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Abstract
On-policy reinforcement learning methods, like
Trust Region Policy Optimization (TRPO) and
Proximal Policy Optimization (PPO), often de-
mand extensive data per update, leading to sam-
ple inefficiency. This paper introduces Reflective
Policy Optimization (RPO), a novel on-policy ex-
tension that amalgamates past and future state-
action information for policy optimization. This
approach empowers the agent for introspection,
allowing modifications to its actions within the
current state. Theoretical analysis confirms that
policy performance is monotonically improved
and contracts the solution space, consequently
expediting the convergence procedure. Empiri-
cal results demonstrate RPO’s feasibility and effi-
cacy in two reinforcement learning benchmarks,
culminating in superior sample efficiency. The
source code of this work is available at https:
//github.com/Edgargan/RPO.

1. Introduction
On-policy reinforcement learning (RL) aims to learn an
optimal mapping from a sequence of states to actions based
on rewarding criteria acquired through trajectories generated
by interacting with the underlying environment. Proximal
Policy Optimization (PPO) (Schulman et al., 2017) is one
of the most typical algorithms in this category, owing to
its simplicity and effectiveness. It has been successfully
applied in various domains, including Atari games (Mnih
et al., 2015), continuous control tasks (Dhariwal et al., 2017),
and robot control (Lillicrap et al., 2016). However, existing
algorithms optimize the policy based on a state-action pair
and do not directly consider the impact of subsequent states
and actions in the trajectory. This limitation inevitably gives
rise to the sample inefficiency problem.

In prior studies (Mnih et al., 2015; van Hasselt et al., 2016;
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Schulman et al., 2015; 2017; Haarnoja et al., 2018; Silver
et al., 2014; Fujimoto et al., 2018), the prevalent approach
involves optimizing the policy using the value function of
the current state. The value function potentially contains
information about the subsequent data. However, a pertinent
question emerges: Is optimizing a policy solely based on
the value function the fastest (optimal) path to convergence?
The answer is no, as this approach may overlook other
crucial factors.

To illustrate this answer, consider an environment with a
“cliff”. If an agent takes an action leading to falling off
the cliff under a state, it must learn to avoid the action and
the associated state. Returning to this state is perilous and
could potentially trigger the same action. Therefore, the
agent must actively avoid this state to enhance safety. The
preceding action leading to this state must also be avoided,
anticipating the possibility of re-entering that state again.

A similar scenario unfolds in a “treasure” environment,
where an agent performs an action resulting in a large re-
ward. Subsequent data imparts positive and negative insights
into previous states and actions. Therefore, optimizing the
previous action should incorporate information from sub-
sequent state-action pairs, not relying solely on the value
function. Intuitively, leveraging subsequent data directly
can expedite algorithm convergence and enhance sample
efficiency. Unfortunately, most existing algorithms lack this
capability, which directly exploits the relationship between
pairs of trajectory data for policy optimization.

To address the above issues with better sample efficiency,
we introduce a new on-policy algorithm that optimizes the
current policy by explicitly considering the relationship be-
tween the previous and subsequent state-action pairs in the
sampled trajectories. Specifically, the proposed algorithm
evaluates the current state-action pair and the impact of the
subsequent pair of trajectories. It provides a more compre-
hensive perspective than traditional value function-based
policy optimization. This approach enables the optimized
policy to adjust its actions based on positive and negative
information from subsequent states, thereby effectively re-
flecting the policy. We thus name the proposed algorithm as
Reflective Policy Optimization (RPO).

The RPO algorithm, as proposed, directly focuses on pol-
icy optimization rather than solely on evaluating the value

1

https://github.com/Edgargan/RPO
https://github.com/Edgargan/RPO


Reflective Policy Optimization

function. This distinction separates it from multi-step re-
inforcement learning methods (De Asis et al., 2018; Duan
& Wainwright, 2023; Hernandez-Garcia & Sutton, 2019).
Our proposed algorithm takes a direct approach by incor-
porating previous and subsequent trajectory information
for policy optimization, establishing more clearly theoreti-
cal properties. We also derive a novel policy improvement
lower bound, illustrating that, in addition to ensuring the
desirable property of monotonic performance improvement,
our method effectively reduces the solution space of the
optimized policy, thus significantly accelerating the algo-
rithm’s convergence procedure. Furthermore, our method
improves sample efficiency.

We incorporate our proposed algorithm with the PPO’s
clipping mechanism (Schulman et al., 2017) to provide a
practical implementation. Following standard settings, we
validate the effectiveness of our algorithm by utilizing an
illustrative toy example, shedding light on the underlying
working mechanism of RPO. Additionally, we showcase su-
perior performance on widely recognized RL benchmarks,
such as MuJoCo (Todorov et al., 2012) and Atari games
(Brockman et al., 2016).

2. Preliminaries
2.1. Markov Decision Process

Commonly, the reinforcement learning problem can be mod-
eled as a Markov Decision Process (MDP), which is de-
scribed by the tuple ⟨S,A, P,R, γ⟩ (Sutton & Barto, 1998).
S and A are the state space and action space respectively.
The function P (s′|s, a) : S ×A× S 7−→ [0, 1] is the tran-
sition probability function from state s to state s′ under
action a. The function R(s, a) : S ×A 7−→ R is the reward
function. And γ ∈ [0, 1) is the discount factor for long-
horizon returns. In a state s, the agent performs an action
a according to a stochastic policy π : S × A 7−→ [0, 1]
(satisfies

∑
a π(a|s) = 1). The environment returns a

reward R(s, a) and a new state s′ according to the tran-
sition function P (s′|s, a). The agent interacts with the
MDP to give a trajectory τ of states, actions, and rewards:
s0, a0, R(s0, a0), · · · , st, at, R(st, at), · · · over S×A×R
(Silver et al., 2014). Given a policy π, under a state st and
a action at, the state-action value function and state-value
function are defined as

Qπ(st, at) = Eτ∼π[Gt|st, at], V π(st) = Eτ∼π[Gt|st],

where Gt =
∑∞

i=0 γ
iRt+i is the discount return, and Rt =

R(st, at).

It is clear that V π(st) = Eat∼πQ
π(st, at). Correspond-

ingly, advantage function can be represented Aπ(s, a) =
Qπ(s, a)− V π(s). We know that

∑
a π(a|s)Aπ(s, a) = 0.

Let ρπ be a normalized discount state visitation distribution,

defined

ρπ(s) = (1− γ)

∞∑
t=0

γtP(st = s|ρ0, π),

where ρ0 is the initial state distribution (Kakade & Langford,
2002). Similarly, ρπ(·|s, a) can be defined and denotes the
conditional visitation distribution under state s and action
a. And the normalized discount state-action visitation dis-
tribution can be represented ρπ(s, a) = ρπ(s)π(a|s). We
make it clear from the context whether ρπ refers to the state
or state-action distribution.

The goal is to learn a policy that maximizes the expected
total discounted reward η(π), defined

η(π) = Eτ∼π

[ ∞∑
i=0

γiR(si, ai)

]
.

