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A Technical Proofs

We gather in this section the proofs omitted in the core text.

A.1 Proof of Proposition 1

Proposition 1 The oracle greedy strategy, which plays agreedy

t = arg maxaœAÈa, At≠1◊ú
Í at time step t, can

su�er linear regret, both in rotting or rising scenarios.

Proof We build two instances of LBM, one rotting, one rising, in which the oracle greedy strategy su�ers
linear regret. We highlight that the other strategy exhibited, which performs better than oracle greedy, may
not be optimal.

Rotting instance. Let A = Bd, ◊ú = e1, m = d ≠ 1, and A such that

A(a1, . . . , am) =
A

Id +
mÿ

s=1

asa€
s

B≠“

,

for some “ > 0 to be specified later. Oracle greedy, which plays at each time step agreedy

t =
arg maxaœAÈa, At≠1◊ú

Í, constantly plays e1. After the first m pulls, it collects a reward of 1/d“ at ev-
ery time step. On the other side, the strategy that plays cyclically the block e1 . . . ed collects a reward of 1
every d = m + 1 time steps, i.e., an average reward of 1/d per step. Hence, up to the transitive first m puuls,
the cumulative reward of oracle greedy after T rounds is T/d“ , and that of the cyclic policy is T/d. The
regret of oracle greedy is thus at least

T

3
1
d

≠
1
d“

4
,

which is linear for “ > 1.

Rising instance. Let m Ø 1, d = 2, A = B2, ◊ú = (Á, 1) where Á > 0 is to be specified later, and A such that

A(a1, . . . , am) =
3

1 0
0 0

4
+

mÿ

s=1

asa€
s .

Oracle greedy constantly plays e1 collecting a reward of (m + 1)◊ú
1

from round m + 1 onward. On the other
side, the strategy that plays constantly e2 collects a reward of m◊ú

2
from round m + 1 onward. Hence, the

regret of oracle greedy from round m + 1 onward is at least (T ≠ m)[m ≠ (m + 1)Á], which is linear for
Á < m/(m + 1). ⇤

A.2 Proof of Proposition 2

Proposition 2 For any m, L Ø 1, let Âa be the block of m + L actions defined in (5) and (Ârt)T
t=1

be the
expected rewards collected when playing cyclically Âa. We have

OPT ≠

Tÿ

t=1

Ârt Æ
2mR

m + L
T . (6)

Proof Recall that the optimal sequence is denoted (aú
t )T

t=1
and collects rewards (rú

t )T
t=1

. Let L > 0; by
definition, there exists a block of actions of length L in (aú

t )T
t=1

with average expected reward higher that
OPT/T . Let tú be the first index of this block, we thus have (1/L)

qtú
+L≠1

t=tú rú
t Ø OPT/T . However, this

average expected reward is realized only using the initial matrix Atú≠1, generated from aú
tú≠1

, . . . , aú
tú≠m.

Let aú = aú
tú≠m, . . . , aú

tú+L≠1
of length m + L. Note that, by definition, we have that Âr(Âa) Ø Âr(aú) =

qtú
+L≠1

t=tú rú
t Ø L OPT/T . Furthermore, by (8), when playing cyclically Âa one obtains at least a reward of

≠R in each one of the first m pulls of the block. Collecting all the pieces, we obtain
Tÿ

t=1

Ârt Ø
T

m + L

1
≠ mR + Âr(Âa)

2
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Ø
T

m + L

1
≠ mR + Âr(aú)

2

Ø
T

m + L

3
≠mR + L

OPT
T

4

= L

m + L
OPT ≠

mR

m + L
T

Ø
L

m + L
OPT + m

m + L
OPT ≠

mR

m + L
T ≠

mR

m + L
T (14)

= OPT ≠
2mR

m + L
T ,

where (14) derives from OPT Æ RT . ⇤

A.3 Proof of Proposition 4

We prove the (stronger) high probability version of Proposition 4.

