ = 12, λ = 1. Histograms drawn from 1 000 test samples of each class.

theoretical threshold decision ζ is used (rather than ζ = 0 for the non-optimized setup) in order
to emphasize the influence of input score (label) optimization. Figure 3 depicts the performance
for both methods as a function of the hyperparameter λ. We recall that, as λ → 0, the multi-task
scheme becomes equivalent to independent single-task classifiers, while as λ→∞, both source and
target tasks are considered together as one task. Figure 3 demonstrates the stability of optimal input
labelling with respect to λ: this is explained by the fact that y? is a function of λ and thus adapts to
each value of λ, even if suboptimal. Besides, for appropriate values of λ, the proposed improved
labelling can largely outperform the non-optimized setting, even here on real data.

4.5 ANALYSIS OF AN INCREASING NUMBER OF TASKS

The next experiment illustrates the effect of adding more tasks to the transfer learning setting
on both synthetic and MNIST datasets. For synthetic data, Gaussian classes with mean µij =

βµi1 +
√

1− β2µ⊥i1 and various values of β are successively added. For the MNIST dataset,
different classifications of digits are added progressively to help classify the specific pair of digits
(1, 4) . Figure 4 depicts the classification error after each new task addition, both for a classical
binary (±1) input label choice and for the proposed optimized input labels. The figure forcefully
illustrates that our proposed framework avoids negative transfer, as the classification error of MTL
never increases as the number of tasks grows. This is quite unlike the non-optimized scheme which
severely suffers from negative transfer.
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