The following identity indicates that the distance between
the policy performance of π and π̂ is related to the advantage
over π (Kakade & Langford, 2002):

η(π) = η(π̂) +
1

1− γ
Es,a∼ρπ

[
Aπ̂(s, a)

]
. (1)

Some admirable algorithms obtain good properties by mod-
ifying the right-hand side of Eqn. (1), for example, Trust
Region Policy Optimization (TRPO) algorithm (Schulman
et al., 2015) optimizes the lower bound of policy improve-
ment by replacing ρπ with ρπ̂ under state s, and offers better
theoretical properties, i.e. monotonic improvement of policy
improvement.

3. The Generalized Surrogate Function
In this section, we establish a recurrence form by providing
the equation relationships before and after the replacement
of TRPO. Further, we reach general conclusions by extend-
ing TRPO with subsequent state-action pairs.
Lemma 3.1. Consider a current policy π̂, and any policies
π, we have

Es,a∼ρπAπ̂(s, a)− Es∼ρπ̂,a∼πA
π̂(s, a)

=
γ

1− γ
Es,a∼ρπ̂ [

π(a|s)
π̂(a|s)

− 1]Es′,a′∼ρπ(·|s,a)A
π̂(s′, a′).

The proof of this lemma is given in Appendix A.4.

Note that from this lemma, the difference between the origi-
nal formula and the replaced one is relevant to the normal-
ized discount subsequent state-action visitation distribution
ρπ(·|s, a). By the boundary of the right-hand side of the
equation, it is easy to obtain Theorem 1 of the paper (Schul-
man et al., 2015) and Theorem 1 of the paper (Achiam et al.,
2017). From this lemma, we constructed a relationship be-
tween the current visitation distributions (s, a) ∼ ρπ(·) and
the next (s′, a′) ∼ ρπ(·|s, a).
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Theorem 3.2. Consider a current policy π̂, and any policies
π, we have

η(π) = η(π̂) +

k−1∑
i=0

αiLi(π, π̂) + βkGk(π, π̂), (2)

where

Li(π, π̂)= E
s0,a0∼ρπ̂(·)

···
si−1,ai−1∼ρπ̂(·|si−2,ai−2)

i−1∏
t=0

(rt − 1) · li(π, π̂),

Gk(π, π̂)= E
s0,a0∼ρπ̂(·)

···
sk−1,ak−1∼ρπ̂(·|sk−2,ak−2)

k−1∏
t=0

(rt − 1) · gk(π, π̂),

li(π, π̂) = Esi∼ρπ̂(·|si−1,ai−1),ai∼π(·|si)A
π̂(si, ai),

gk(π, π̂) = Esk,ak∼ρπ(·|sk−1,ak−1)A
π̂(sk, ak),

and

rt =
π(at|st)
π̂(at|st)

, αi =
γi

(1− γ)i+1
, βk =

γk

(1− γ)k+1
.

We define that L0(π, π̂) = Es0,a0∼ρπ̂(·)r0A
π̂(s0, a0),

G1(π, π̂)=Es0,a0∼ρπ̂(·);s1,a1∼ρπ(·|s0,a0)(r0−1)Aπ̂(s1, a1)

and r0 = π(a0|s0)
π̂(a0|s0) .

The proof of this theorem is given in Appendix A.5.

This theorem gives a general form for the difference between
the policy performance of π and π̂ by finite sums. This equa-
tion accurately represents the general gap between the per-
formance of π and π̂ from the trajectory-based. It portrays
that subsequent state-action pairs can also directly impact
optimizing the current policy. We refer to

∑k−1
i=0 αiLi(π, π̂)

as the generalized surrogate objective function.

A slight problem may exist if the generalized surrogate ob-
jective function is directly optimized. Consider L1(π, π̂)
in Eqn. (2) as an example. We consider this function
without delving into the specific form of the parameters.
When the environment is unknown, it can only be opti-
mized by sampling. Considering a special case, the function
L1(π, π̂) is optimized by using a sample (s0, a0, s1, a1),
i.e., L1(π, π̂) ≈ (r0 − 1)r1A

π̂(s1, a1). If Aπ̂(s1, a1) < 0
and r0 − 1 < 0, it follows that (r0 − 1)r1A

π̂(s1, a1) =
[(r0 − 1)Aπ̂(s1, a1)]r1 > 0. This implies an increase in
the probability of a1. However, when Aπ̂(s1, a1) < 0, we
should decrease the probability of a1. It’s a contradiction.
Thus, the term “1” in r0 − 1 may be incorrectly misleading
for policy optimization despite the soundness of the theory.
This situation exists when the environment is unknown.

Next, we measure the gap between the policy performance
η(π) and

∑k−1
i=0 αiLi(π, π̂).

Corollary 3.3. According to the definition of Gk, we have

|βkGk(π, π̂)| ≤
γk

(1− γ)k+2
ϵk+1Rmax,

where ϵ ≜ ∥π − π̂∥1 = maxs
∑

a |π(a|s) − π̂(a|s)| and
Rmax ≜ maxs,a |R(s, a)|.

The proof of the theorem is given in the Appendix A.6.

Based on Theorem 3.2 and Corollary 3.3, a general lower
bound exists for the policy performance of π. This theory
makes good theoretical sense, which helps to understand the
generalized surrogate function. For the case where k = 1,
the l1 norm constraints are replaced by KL constraints. This
outcome aligns with the lower bound observed in TRPO.

4. Reflective Policy Optimization
Theoretically, the previous section gave a lower bound for
the policy performance of π. Although the generalized
surrogate function incorporates the current and subsequent
state-action pairs of the trajectory, the inclusion of the term
”1” in the function Li(π, π̂) introduces ambiguity regarding
how the subsequent pairs influence the behavior of the policy
at the current state, potentially yielding positive or adverse
effects. In this section, we have made slight modifications
to the generalized surrogate function Li(π, π̂) in Eqn. (2),
defined

L̂i(π, π̂) = E
s0,a0∼ρπ̂(·)

···
si,ai∼ρπ̂(·|si−1,ai−1)

i∏
t=0

rt ·Aπ̂(si, ai). (3)

It is a natural modification that avoids the problems caused
by the “1” item. The following theorem measures the rela-
tionship between the function L̂i(π, π̂) and η(π).

Theorem 4.1. Consider a current policy π̂, and any policies
π, we have

η(π)− η(π̂) ≥
k−1∑
i=0

αiL̂i(π, π̂)− Ĉk(π, π̂), (4)

where

Ĉk(π, π̂)=
γRmax∥π−π̂∥1

1− γ

k−1∑
i=1

αi+
γkRmax

(1−γ)k+2
∥π−π̂∥21,

L̂i(π, π̂) is defined in Eqn. (3) and αi = γi

(1−γ)i+1 . We

define that
∑0

i=1 αi = 0 for k = 1.

The proof of this theorem is given in Appendix A.8.

From Theorem 4.1, the first term of the generalized lower
bound is referred to as the new generalized surrogate func-
tion, while the second term is known as the penalty term.