Proposition 5 Let ⁄ Ø 1, ” œ (0, 1), and a· be the blocks of actions in Rd(m+L) associated to the b· defined
in (9). Then, with probability at least 1 ≠ ” we have

T/(m+L)ÿ

·=1

Âr(Âa) ≠ Âr(a· ) Æ 4L(m + 1)“+

Û

Td ln
3

1 + T (m + 1)2“+

d(m + L)⁄

4

·

A
Ô

⁄L +

Û

ln
3

1
”

4
+ d(m + L) ln

3
1 + T (m + 1)2“+

d(m + L)⁄

4B
.

Proof The proof essentially follows that of (Abbasi-Yadkori et al., 2011, Theorem 3). The main di�erence
is that our version of OFUL operates at the block level. This implies a smaller time horizon, but also and
increased dimension and an instantaneous regret ÈÂb, ◊ú

Í ≠ Èb· , ◊ú
Í upper bounded by 2L(m + 1)“+ instead of

1. We detail the main steps of the proof for completeness. Recall that running OFUL in our case amounts to
compute at every block time step ·

‚◊· = V ≠1

·

A
·ÿ

· Õ=1

y· Õ b· Õ

B
,

where

V· =
·ÿ

· Õ=1

b· Õb€
· Õ + ⁄Id(m+L) , and y· =

m+Lÿ

i=m+1

y·,i ,

since we associate with a block of actions the sum of rewards obtained after time step m. Note that by the
determinant-trace inequality, see e.g., (Abbasi-Yadkori et al., 2011, Lemma 10), with actions b· that satisfy
Îb· Î

2
2

Æ m + L(m + 1)2“+ we have

|V· |

|⁄Id(m+L)|
Æ

A
1 + ·(m + L(m + 1)2“+)

d(m + L)⁄

Bd(m+L)

Æ

A
1 + ·(m + 1)2“+

d⁄

Bd(m+L)

. (15)

The action played at block time step · is the block a· œ B
m+L
d associated with

b· = arg max
bœB

sup
◊œC·≠1

Èb, ◊Í , (16)

where
C· =

Ó
◊ œ Rd(m+L) :

..‚◊· ≠ ◊
..

V·
Æ —· (”)

Ô
,
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with

—· (”) =

Û

2 ln
3

1
”

4
+ d(m + L) ln

3
1 + ·(m + 1)2“+

d⁄

4
+

Ô

⁄L . (17)

Applying (Abbasi-Yadkori et al., 2011, Theorem 2) to ◊ú
œ Rd(m+L) which satisfies Î◊ú

Î2 Æ
Ô

L we have that
◊ú

œ C· for every · with probability at least 1 ≠ ”. Denoting by Â◊· the model that maximizes (16), we thus
have that with probability at least 1 ≠ ”, the inequality ÈÂb, ◊ú

Í Æ Èb· , Â◊· Í holds for every · , and consequently

T/(m+L)ÿ

·=1

ÈÂb, ◊ú
Í ≠ Èb· , ◊ú

Í

Æ

T/(m+L)ÿ

·=1

min
Ó

2L(m + 1)“+
, Èb· , Â◊· ≠ ◊ú

Í

Ô

Æ

T/(m+L)ÿ

·=1

min
Ó

2L(m + 1)“+
,

..Â◊· ≠ ◊ú..
V·≠1

Îb· ÎV ≠1
·≠1

Ô

Æ

T/(m+L)ÿ

·=1

min
Ó

2L(m + 1)“+
, 2—· (”) Îb· ÎV ≠1

·≠1

Ô

Æ 2L(m + 1)“+
—T/(m+L)(”)

T/(m+L)ÿ

·=1

min
Ó

1 , Îb· ÎV ≠1
·≠1

Ô

Æ 2L(m + 1)“+
—T/(m+L)(”)

ı̂ıÙ T

m + L

T/(m+L)ÿ

·=1

min
;

1 , Îb· Î2

V ≠1
·≠1

<

Æ 2
Ô

2L(m + 1)“+
—T/(m+L)(”)

Û
T

m + L
ln

|VT/(m+L)|

|⁄Id(m+L)|

Æ 4L(m + 1)“+

Û

Td ln
3

1 + T (m + 1)2“+

d(m + L)⁄

4

·

A
Ô

⁄L +

Û

ln
3

1
”