3



Reflective Policy Optimization

It is worth noting that TRPO (Schulman et al., 2015) is a
special case of the generalized lower bound for k = 1. By
optimizing the generalized lower bound, we can get a mono-
tonically improving sequence of policies {πi}∞i=0, satisfy
η(π0) ≤ η(π1) ≤ · · · . Next, we intuitively analyze the new
generalized surrogate function. The difference between the
function Li(π, π̂) and L̂i(π, π̂) is very small, involving the
removal of the number 1 from the ratios’ product. However,
their intended meanings are quite distinct. The function
L̂i(π, π̂) can directly utilize the information between the
current and subsequent state-action pairs to optimize the
current policy. Optimizing this function does not encounter
the issues discussed in Section 3.

With k = 2, we will explain the optimization procedure in
detail. The function L̂1(π, π̂) contains the ratio of the pair
(s, a) and (s′, a′). If Aπ̂(s′, a′) > 0, it indicates that the
action a′ is deemed favorable, and its probability will be
increased through algorithm optimization. Simultaneously,
the state s′ is likely fine as well. To return to this state, we
should increase the probability of the action a under state
s. In contrast, if Aπ̂(s′, a′) < 0, similar results will be
obtained. The agent can reflect on its current behavior based
on subsequent information. For L̂0(π, π̂), the action’s a
probability can be optimizing using the advantage function
Aπ̂(s, a). Therefore, optimizing the current action a will
be influenced by both the current and subsequent advantage
functions Aπ̂ , taking them into account.

In this way, the optimized policy will likely foster the agent’s
reflection, and we observe that optimizing the generalized
surrogate function lacks this ability. By utilizing the same
trajectory, the agent can acquire more information. Figure
1 depicts an experiment conducted in the CliffWalking en-
vironment. The results in Figure 1 indicate that optimizing
the new surrogate function reduces the number of falling
off the Cliff and faster after reaching the goal G. In the
experimental section, we explain this phenomenon in detail.

Theorem 4.1 demonstrates that the generalized lower bound
is optimized for any k. As k increases, the generalized
lower bound is optimized using subsequent samples to learn
implicit relationships of the current and subsequent states
and actions data. However, is it suitable when k takes a
large value? The answer is no. Let’s look at the L̂k(π, π̂)
function individually. This objective function comprises
the product of the k ratios and an advantage function. If
the ratio is too high, it encounters the problem of high
variance (Munos et al., 2016), which, in turn, impacts the
algorithm’s stability. Given this weakness, a very large
value of k may not be practical. In the experimental section
5.1, we discuss the values of k and observe that as long
as the agent leverages the relationship between previous
and subsequent state-action pairs, it enables the agent to
fall into the Cliff less often and to reach the goal G faster.

The experimental results show similarity whether k = 2 or
k = 3. Therefore, the main part of the following discussion
is framed in terms of k = 2. The following theorem shows
that the modified generalized surrogate function has another
nice property except for the monotonicity.
Theorem 4.2. For k = 2, defined two sets

Ψ1 =

{
µ | α0L̂0(µ, π̂)− Ĉ1(µ, π̂) ≥ 0, ∥µ− π̂∥1 ≤

1

2

}
,

Ψ2 =
{
µ | α0L̂0(µ, π̂) + α1L̂1(µ, π̂)− Ĉ2(µ, π̂) ≥ 0,

∥µ− π̂∥1 ≤
1

2

}
,

then we have

Ψ2 ⊆ Ψ1.

The proof of the theorem is given in Appendix A.9.

Note that when the old and new policies do not change
much, the set Ψ1 is a solution space of TRPO, and the set
Ψk corresponds to the solution space of the k-th generalized
lower bound. The theorem 4.2 shows that the scale of the
solution space of the policy is reduced when k = 2. Under
certain conditions, the optimal policy π⋆ belongs to the set
Ψ1 as well as to Ψ2. Reducing the solution space is possibly
more efficient in finding a good policy, and therefore, it is
intuitive that the algorithm’s convergence procedure can be
accelerated. Furthermore, it can improve sample efficiency.
Similarly, we can define the solution space of k = 3, 4, · · ·
and use the same way to get Ψ1 ⊇ Ψ2 ⊇ Ψ3 ⊇ Ψ4 ⊇ · · · .
Note that π⋆ is in those sets. It reveals the benefits of using
current and subsequent states and actions of trajectory data
to optimize the policy. This result provides a promising
theoretical basis for our algorithm.

4.1. The Clipped Generalized Surrogate Objection

In the previous subsection discussion, the generalized lower
bound function contained the generalized surrogate function
and a penalty term. The optimization approach for this lower
bound is similar to TRPO, utilizing a linear approximation
for the surrogate objective and a quadratic approximation for
the penalty term. However, it requires computing the inverse
matrix of the quadratic approximation of the penalty term.
In particular, the generalized lower bound function also in-
cludes the relationship between before and after state-action
pairs. It is, therefore, impractical to solve this. Inspired by
the PPO (Schulman et al., 2017) algorithm, we propose a
new clipped surrogate objection according to Eqn. (4).

When k = 1, for L̂0(π, π̂), we use the PPO’s objective
function:

L̂clip
0 (π, π̂) =E(s,a) min

[
r(a|s)Aπ̂(s, a) ,

clip (r(a|s), 1− ϵ, 1 + ϵ)Aπ̂(s, a)
]
,

(5)
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Algorithm 1 Reflective Policy Optimization (RPO)
Environment E, discount factor γ, batch size n, clipping
parameter ϵ and ϵ1, learning rate α and the weighted
parameter β. Initialize policy network parameter θ.
for t = 0, 1, 2, . . . do

Collect data:
Collect n samples with πt on environment E.
Estimate policy objective:
Samples a policy data πt, estimate on-policy advan-
tage Aπt using GAE method, approximately estimate
maximize the empirical objective L̂clip

0 (πθ, πt) and
L̂clip
1 (πθ, πt) from Eqn.(5) and Eqn.(6). The full ob-

jective: L̂(πθ)← L̂clip
0 (πθ, πt) + βL̂clip

1 (πθ, πt).
Update policy network:
Update gradient: θ ← θ + α∇θL̂(πθ).

end for

where r(a|s) = π(a|s)
π̂(a|s) , ϵ is the hyperparameter, and we

ignore the distribution of random variables (s, a).

When k = 2, for L̂1(π, π̂), we simply modify the clipping
mechanism:

L̂clip
1 (π, π̂) =E(s,a,s′,a′) min

[
r(a|s)r(a′|s′)Aπ̂(s′, a′) ,

C(r, r′)Aπ̂(s′, a′)
]
,

(6)
where C(r, r′) = clip [r(a|s), 1− ϵ, 1 + ϵ] · clip [r(a′|s′),
1− ϵ1, 1 + ϵ1], r(a|s) = π(a|s)

π̂(a|s) , r(a′|s′) = π(a′|s′)
π̂(a′|s′) , ϵ and

ϵ1 are the hyperparameter, we ignore the distribution of
random variables (s, a, s′, a′).

From the Eqn. (6), we implement the clipping mechanism
for each ratio, not altogether. If the ratio r(a|s) is large
and the ratio r(a′|s′) is small, the product of r(a|s) and
r(a′|s′) may fall between 1− ϵ and 1 + ϵ. If their product
is clipped, the policy will continue to be optimized, and the
result may improve or worsen. We have no control over
this phenomenon. Therefore, using the separate clipping
mechanism will be considered a reasonable situation. The
clipping mechanism constrains the ratio variance, making
the algorithm’s training procedure more stable. In practice,
we find that the parameter ϵ1 cannot be too large, and it’s
better to be a little smaller than or equal to the ϵ. We want to
use the subsequent state-action information to subsidiarily
optimize the current policy while avoiding abrupt changes
between old and new policies. In this way, the training
procedure can be more stable.

Additionally, k > 2, the function L̂k(π, π̂) can be clipped
using the same mechanism. Therefore, for the generalized
lower bound function, we present a more practical version
of the algorithm.

Combining Eqn. (5) and Eqn. (6), we present the Reflective

Policy Optimization algorithm (RPO), a practical variant
for the generalized surrogate objective function:

L̂(π, πt) =L̂clip
0 (π, πt) + βL̂clip

1 (π, πt), (7)

where L̂clip
0 (π, πt) is defined in Eqn.(5), L̂clip

1 (π, πt) is de-
fined in Eqn.(6), and β > 0. By choosing the parame-
ter β, this parameter plays a role in weighting the use of
subsequent state-action pair information. Eqn. (7) is the
optimization objective function for the t-th update. This
paper’s optimization of the value function is the same as
that of PPO. Algorithm 1 shows the detailed implementation
pipeline. The RPO algorithm is divided into three steps in
each iteration: collect samples, estimate policy objectives,
and update the network. It can be seen that our proposed
method is also an on-policy algorithm.

Discuss with multi-step RL Multi-step reinforcement
learning (RL) is a set of methods that aim to adjust the trade-
off of utilization between the knowledge of the current and
future return. Recent advances in multi-step RL have demon-
strated remarkable empirical success (Wu et al., 2023; Tang
et al., 2022). This approach does not directly optimize the
current policy but is based on the value function estimated
in multiple steps. It is difficult to see directly what role
multi-step RL plays in the policy optimization procedure.
However, the approach proposed in this paper is viewed
from a multi-step perspective: subsequent state-action pairs
directly affect policy optimization. It has a direct effect on
the actions of the agent and has better theoretical properties.
Therefore, our proposed method is fundamentally different
from traditional multi-step RL.

Discuss with TayPO The surrogate objective function
of the TayPO algorithm (Tang et al., 2020) is denoted as
Li(π, π̂) in Eqn. (2). As discussed in Section 3, their al-
gorithm includes a ”1” term, which encounters the same
problem. We have observed experimentally (refer to Figure
5 of the appendix) that the ”1” term will severely damage the
performance of their algorithm. Furthermore, we establish
an equality relationship between η(π) and the generalized
surrogate function. Compared to their method, we give a
tighter lower bound (please refer to Appendix A.7).

5. Experiments
To verify the effectiveness of the proposed RPO algorithm,
we utilize several continuous and discrete environments
from the MuJoCo (Todorov et al., 2012) and Atari games in
OpenAI Gym (Brockman et al., 2016) extensively adopted
in previous works. We conducted experiments with the
Mujoco environment based on code from (Queeney et al.,
2021) and Atari games based on code from (Zhang, 2018).
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Figure 1. (a) is a CliffWalking environment. (b) represents the total number of times the agent fell into the Cliff during the training
procedure. (c) represents the agent’s steps to reach the goal G during the training procedure. RPO-3 means that when k = 3, the algorithm
uses three ratios.
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Figure 2. Learning curves on the Gym environments. Performance of RPO vs. PPO. The shaded region indicates the standard deviation of
ten random seeds. The X-axis represents the timesteps in the environment. The Y-axis represents the average return.

5.1. Visual Validation Experiment

To demonstrate the effectiveness of the “Reflective Mecha-
nism” of RPO, we conducted visual validation experiments
in the CliffWalking environment. CliffWalking is a clas-
sic setting widely used for visualizing the performance of
reinforcement learning algorithms. From Figure 1 (a), it
is characterized by a gird environment in which the agent
starts from S and moves through several girds to reach the
goal G while avoiding falling into the cliff.

Figure 1 illustrates the overall performance of RPO and its
baseline algorithm during the training processing, mainly
focusing on the frequency of falling off the cliff and the inter-
action step overhead, assisting in validating the advantages
of RPO’s “Reflective Mechanism”.

As shown in Figure 1 (b), RPO significantly reduces the
frequency of falling off the cliff under equal iteration condi-
tions. This data attests to the significant efficiency of RPO’s
“Reflective Mechanism”. It capitalizes on previous interac-
tion experiences, substantially reducing the occurrence rate
of poor decisions. Figure 1 (c) reveals that as the number
of interactions increases, RPO markedly cuts down the in-
teraction step overhead per episode, which further confirms
the benefits of directly utilizing the subsequent data, i.e.
the ability to reflect on the action under state and gain the
greater rewards. In addition, the selection of k is further dis-
cussed. When k = 3, using a similar clipping mechanism as
in Eqn. (6), we construct the generalized surrogate objective
function. From Figure 1, the performance of k = 3 is only
a little better than k = 2. Considering the simplicity and the

6



Reflective Policy Optimization

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps (Million)

0

1000

2000

3000

4000

Av
er

ag
e 

Re
tu

rn

 

PPO
RPO
RPO-3

(a) HalfCheetah

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps (Million)

50

100

150

200

250

Av
er

ag
e 

Re
tu

rn

 

PPO
RPO
RPO-3

(b) Swimmer

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps (Million)

0
500

1000
1500
2000
2500
3000
3500
4000

Av
er

ag
e 

Re
tu

rn

 

PPO
RPO
RPO-clip(r1r2)

(c) HalfCheetah

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps (Million)

20
40
60
80

100
120
140
160
180

Av
er

ag
e 

Re
tu

rn

 

PPO
RPO
RPO-clip(r1r2)

(d) Swimmer

Figure 3. The figure (a) and (b) represent the performance of RPO vs. RPO-3 (means that when k = 3, the algorithm uses three ratios),
and the figure (c) and (d) represent the performance of RPO vs. RPO-clip(r1r2) (means that the two ratios are clipped together.).

Table 1. Mean of return of ten random seeds for different methods
in Mujoco. The best results are highlighted in bold.

Half-

Cheetah
Hopper Reacher Walker2d Swimmer Humanoid

TRPO 2862 1996 -5.3 3198 135 5425

PPO 2408 2795 -5.2 3643 134 5608

ISPO 1205 1984 -6.7 2275 71 2736

TayPO -137 29 -66.5 5.7 -22 3717

GePPO 3153 3170 -8.1 3690 157 4100

OTRPO 3075 1597 -10.7 2435 122 1768

RPO 3495 3262 -4.9 4025 157 5793

complexity of the policy optimization, the case of k = 2 is
considered in the main experiment later.

The successful implementation of this RPO mechanism is
attributed to its unique approach to comprehensive analysis
of state-action pairs. Interestingly, RPO distinguishes itself
from most existing algorithms by integrating current and
subsequent data strengths. Unlike other algorithms, RPO
efficiently utilizes “good” experiences and adjusts based on
“bad” experiences. It can more accurately incorporate future
states’ development, a comprehensive feature that current
peer algorithms do not have.