4
+ d(m + L) ln

3
1 + T (m + 1)2“+

d(m + L)⁄

4 B
,

where we have used (Abbasi-Yadkori et al., 2011, Lemma 11), as well as (15) and (17). Note that in the
stationary case, i.e., when m = 0 and L = 1, we exactly recover (Abbasi-Yadkori et al., 2011, Theorem 3).
Proposition 4 is obtained by setting ⁄ œ [1, d], L Ø m, and ” = 1/T . ⇤

A.4 Proof of Proposition 3

Proof Let d = m + 1, A = {0d} fi (ek)kÆd, ◊ú = (1/
Ô

d, . . . , 1/
Ô

d), and “ Æ 0. For simplicity, we
note the basis modulo d, i.e., ek+d = ek for any k œ N. Note that for any a1, . . . , am+1 œ A we have--Èam+1, Am◊ú

Í
-- Æ Îam+1Î1 ÎAm◊ú

ÎŒ Æ 1/
Ô

d, such that one can take R = 1/
Ô

d. Observe now that the
strategy which plays cyclically e1, . . . , ed collects a reward of 1/

Ô
d at each time step, which is optimal, such

that OPT = T/
Ô

d. Further, it is easy to check that block Âa, composed of m pulls of 0d followed by e1, . . . , eL

satisfies Âr(Âa) = L/
Ô

d, which is optimal for similar reasons. Playing cyclically Âa, one gets a reward of L/
Ô

d
every m + L pulls. In other terms, we have

OPT ≠

Tÿ

t=1

Ârt = T
Ô

d
≠

L

m + L

T
Ô

d
= m

m + L

T
Ô

d
= mR

m + L
T .

⇤
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A.5 Proof of Theorem 1

We prove the high probability version of Theorem 1, obtained by setting ⁄ œ [1, d], and ” = 1/T .

Theorem 2 Let ⁄ Ø 1, ” œ (0, 1), and a· be the blocks of actions in Rd(m+L) defined in (11). Then, with
probability at least 1 ≠ ” we have

T/(m+L)ÿ

·=1

Âr(Âa) ≠ Âr(a· ) Æ 4L(m + 1)“+

Û

Td ln
3

1 + T (m + 1)2“+

d⁄

4

·

A
Ô

⁄ +

Û

ln
3

1
”

4
+ d ln

3
1 + T (m + 1)2“+

d(m + L)⁄

4 B
.

Let m Ø 1, T Ø m2d2 + 1, and set L =
'

m/d T 1/4
(

≠ m. Let rt be the rewards collected when playing a·

as defined in (11). Then, with probability at least 1 ≠ ” we have

OPT ≠

Tÿ

t=1

rt Æ 4
Ô

d (m + 1) 1
2 +“+

T 3/4

C
1 + 2

Û

ln
3

1 + T (m + 1)2“+

d⁄

4

·

AÚ
⁄

d
+

Û
ln(1/”)

d
+ ln

3
1 + T (m + 1)2“+

d⁄

4 B D
.

Proof The proof is along the lines of OFUL’s analysis. The main di�culty is that we cannot use the
elliptical potential lemma, see e.g., (Lattimore & Szepesvári, 2020, Lemma 19.4) due to the delay accumulated
by V· , which is computed every m + L round only. Let

—· (”) =

Û

2 ln
3

1
”

4
+ d ln

3
1 + ·(m + 1)2“+

d⁄

4
+

Ô

⁄ . (18)

By (Abbasi-Yadkori et al., 2011, Theorem 2), we have with probability at least 1 ≠ ” that ◊ú
œ C· for every · .

It follows directly that ◊ú
œ D· for any · , such that ÈÂb, ◊ú

Í Æ Èb· , Â◊· Í, where Â◊· = (0d, . . . , 0d, Â◊· , . . . , Â◊· )
with Â◊· œ Rd that maximizes (11) over C·≠1. It can be shown that the regret is upper bounded byq

·

qm+L
i=m+1

Èb·,i, Â◊· ≠ ◊ú
Í. Following the standard analysis, one could then use

+
b·,i, Â◊· ≠ ◊ú,

Æ Îb·,iÎV ≠1
·≠1

..Â◊t ≠ ◊ú..
V·≠1

.