5.2. Main Experimental Analysis

Since the CliffWalking environment is especially conducive
to showcasing RPO’s “Reflective Mechanism,” we per-
formed auxiliary experiments in this setting. In this subsec-
tion, we conducted experiments in continuous and discrete
action space environments to validate RPO’s extensive effec-
tiveness and universal adaptability in reinforcement learning
scenarios.

We conducted a detailed comparative analysis with six re-
lated algorithms in the field (TRPO (Schulman et al., 2015),
PPO (Schulman et al., 2017), GePPO (Queeney et al., 2021),
OTRPO (Meng et al., 2022), TayPo (Tang et al., 2020) and

ISPO (Tomczak et al., 2019)) in six major experimental
environments of MuJoCo (Todorov et al., 2012). The results
(as shown in Table 1 and Figure 5 of the appendix) indicate
that RPO consistently outperforms in all environments.

In the continuous environments, we use the same hyperpa-
rameters ϵ1 = 0.1 and β = 0.3 in all environments. From
Figure 2 and Figure 5 of the appendix, RPO surpasses clas-
sic on-policy reinforcement learning algorithms PPO and
TRPO not only in terms of average return but also in con-
vergence speed. This improvement is attributed to RPO’s
incorporation of current and subsequent data strengths. RPO
also exhibits significant advantages compared to the related
off-policy algorithms OTRPO and GePPO. This shows that
even if off-policy data are not used, better performance can
be achieved by using only the data of the current policy
itself. The TayPO’s performance is not good because this
method faces the problems discussed in Section 3.

In the discrete Atari environments, the results are averaged
over three seeds during 50M timesteps. We run our experi-
ments across three seeds with fair evaluation metrics. We
use the same hyperparameters ϵ1 = 0.1 and β = 3.0 in all
environments. The normalized improvement (N.I.) of the
RPO final score a w.r.t. the final score of a baseline PPO b
is a−b

b−r , r is the random score (Vieillard et al., 2020). From
Figure 4, we compute the N.I./PPO in each environment1. It
demonstrates that RPO performs better than the PPO algo-
rithm in most environments. We also calculated an average
performance improvement of at least 70%. Please refer to
the appendix for a detailed curve (refer to Figure 7) and
table results (refer to Table 2).

The exceptional performance of RPO is rooted in its unique
reflective mechanism that facilitates the efficient utilization
of both positive and negative experiences. By employing
short trajectories composed of two consecutive states for
learning and decision-making, a more profound reflection

1For the Venture environment, since the final performance of
PPO and random are both zero, whereas our method attains a final
performance of 659 points. The calculated N.I. = ∞, and we
clip the N.I. to 12 for graphical representation.
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Figure 4. Normalized Improvement of RPO vs. PPO in 54 Atari 2600 games.

and utilization of experience is achieved. This approach
has the following benefits: it enables the effective use of
interaction experiences from adjacent states. Adopting this
pair-wise state combination for short trajectory inputs min-
imizes the method’s computational and storage overhead
while maximizing the retention of relevance , promoting a
deeper utilization of experience and Reflective mechanism.

The analysis above shows that RPO exhibits significant ad-
vantages in various aspects, especially in convergence speed
and average return, compared to other algorithms. These
empirical findings underscore the efficiency and applicabil-
ity of the RPO algorithm in both complex continuous and
discrete action space environments.

5.3. Ablation Studies

We conduct ablation experiments to evaluate several princi-
pal elements that might influence the RPO’s performance.

Initially, we conducted an ablation study on the number of
states-action pairs, as shown in figures (a) and (b) of Figure
3. When k = 3, we fine-tuned the hyperparameters of the
algorithm RPO-3 (three ratios). The results reveal that RPO-
3’s performance is slightly better than RPO’s (two ratios),
but the cost of fine-tuning the hyperparameters increases.
Considering the number of parameters and the algorithm’s
simplicity, we think the ratios in RPO need not exceed two,
as two states suffice for effective reflection.

Secondly, we conducted ablation experiments on whether
the two ratios were clipped together or not, and by compar-
ing it with the RPO-clip(r1r2) algorithm (this means that
the two ratios are clipped together), as shown in figure (c)
and (d) of Figure 3. The RPO-clip(r1r2) may not achieve
better performance in some environments, and it may be
that two ratios clipped together will face instability. And the
RPO method exhibits greater performance, as indicated by
the results in Figure 3.

Finally, we conducted ablation experiments on the clipping
and weighting coefficients (see Figure 6 in the appendix).
Adjusting these two clipping parameters aims to maintain
policy stability and address the risk associated with current
methods that solely apply clipping to the product. This
approach can avoid abrupt changes between old and new
policies. We observed that the smaller clipping values yield
more significant improvements under a fixed weighting co-
efficient. Furthermore, our findings suggest that reducing
the weighting coefficient alongside certain clipping levels
positively influences the results within an acceptable range.
It facilitates deep experiential learning from new short tra-
jectories formed by preceding and succeeding states, pro-
moting stable and enhanced performance and accelerating
the algorithm’s convergence rate.

6. Conclusive Remarks
This paper proposes a simple on-policy algorithm called
Reflective Policy Optimization (RPO). This method aims to
combine before and after state and action information of the
trajectory data to optimize the current policy, thus allowing
the agent to reflect on and modify the action of the current
state to some extent. Furthermore, theoretical analyses show
that our proposed method, in addition to satisfying the de-
sirable property of the monotonic improvement of policy
performance, can effectively reduce the optimized policy’s
solution space, speeding up the algorithm’s convergence
procedure. We verify the feasibility and effectiveness of
the proposed method by a toy example and achieve better
performance on RL benchmarks.

In future work, since RPO optimizes the policy by lever-
aging information from past and future pairs, it is straight-
forward to integrate it into other Actor-Critic algorithms
or maximum entropy methods, further exploiting its ad-
vantages. We anticipate that RPO will play a good role in
developing new reinforcement learning algorithms.
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A. Proof
Let’s start with some useful lemmas.

Lemma A.1. (Kakade & Langford, 2002) Consider any two policies π̂ and π, we have

η(π)− η(π̂) =
1

1− γ
Es,a∼ρπAπ̂(s, a).

Corollary A.2. Consider any two policies π̂ and π, we have

• V π(s0)− V π̂(s0) =
1

1−γEs,a∼ρπ(·|s0)A
π̂(s, a).

• Qπ(s0, a0)−Qπ̂(s0, a0) =
γ

1−γEs,a∼ρπ(·|s0,a0)A
π̂(s, a).

Proof. The first formula is simple, due to η(π) = Es0∼ρ0
V π(s0).

Let’s prove the second formula.

Qπ(s0, a0)−Qπ̂(s0, a0)

=γEs′∼P (s′|s0,a0)

[
V π(s′)− V π̂(s′)

]
=

γ

1− γ
Es′∼P (s′|s0,a0)Es,a∼ρπ(·|s′)A

π̂(s, a)

=
γ

1− γ
Es,a∼ρπ(·|s0,a0)A

π̂(s, a).