While the confidence set gives
..Â◊t≠◊ú

..
V·≠1

Æ 2—·≠1(”), the quantity
qm+L

i=m+1
Îb·,iÎV ≠1

·≠1
is much more complex

to bound. Indeed, the elliptical potential lemma allows to bound
q

t ÎatÎ
2

V ≠1
t≠1

when Vt =
q

sÆt asa€
s + ⁄Id.

However, recall that in our case we have V· =
q·

· Õ=1

qm+L
i=m+1

b· Õ,ib€
· Õ,i + ⁄Id, which is only computed every

m + L rounds. As a consequence, there exists a “delay” between V·≠1 and the action b·,i for i Ø m + 2,
preventing from using the lemma. Therefore, we propose to use instead

+
b·,i, Â◊· ≠ ◊ú,

Æ Îb·,iÎV ≠1
·,i≠1

..Â◊t ≠ ◊ú..
V·,i≠1

, where V·,i = V·≠1 +
iÿ

j=m+1

b·,jb€
·,j . (19)

By doing so, the elliptical potential lemma applies. On the other hand, one has to control
..Â◊t ≠ ◊ú

..
V·,i≠1

,
which is not anymore bounded by 2—·≠1(”) since the subscript matrix is V·,i≠1 instead of V·≠1. Still, one
can show that for any i Æ m + L we have

..Â◊t ≠ ◊ú..2

V·,i≠1

= Tr
1

V·,i≠1

!Â◊t ≠ ◊ú"!Â◊t ≠ ◊ú"€
2
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= Tr

Q

a
3

V·≠1 +
i≠1ÿ

j=m+1

b·,jb€
·,j

4 !Â◊t ≠ ◊ú"!Â◊t ≠ ◊ú"€

R

b

= Tr

Q

a
3

Id +
i≠1ÿ

j=m+1

!
V ≠1/2

·≠1
b·,j

"!
V ≠1/2

·≠1
b·,j

"€
4

V 1/2

·≠1

!Â◊t ≠ ◊ú"!Â◊t ≠ ◊ú"€
V 1/2

·≠1

R

b

Æ

....Id +
i≠1ÿ

j=m+1

!
V ≠1/2

·≠1
b·,j

"!
V ≠1/2

·≠1
b·,j

"€
....

ú
Tr

1
V 1/2

·≠1

!Â◊t ≠ ◊ú"!Â◊t ≠ ◊ú"€
V 1/2

·≠1

2

Æ

3
1 +

i≠1ÿ

j=m+1

..V ≠1/2

·≠1
b·,j

..2

2

4 ..Â◊t ≠ ◊ú..2

V·≠1

Æ

1
1 + (L ≠ 1)(m + 1)2“+

2 ..Â◊t ≠ ◊ú..2

V·≠1

Æ L(m + 1)2“+ ..Â◊t ≠ ◊ú..2

V·≠1
. (20)

Recalling also that ÈÂb, ◊ú
Í ≠ Èb· , ◊ú

Í Æ 2L(m + 1)“+ , we have with probability at least 1 ≠ ”

T/(m+L)ÿ

·=1

ÈÂb, ◊ú
Í ≠ Èb· , ◊ú

Í

Æ

T/(m+L)ÿ

·=1

min
Ó

2L(m + 1)“+
, Èb· , Â◊· ≠ ◊ú

Í

Ô

=
T/(m+L)ÿ

·=1

min
I

2L(m + 1)“+
,

m+Lÿ

i=m+1

Èb·,i, Â◊· ≠ ◊ú
Í

J

Æ

T/(m+L)ÿ

·=1

min
I

2L(m + 1)“+
,

m+Lÿ

i=m+1

Îb·,iÎV ≠1
·,i≠1

..Â◊t ≠ ◊ú..
V·,i≠1

J

Æ

T/(m+L)ÿ

·=1

min
I

2L(m + 1)“+
, 2

Ô

L(m + 1)“+
—·≠1(”)

m+Lÿ

i=m+1

Îb·,iÎV ≠1
·,i≠1

J

Æ 2L(m + 1)“+
—T/(m+L)(”)

T/(m+L)ÿ

·=1

m+Lÿ

i=m+1

min
Ó

1 , Îb·,iÎV ≠1
·,i≠1

Ô

Æ 2L(m + 1)“+
—T/(m+L)(”)

ı̂ıÙ T L

m + L

T/(m+L)ÿ

·=1

m+Lÿ

i=m+1

min
;

1 , Îb·,iÎ
2

V ≠1
·,i≠1

<

Æ 2
Ô

2L(m + 1)“+
—T/(m+L)(”)

Û

T ln
|VT/(m+L)|

|⁄Id|

Æ 4L(m + 1)“+

Û

Td ln
3

1 + T (m + 1)2“+

d⁄

4

·

A
Ô

⁄ +

Û

ln
3

1
”

4
+ d ln

3
1 + T (m + 1)2“+

d(m + L)⁄

4 B
, (21)

where we have used (18), (19), and (20). Similarly to Proposition 5, note that in the stationary case, i.e.,
when m = 0 and L = 1, we exactly recover (Abbasi-Yadkori et al., 2011, Theorem 3). The first claim of
Theorem 1 is obtained by setting ⁄ œ [1, d], and ” = 1/T .
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Let RT denote the right-hand side of (21). Combining this bound with the arguments of Proposition 2, we
have with probability 1 ≠ ”

Tÿ

t=1

rt Ø

T/(m+L)ÿ

·=1

Âr(a· ) ≠
m(m + 1)“+

m + L
T (22)

=
T/(m+L)ÿ

·=1

Èb· , ◊ú
Í ≠

m(m + 1)“+

m + L
T

Ø

T/(m+L)ÿ

·=1

ÈÂb, ◊ú
Í ≠ RT ≠

m(m + 1)“+

m + L
T (23)

=
T/(m+L)ÿ

·=1

Âr(Âa) ≠ RT ≠
m(m + 1)“+

m + L
T

Ø

Tÿ

t=1

Ârt ≠ RT ≠
2m(m + 1)“+

m + L
T (24)

Ø OPT ≠ RT ≠
4m(m + 1)“+

m + L
T (25)

Ø OPT ≠ 4(m + 1)“+

C
mT

m + L
+ (m + L)

Û

Td ln
3

1 + T (m + 1)2“+

d⁄

4

·

A
Ô

⁄ +

Û

ln
3

1
”

4
+ d ln

3
1 + T (m + 1)2“+

d(m + L)⁄

4 B D
,

where (22) and (24) come from the fact that any instantaneous reward is bounded by (m + 1)“+ , see (8), (23)
from (21), and (25) from Proposition 2.

Now, assume that m Ø 1, T Ø d2m2 + 1, and let L =
'

m/d T 1/4
(

≠ m. By the condition on T , we have
m/d T 1/4 > m Ø 1, such that L Ø 1 and

Ú
m

d
T 1/4

Æ

9Ú
m

d
T 1/4

:
= L + m Æ

Ú
m

d
T 1/4 + 1 Æ 2

Ú
m

d
T 1/4 .

Substituting in the above bound, we have with probability 1 ≠ ”

OPT ≠

Tÿ

t=1

rt Æ 4
Ô

d (m + 1) 1
2 +“+

T 3/4

C
1 + 2

Û

ln
3

1 + T (m + 1)2“+

d⁄

4

·

AÚ
⁄

d
+

Û
ln(1/”)

d
+ ln

3
1 + T (m + 1)2“+

d⁄

4 B D
.

The second claim of Theorem 1 is obtained by setting ⁄ œ [1, d], and ” = 1/T . ⇤

A.6 Proof of Corollary 1

Lemma 1 Suppose that a block-based bandit algorithm (in our case the bandit combiner) produces a sequence
of Tbc blocks a· , with possibly di�erent cardinalities |a· |, such that

Tbcÿ

·=1

Âr(Âa)
|Âa|

≠

Tbcÿ

·=1

Âr(a· )
|a· |

Æ F (Tbc) ,

for some sublinear function F . Then, we have

min· |a· |

max· |a· |

3
Âr(Âa)

q
· |a· |

|Âa|

4
≠

Tbcÿ

·=1

Âr(a· ) Æ min
·

|a· | F (Tbc) .
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In particular, if all blocks have the same cardinality the last bound is just the block regret bound scaled by |a· |.