Lemma A.3. (Tomczak et al., 2019) Consider any two policies π̂ and π, we have

η(π)− η(π̂) =
1

1− γ
Es∼ρπ̂,a∼πA

π̂(s, a) +
1

1− γ
Es,a∼ρπ̂

[
π(a|s)
π̂(a|s)

− 1

] [
Qπ(s, a)−Qπ̂(s, a)

]
.

Lemma A.4. Consider a current policy π̂, and any policies π, we have

Es,a∼ρπ(·)A
π̂(s, a)− Es∼ρπ̂,a∼πA

π̂(s, a)

=
γ

1− γ
E

s,a∼ρπ̂(·)
s′,a′∼ρπ(·|s,a)

[
π(a|s)
π̂(a|s)

− 1]Aπ̂(s′, a′).

Proof. From Lemma A.1 and A.3, we have

Es,a∼ρπAπ̂(s, a)− Es∼ρπ̂,a∼πA
π̂(s, a)

=Es,a∼ρπ̂

[
π(a|s)
π̂(a|s)

− 1

] [
Qπ(s, a)−Qπ̂(s, a)

]
.

According to Corollary A.2, it is easy to get the conclusion.

Theorem A.5. Consider a current policy π̂, and any policies π, we have

η(π) = η(π̂) +

k−1∑
i=0

αiLi(π, π̂) + βkGk(π, π̂),

11
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where

Li(π, π̂) = E
s0,a0∼ρπ̂(·)

···
si−1,ai−1∼ρπ̂(·|si−2,ai−2)

i−1∏
t=0

(rt − 1) · li(π, π̂),

Gk(π, π̂) = E
s0,a0∼ρπ̂(·)

···
sk−1,ak−1∼ρπ̂(·|sk−2,ak−2)

k−1∏
t=0

(rt − 1) · gk(π, π̂),

li(π, π̂) = Esi∼ρπ̂(·|si−1,ai−1),ai∼π(·|si)A
π̂(si, ai),

gk(π, π̂) = Esk,ak∼ρπ(·|sk−1,ak−1)A
π̂(sk, ak),

and

rt =
π(at|st)
π̂(at|st)

, αi =
γi

(1− γ)i+1
, βk =

γk

(1− γ)k+1
.

Proof. From Lemma A.4, this formula creates a link between Es,a∼ρπ(·)A
π̂(s, a) and Es′,a′∼ρπ(·|s,a)A

π̂(s′, a′), resulting
in a recursive relationship.

According to Lemma A.3, and using recursive relationships, defined

li(π, π̂) = Esi∼ρπ̂(·|si−1,ai−1),ai∼π(·|si)A
π̂(si, ai),

we have

η(π)− η(π̂)

=
1

1− γ
Es0∼ρπ̂,a0∼πA

π̂(s0, a0) +
γ

(1− γ)2
Es0,a0∼ρπ̂ [r0 − 1]Es1,a1∼ρπ(·|s0,a0)A

π̂(s1, a1)

=
1

1− γ
l0(π, π̂)

+
γ

(1− γ)2
Es0,a0∼ρπ̂ [r0 − 1]

(
l1(π, π̂) +

γ

1− γ
Es1,a1∼ρπ̂(·|s0,a0)[r1 − 1]Es2,a2∼ρπ(·|s1,a1)A

π̂(s2, a2)

)
=

1

1− γ
l0(π, π̂) +

γ

(1− γ)2
Es0,a0∼ρπ̂ [r0 − 1]l1(π, π̂)

+
γ2

(1− γ)3
E

s0,a0∼ρπ̂(·)
s1,a1∼ρπ̂(·|s0,a0)
s2,a2∼ρπ(·|s1,a1)

[r0 − 1][r1 − 1]Aπ̂(s2, a2)

· · ·

=

k−1∑
i=0

αiLi(π, π̂) + βkGk(π, π̂).

Corollary A.6. According to the definition of Gk, we have

|βkGk(π, π̂)| ≤
γk

(1− γ)k+2
ϵk+1Rmax,

where ϵ ≜ ∥π − π̂∥1 = maxs
∑

a |π(a|s)− π̂(a|s)| and Rmax ≜ maxs,a |R(s, a)|.
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Proof. According to the definition of Gk(π, π̂), and defined ϵ ≜ ∥π − π̂∥1, we have

|Gk(π, π̂)| ≤ ϵk · |Esk,ak∼ρπ(·|sk−1,ak−1)A
π̂(sk, ak)|

≤ ϵk · |
∫
a

(π − π̂)Qπ̂(s, a)da|

≤ Rmax

1− γ
ϵk+1.

Combining with βk, we can get this conclusion.

Corollary A.7. Compared with Theorem 2 of the paper (Tang et al., 2020), we give a tighter lower bound.

Proof. From the paper (Tang et al., 2020), they give the gap between the policy performance of π and the general surrogate
object

Ĝk =
1

γ(1− γ)

(
1− γ

1− γ
ϵ

)−1(
γϵ

1− γ

)K+1

Rmax.

Next, from Corollary A.6, we will prove that the following inequality holds

γk

(1− γ)k+2
ϵk+1Rmax < Ĝk.

That is, we need to prove

γk

(1− γ)k+2
ϵk+1Rmax <

1

γ(1− γ)

(
1− γ

1− γ
ϵ

)−1(
γϵ

1− γ

)K+1

Rmax.

After simplification, we get

1

1− γ
<

1

1− γ − γϵ
.

The inequality obviously holds. So, we give a tighter lower bound.

Theorem A.8. Consider a current policy π̂, and any policies π, we have

η(π)− η(π̂) ≥
k−1∑
i=0

αiL̂i(π, π̂)− Ĉk(π, π̂),

where

L̂i(π, π̂) = E
s0,a0∼ρπ̂(·)

···
si−1,ai−1∼ρπ̂(·|si−2,ai−2)

si,ai∼ρπ̂(·|si−1,ai−1)

i∏
t=0

rt ·Aπ̂(si, ai),

Ĉk(π, π̂) =
γRmax∥π−π̂∥1

1− γ

k−1∑
i=1

αi +
γkRmax

(1− γ)k+2
∥π − π̂∥21,

and αi =
γi

(1−γ)i+1 .
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Proof. For the definition of Li(π, π̂), we have

η(π)− η(π̂)

=
1

1− γ
Es0∼ρπ̂,a0∼πA

π̂(s0, a0) +
γ

(1− γ)2
Es0,a0∼ρπ̂ [r0 − 1]Es1,a1∼ρπ(·|s0,a0)A

π̂(s1, a1)

=
1

1− γ
l0(π, π̂)−

γ

(1− γ)2
Es0,a0∼ρπ̂Es1,a1∼ρπ(·|s0,a0)A

π̂(s1, a1)

+
γ

(1− γ)2
Es0,a0∼ρπ̂r0

(
l1(π, π̂) +

γ

1− γ
Es1,a1∼ρπ̂(·|s0,a0)[r1 − 1]Es2,a2∼ρπ(·|s1,a1)A

π̂(s2, a2)

)
=

1

1− γ
l0(π, π̂)−

γ

(1− γ)2
Es0,a0∼ρπ̂Es1,a1∼ρπ(·|s0,a0)A

π̂(s1, a1)