Proof We have
Tbcÿ

·=1

Âr(a· ) Ø min
·

|a· |

Tbcÿ

·=1

Âr(a· )
|a· |

Ø min
·

|a· |

A
Tbcÿ

·=1

Âr(Âa)
|Âa|

≠ F (Tbc)
B

= min· |a· |

max· |a· |

Âr(Âa)
|Âa|

max
·

|a· | Tbc ≠ min
·

|a· | F (Tbc)

Ø
min· |a· |

max· |a· |

3
Âr(Âa)

q
· |a· |

|Âa|

4
≠ min

·
|a· | F (Tbc) .

⇤

Corollary 1 Consider an instance of LBM with unknown parameters (mı, “ı). Assume a bandit combiner
is run on N Æ d

Ô
mı instances of OFUL-memory (Algorithm 2), each using a di�erent pair of parameters

(mi, “i) from a set S =
)

(m1, “1), . . . , (mN , “N )
*

such that (mı, “ı) œ S. Let M = (maxj mj)/(minj mj).
Then, for all T Ø (mı + 1)2“+

ı /mıd4, the expected rewards
!
rbc

t

"T

t=1
of the bandit combiner satisfy

OPT
Ô

M
≠ E

C
Tÿ

t=1

rbc

t

D
= ÂO

1
M d (mı + 1)1+

3
2 “+

ı T 3/4

2
.

Proof Let mı be the true memory size, and Lı = L(mı) the corresponding (partial) block length.
Throughout the proof, Âa denotes the block defined in (5) with length mı + Lı. First observe that only one of
the OFUL-memory instances we test is well-specified, i.e., has the true parameters (mı, “ı). We can thus
rewrite the regret bound for the Bandit Combiner (Cutkosky et al., 2020, Corollary 2), generalized to rewards
bounded in [≠R, R] as follows

Regretbc = ÂO

Q

aCıT –ı
bc

+ C
1

–ı
ı Tbc÷

1≠–ı
–ı

ı + R2Tbc÷ı +
ÿ

j ”=ı

1
÷j

R

b , (26)

where Tbc = T/(mı + Lı) is the bandit combiner horizon, Cı and –ı are the constants in the regret bound
of the well-specified instance (see below how we determine them), and the ÷j are free parameters to be tuned.
We now derive Cı and –ı. To that end, we must establish the regret bound of the well-specified instance, and
identify Cı and –ı such that this bound is equal to CıT –ı

bc
, where Cı may contain logarithmic factors. For

the well-specified instance, the first claim of Theorem 2 gives that, with probability at least 1 ≠ ”, we have

T/(mı+Lı)ÿ
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ı

ı̂ıÙTd ln
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ı

d⁄

B
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a
Ô
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ı̂ıÙln

3
1
”

4
+ d ln

A
1 + T (mı + 1)2“+

ı

d(mı + Lı)⁄

B R

b

T/(mı+Lı)ÿ
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Âr(Âa)
|Âa|

≠
Âr(a· )
|a· |

Æ T 1/2 4(mı + 1)“+
ı

ı̂ıÙd ln
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1 + T (mı + 1)2“+
ı

d⁄

B
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Q

a
Ô
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ı̂ıÙln

3
1
”

4
+ d ln

A
1 + T (mı + 1)2“+
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d(mı + Lı)⁄