+
γ

(1− γ)2
Es0,a0∼ρπ̂r0l1(π, π̂)−

γ2

(1− γ)3
Es0,a0∼ρπ̂r0Es1,a1∼ρπ̂(·|s0,a0)Es2,a2∼ρπ(·|s1,a1)A

π̂(s2, a2)

+
γ2

(1− γ)3
Es0,a0∼ρπ̂r0Es1,a1∼ρπ̂(·|s0,a0)r1Es2,a2∼ρπ(·|s1,a1)A

π̂(s2, a2)

=
1

1− γ
l0(π, π̂) +

γ

(1− γ)2
Es0,a0∼ρπ̂ [r0 − 1]l1(π, π̂)

+
γ2

(1− γ)3
E

s0,a0∼ρπ̂(·)
s1,a1∼ρπ̂(·|s0,a0)
s2,a2∼ρπ(·|s1,a1)

[r0 − 1][r1 − 1]Aπ̂(s2, a2)

· · ·

=

k−1∑
i=0

αiL̂i(π, π̂)−
k−1∑
i=1

αiĤi(π, π̂) + βkĜk(π, π̂),

where

L̂i(π, π̂) = E
s0,a0∼ρπ̂(·)

···
si−1,ai−1∼ρπ̂(·|si−2,ai−2)

si,ai∼ρπ̂(·|si−1,ai−1)

i∏
t=0

rt ·Aπ̂(si, ai),

Ĥi(π, π̂) = E
s0,a0∼ρπ̂(·)

···
si−1,ai−1∼ρπ̂(·|si−2,ai−2)

si,ai∼ρπ(·|si−1,ai−1)

i−2∏
t=0

rt ·Aπ̂(si, ai),

Ĝk(π, π̂) = E
s0,a0∼ρπ̂(·)

···
si−1,ai−1∼ρπ̂(·|si−2,ai−2)

si,ai∼ρπ(·|si−1,ai−1)

i−2∏
t=0

rt · (ri−1 − 1) ·Aπ̂(si, ai),

and αi =
γi

(1−γ)i+1 , βk = γk

(1−γ)k+1 .

It is easy to prove that the following inequality holds

Ĥi(π, π̂) ≤
Rmax

1− γ
∥π − π̂∥1, Ĝk(π, π̂) ≤

Rmax

1− γ
∥π − π̂∥21.

We have

η(π)− η(π̂) ≥
k−1∑
i=0

αiL̂i(π, π̂)−
γRmax∥π−π̂∥1

1− γ

k−1∑
i=1

αi −
γkRmax

(1− γ)k+2
∥π − π̂∥21.
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Theorem A.9. Define two sets

Ψ1 =

{
µ | α0L̂0(µ, π̂)− Ĉ1(µ, π̂) ≥ 0, ∥µ− π̂∥1 ≤

1

2

}
,

Ψ2 =

{
µ | α0L̂0(µ, π̂) + α1L̂1(µ, π̂)− Ĉ2(µ, π̂) ≥ 0, ∥µ− π̂∥1 ≤

1

2

}
,

then we have

Ψ2 ⊆ Ψ1.

Proof. Let µ ∈ Ψ1, we have

L̂0(µ, π̂)−
γRmax

(1− γ)2
∥µ− π̂∥21 ≥ 0. (8)

Below, we will show that µ may not be in the set Ψ2.

For L̂1(π, π̂), we can get

L̂1(π, π̂) = E
s0∼ρπ̂(·),a0∼π(·|s0)

s1∼ρπ̂(·|s0,a0),a1∼π(·|s1)

Aπ̂(s1, a1) (9)

= E
s0∼ρπ̂(·),a0∼π̂(·|s0)

s1∼ρπ̂(·|s0,a0),a1∼π(·|s1)

Aπ̂(s1, a1) +

 E
s0∼ρπ̂(·),a0∼π(·|s0)

s1∼ρπ̂(·|s0,a0),a1∼π(·|s1)

− E
s0∼ρπ̂(·),a0∼π̂(·|s0)

s1∼ρπ̂(·|s0,a0),a1∼π(·|s1)

Aπ̂(s1, a1) (10)

≥ E
s1∼ρπ̂(·),a1∼π(·|s1)

Aπ̂(s1, a1)−
Rmax

1− γ
∥π − π̂∥21. (11)

The last inequality uses Es0∼ρπ̂(·),a0∼π̂(·|s0)ρ
π̂(·|s0, a0) = ρπ̂(·) and Hölder’s inequality (Finner, 1992).

Combining with L̂0(π, π̂) and Ĉ2(π, π̂), we have

L̂0(π, π̂) +
γ

1− γ
L̂1(π, π̂)−

γRmax

(1− γ)2
∥π − π̂∥1 −

γ2Rmax

(1− γ)3
∥π − π̂∥21

≥L̂0(π, π̂) +
γ

1− γ

(
E

s1∼ρπ̂(·),a1∼π(·|s1)
Aπ̂(s1, a1)−

Rmax

1− γ
∥π − π̂∥21

)
− γRmax

(1− γ)2
∥π − π̂∥1 −

γ2Rmax

(1− γ)3
∥π − π̂∥21

=
1

1− γ
L̂0(π, π̂)−

γRmax

(1− γ)3
∥π − π̂∥21 −

γRmax

(1− γ)2
∥π − π̂∥1.

Combining with the inequality (8), we have

L̂0(µ, π̂) +
γ

1− γ
L̂1(µ, π̂)−

γRmax

(1− γ)2
∥µ− π̂∥1 −

γ2Rmax

(1− γ)3
∥µ− π̂∥21 ≥ −

γRmax

(1− γ)2
∥µ− π̂∥1.

From the above inequality, it shows that µ may not be in set Ψ2.

On the contrary, we will show that if µ ∈ Ψ2, then µ ∈ Ψ1.
According to the Eqn. (9),we can get the upper bound of L̂1(π, π̂):

L̂1(π, π̂) ≤ E
s1∼ρπ̂(·),a1∼π(·|s1)

Aπ̂(s1, a1) +
Rmax

1− γ
∥π − π̂∥21.
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If µ ∈ Ψ2, we have

0 ≤L̂0(µ, π̂) +
γ

1− γ
L̂1(µ, π̂)−

γRmax

(1− γ)2
∥µ− π̂∥1 −

γ2Rmax

(1− γ)3
∥µ− π̂∥21

≤L̂0(µ, π̂) +
γ

1− γ

(
E

s1∼ρπ̂(·),a1∼µ(·|s1)
Aπ̂(s1, a1) +

Rmax

1− γ
∥µ− π̂∥21

)

− γRmax

(1− γ)2
∥µ− π̂∥1 −

γ2Rmax

(1− γ)3
∥µ− π̂∥21

=
1

1− γ
L̂0(µ, π̂)−

γRmax

(1− γ)2
∥µ− π̂∥1 +

γ(1− 2γ)Rmax

(1− γ)3
∥µ− π̂∥21

=
1

1− γ
L̂0(µ, π̂)−

γRmax

(1− γ)3
∥µ− π̂∥21

+
γRmax

(1− γ)3
∥µ− π̂∥21 −

γRmax

(1− γ)2
∥µ− π̂∥1 +

γ(1− 2γ)Rmax

(1− γ)3
∥µ− π̂∥21.