B R

b ,
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where we have used that |a· | = |Âa| = mı + Lı for every · . Note that the right-hand side of (27) is expressed
in terms of T , which is not the correct horizon, T/(mı + Lı). However, recall that we have

mı + Lı Æ 2
Ú

mı

d
T 1/4

(mı + Lı)4
Æ

3
4mı

d

42

T

T 3
Æ

3
4mı

d

42 3
T

mı + Lı

44

T 1/2
Æ

3
4mı

d

41/3 3
T

mı + Lı

42/3

,

such that by substituting in (27) and identifying we have –ı = 2/3, and

Cı = 4
3

4mı

d

41/3

(mı + 1)“+
ı

ı̂ıÙd ln
A

1 + Tbc(mı + Lı)(mı + 1)2“+
ı

d⁄

B

Q

a
Ô

⁄ +
ı̂ıÙln

3
1
”

4
+ d ln

A
1 + Tbc(mı + 1)2“+

ı

d⁄

B R

b .

Setting ÷j = T ≠2/3

bc
, and substituting in (26) with R = (mı + 1)“+

ı , we have that with high probability

Tbcÿ

·=1
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Âr(abc

· )
|abc

· |
= ÂO

1!
C3/2

ı + N
"
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bc
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ı T 1/3

bc

2
.

Now, recall that Tbc = O
!

d/mı T 3/4
"
, and that Cı = ÂO

!
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3 +“+
ı d2/3

"
. Hence, N Æ d

Ô
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!
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j

"
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ı Æ d2
Ô
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ı T 1/3

bc
= O

!
C3/2

ı T 2/3

bc

"
. Setting ⁄ œ [1, d],

” = 1/T , we obtain

E
C
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· |

D
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bc

2
. (28)

Let m· be the memory size associated to the bandit played at block time step · by Algorithm 2. Let
mmin = minj mj and mmax = maxj mj . Finally, let Lmin and Lmax the (partial) block length associated with
mmin and mmax. We have

Tÿ

t=1

rbc

t Ø

Tbcÿ
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1
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· ) ≠ m· (mı + 1)“+
ı

2
Ø
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such that by Lemma 1 and (28) we obtain
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Æ
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where we have used the fact that mmin + Lmin =


mmin/d T 1/4, and mmax + Lmax =


mmax/d T 1/4.
Corollary 1 is obtained by setting M = mmax/mmin. ⇤

B Bandit Combiner

In this section we show our adaptation of the numbers Cj and target regrets Rj for the Bandit Combiner
algorithm Algorithm 2 which builds on Cutkosky et al. (2020). For O3M(mj , “j), j = 1, . . . , N , the numbers
Cj and target regrets Rj are defined as

Cj = 4
3

4mj

d

41/3
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j

ı̂ıÙd ln
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Rj = CjT
–j

bc
+ (1 ≠ –j)
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1
–j

–
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–j
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C
1
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–j

j

+ 1152(mj + 1)2“+
j log(T 3

bc
N/”)Tbc÷j +

ÿ

k ”=j

1
÷k

.

Note that the form of the target regret Rj slightly di�ers from the one presented in (Cutkosky et al., 2020,
Corollary 2) due to the di�erent range of the rewards. The algorithm, which is an adaptation of Bandit
Combiner in Cutkosky et al. (2020), is summarized in Algorithm 2.

C Additional Experiments

We provide an additional experiment comparing the regrets of O3M and OM-Block. In order to be able to plot
the regret, we must know OPT which is hard to compute in general. Since in the rising scenario with an
isotropic initialization OPT is oracle greedy, which is easy to compute, we present this experiment in a rising
setting with m = 1 and “ = 2. We plot the regret of O3M and OM-Block against the number of time steps,
measuring the performance at di�erent time horizons and for di�erent sizes of L (where L depends on T , see
at the end of Section 3.2). Specifically, we instantiated O3M and OM-Block for increasing values of L, setting
the horizon of each instance based on the equations in Theorem 1 and Proposition 4. Figure 3 shows how
the dimension of ‚◊, which is d for O3M and d ◊ L for OM-Block, has an actual impact on the performance
since O3M outperforms OM-Block. The code is written in Python and it is publicly available at the following
GitHub repository: Linear Bandits with Memory.
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Figure 3: The regret of O3M and OM-Block. Each dot is a separate run where the value of L is tuned to the
corresponding horizon.
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