(12)

Next, we will show that the second line of the last equation in the above formula is less than or equal to 0. We have

γRmax

(1− γ)3
∥µ− π̂∥21 −

γRmax

(1− γ)2
∥µ− π̂∥1 +

γ(1− 2γ)Rmax

(1− γ)3
∥µ− π̂∥21

=
γRmax

(1− γ)2

(
1

1− γ
∥µ− π̂∥21 − ∥µ− π̂∥1 +

1− 2γ

1− γ
∥µ− π̂∥21

)
=

γRmax

(1− γ)2
(
2∥µ− π̂∥21 − ∥µ− π̂∥1

)
≤0.

The last inequality holds because ∥µ− π̂∥1 ≤ 1
2 . So, from the Eqn.(12), we have

0 ≤ 1

1− γ
L̂0(µ, π̂)−

γRmax

(1− γ)3
∥µ− π̂∥21.

In summary, we have that Ψ2 ⊆ Ψ1 holds.

B. Additional experimental results
To verify the effectiveness of the proposed RPO method, we select six continuous control tasks from the MuJoCo environ-
ments (Todorov et al., 2012) in OpenAI Gym (Brockman et al., 2016). We conduct all the experiments mainly based on
the code from (Queeney et al., 2021). The test procedures are averaged over ten test episodes across ten independent runs.
For the experimental parameters, we use the default parameters from (Dhariwal et al., 2017; Henderson et al., 2018), for
example, the discount factor is γ = 0.995, and we use the Adam optimizer (Kingma & Ba, 2015) throughout the training
progress. The learning rate ϕ = 3e− 4 except for Humanoid which is 1e− 5. For RPO, the clipping parameters are ϵ = 0.2
and ϵ1 = 0.1, and the weighted parameter β = 0.3 on MuJoCo environments and do not fine-tune them. The RPO algorithm
involves hyperparameters, but we have yet to extensively fine-tun them, from Table 3, we supplemented some experiments
for k = 4.

To verify the effectiveness of the proposed RPO method in discrete Atari environments, the code is based on (Zhang, 2018).
We run our experiments across three seeds with fair evaluation metrics. We use the same hyperparameters ϵ1 = 0.1 and
β = 3.0 in all environments and do not fine-tune them. Firstly, in the discrete state-action space of Atari, rewards are sparser
compared to the continuous state-action space of MuJoCo. Therefore, to better utilize information from subsequent states,
β should be larger than the setting in MuJoCo. Secondly, we did not specifically select the hyperparameters but set them
arbitrarily. Supplementary experiments were conducted on six randomly selected Atari games to demonstrate this. In Table
4, experimental results show that the performance of the RPO algorithm with different parameters is better than that of PPO,
demonstrating better robustness.
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Figure 5. Learning curves on the Gym environments. Performance of RPO vs. PPO, TRPO, OTRPO, GePPO, ISPO and TayPO.
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Figure 6. The top line represents the performance under the condition of β fixed, and the bottom line represents the performance under the
condition of ϵ1 fixed.

17



Reflective Policy Optimization

Figure 7. Learning curves on the Atari games. Performance of RPO vs. PPO.
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Table 2. Mean of returns of three random seeds of last 100 episodes for different methods in the Atari environments. The best results are
highlighted in bold. The bottom row counts the number of games where the algorithm or human performed best.

Algorithm Random Human PPO RPO

Alien 228 7128 2037 2201
Amidar 6 1720 1121 1148
Asterix 210 8503 12048 14904
Asteroids 719 47389 3409 31230
Atlantis 12850 29028 3311130 3347654
BankHeist 14 753 1264 1257
BattleZone 2360 37188 23629 29674
Berzerk 124 2630 1390 1500
Bowling 23 161 33 65
Boxing 0 12 98 99
Breakout 2 30 233 306
Carnival 380 4000 3578 4289
Centipede 2091 12017 4007 6361
ChopperCommand 811 7388 1407 2394
CrazyClimber 10780 35829 111516 121374
DemonAttack 152 1971 157620 188806
DoubleDunk -19 -16 -6 -4
ElevatorAction 0 3000 10085 24473
Enduro 0 860 366 470
FishingDerby -92 -39 38 46
Freeway 0 30 33 32
Frostbite 65 4335 3808 4455
Gopher 258 2412 2165 9489
Gravitar 173 3351 1301 1551
Hero 1027 30826 35477 32507
IceHockey -11 1 -3 -2
Jamesbond 29 303 2979 5751
JourneyEscape -18000 -1000 -1008 -609
Kangaroo 52 3035 9173 10383
Krull 1598 2666 7593 8507
KungFuMaster 258 22736 25088 34463
MsPacman 307 6952 2215 2969
NameThisGame 2292 8049 5872 6925
Phoenix 761 7243 27074 43073
Pitfall -229 6464 -10 0
Pong -21 15 21 21
Pooyan 500 1000 2765 3542
PrivateEye 25 69571 99 96
Qbert 164 13455 15410 16200
Riverraid 1338 17118 11093 14785
RoadRunner 12 7845 41111 45982
Robotank 2 12 29 22
Seaquest 68 42055 2651 1548
SpaceInvaders 148 1669 2706 2445
StarGunner 664 10250 66997 63297
Tennis -24 -8 -4 5
TimePilot 3568 5229 14527 12012
Tutankham 11 168 208 176
UpNDown 533 11693 344972 494588
Venture 0 1188 0 659
VideoPinball 0 17668 71406 100495
WizardOfWor 564 4756 10347 9805
YarsRevenge 3093 54577 59645 75887
Zaxxon 32 9173 16258 14066

Best 0 18 11 26
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Table 3. Mean of return for different k in Mujoco.

PPO RPO (k = 2) RPO (k = 3) RPO (k = 4)
HalfCheetah 2408 3495 4239 4381
Swimmer 134 157 226 227

Table 4. Mean of return of three random seeds for different β in some Atari. The best results are highlighted in bold.

PPO RPO (β = 1) RPO (β = 2) RPO (β = 3) RPO (β = 4) RPO (β = 5)
Asterix 12048 15198 17138 14904 16054 13806
Breakout 233 272 303 306 357 360
CrazyClimber 111516 112760 118933 121374 114350 123890
Kangaroo 9173 12434 10611 10383 10239 11590
Phoenix 27074 28240 34910 43073 42200 42082
Qbert 15410 16634 16213 16200 16137 16958

Table 5. Hyperparameters for RPO on Mujoco tasks.

Hyperparameter Value

Discount rate γ 0.995
GAE parameter 0.97
Minibatches per epoch 32
Epochs per update 10
Optimizer Adam
Learning rate ϕ 3e-4
Minimum batch size (n) 2048
First clipping parameter ϵ 0.2
Second clipping parameter ϵ1 0.1
Weighting parameter β 0.3

Table 6. Hyperparameters for RPO on Atari tasks.

Hyperparameter Value

Discount rate γ 0.99
GAE parameter 0.95
Number Workers 16
Epochs per update 4
Optimizer Adam
Learning rate ϕ 2.5e-4
Rollout Length 256
First clipping parameter ϵ 0.1
Second clipping parameter ϵ1 0.1
Weighting parameter β 3.0
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