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Abstract

Zero-shot inference is a powerful paradigm that enables the use of large pretrained
models for downstream classification tasks without further training. However,
these models are vulnerable to inherited biases that can impact their performance.
The traditional solution is fine-tuning, but this undermines the key advantage of
pretrained models, which is their ability to be used out-of-the-box. We propose
ROBOSHOT, a method that improves the robustness of pretrained model embed-
dings in a fully zero-shot fashion. First, we use zero-shot language models (LMs)
to obtain useful insights from task descriptions. These insights are embedded and
used to remove harmful and boost useful components in embeddings—without any
supervision. Theoretically, we provide a simple and tractable model for biases in
zero-shot embeddings and give a result characterizing under what conditions our
approach can boost performance. Empirically, we evaluate ROBOSHOT on nine
image and NLP classification tasks and show an average improvement of 15.98%
over several zero-shot baselines. Additionally, we demonstrate that ROBOSHOT is
compatible with a variety of pretrained and language models.

1 Introduction

Zero-shot models are among the most exciting paradigms in machine learning. These models obviate
the need for data collection and model training loops by simply asking the model for a prediction
on any set of classes. Unfortunately, such models inherit biases or undesirable correlations from
their large-scale training data [DLS™ 18, TE11]. In a now-canonical example [KSM™21], they often
associate waterbirds with water background. This behavior leads to decreased performance,
often exacerbated on rare data slices that break in-distribution correlations.

A growing body of literature [YNPM23| IGKG™ 22, [ZR27]| seeks to improve robustness in zero-shot
models. While promising, these works require labeled data to train or fine-tune models, and so do
not tackle the zero-shot setting. A parallel line of research seeking to debias word embeddings
[AZST| BCZ* 16, DP19, LGPV20] often sidesteps the need for labeled data. Unfortunately, these
works often require domain expertise and painstaking manual specification in order to identify
particular concepts that embeddings must be invariant to. As a result, out-of-the-box word embedding
debiasing methods also cannot be applied to zero-shot robustification.

Can we robustify zero-shot models without (i) labeled data, (ii) training or fine-tuning, or (iii) manual
identification? Surprisingly, despite this seemingly impoverished setting, it is often possible to do
so. Our key observation is that zero-shot models contain actionable insights that can be exploited
to improve themselves or other zero-shot models. These insights are noisy but cheaply available at
scale—and can be easily translated into means of refinement for zero-shot representations. These
refinements improve performance, particularly on underperforming slices—at nearly no cost.
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Figure 1: ROBOSHOT pipeline (right) vs. vanilla zero-shot classification (left).

We propose ROBOSHOT, a system that robustifies zero-shot models via auxiliary language models
without labels, training, or manual specification. Using just the task description, ROBOSHOT obtains
positive and negative insights from a language model (potentially the model to be robustified itself).
It uses embeddings of these noisy insights to recover harmful, beneficial, and benign subspaces of
zero-shot latent representation spaces. Representations are then modified to neutralize and emphasize
their harmful and beneficial components, respectively.

Theoretically, we introduce a simple and tractable model to capture and quantify failures in zero-shot
models. We provide a result that characterizes the quantity and quality of insights that must be
obtained as a function of the severity of harmful correlations. Empirically, ROBOSHOT achieves
15.98% improvement across nine image and NLP datasets while offering sufficient versatility to apply
to a diverse variety of base models. Most excitingly, in certain cases, it reaches comparable or greater
improvements even when compared to fine-tuned models that rely on labeled data.

Our contributions include,

1. A simple theoretical model describing zero-shot model failures along with a theoretical
analysis of our approach that characterizes the amount of information required for obtaining
improvements as a function of the most harmful unwanted correlation,

2. ROBOSHOT, an algorithm that implements our core idea. It extracts insights from foundation
models and uses them to improve zero-shot representations,

3. Extensive experimental evidence on zero-shot language and multimodal models, showing
improved worst-group accuracy of 15.98% across nine image and NLP datasets.

2 Related Work

We describe related work in zero-shot model robustness, debiasing embeddings, guiding multi-modal
models using language, and using LMs as prior information.

Zero-Shot inference robustness. Improving model robustness to unwanted correlations is heav-
ily studied [SKHLI9, [ABGLP19} [KCJI* 21l [KTW22, [LHC*21} [LCT"22]. Some methods require
training from scratch and are less practical when applied to large pretrained architectures. Existing
approaches to improve robustness post-pretraining predominantly focus on fine-tuning. [YNPM23|]
detects spurious attribute descriptions and fine-tunes using these descriptions. Specialized contrastive
loss is used to fine-tune a pretrained architecture in [GKG™22] and to train an adapter on the frozen
embeddings in [ZR22]]. While promising, fine-tuning recreates traditional machine learning pipelines
(e.g., labeling, training, etc.), which contradicts the promise of zero-shot models. In contrast, our
goal is to avoid any training and any use of labeled data.

Debiasing embeddings. A parallel line of work seeks to de-bias text embeddings [AZS™]]
[BCZ™16] [DP19] [LGPV2(] and multimodal embeddings [WZS22, BHB ™22, WLW?2T] by re-
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Figure 2: (a) ROBOSHOT debiases original input embedding (left). The projected embedding (right)’s
variance in the unwanted direction is reduced, and in the relevant direction increases. (b) Embedding
projection. We project embeddings to the space orthogonal to the embeddings of all unwanted insights
(e.g., water and land)

moving subspaces that contain harmful or unwanted concepts. We use a similar procedure as a
building block. However, these methods either target specific fixed concepts (such as gender) or rely
on concept annotations, which limits their applicability across a wide range of tasks. In contrast, our
method automates getting both beneficial and unwanted concepts solely from the task descriptions.
An additional difference is that our goal is simply to add robustness at low or zero-cost; we not seek
to produce fully-invariant representations as is often desired for word embeddings.

Using language to improve visual tasks A large body of work has shown the efficacy of using
language to improve performance on vision tasks [RKH™ 21} |[FCS™ 13, [LCLBC20]. Most relevant
are those that focus on robustness, like [PDN22], where attention maps using multimodal models
(like CLIP) are used as extra supervision to train a downstream image classifier. [YNPM?23]] uses
text descriptions of spurious attributes in a fine-tuning loss to improve robustness against spurious
correlations. In contrast to these works, we focus on using textual concepts to improve zero-shot
model robustness—without fine-tuning.

Language model as prior The basis of our work comes from the observation that language models
contain information that can serve as a prior for other learning tasks. [KNST23] finds that LLMs can
perform causal reasoning tasks, substantially outperforming existing methods. [[CCSE22] explicitly
prompts LLMs for task-specific priors, leading to substantial performance improvements in feature
selection, reinforcement learning, and causal discovery. Our work shares the spirit of these approaches
in using the insights embedded in language models to enhance zero-shot robustness.

3 RoboShot: Robustifying Zero-shot Models

We are ready to provide our setup and describe the algorithm.

3.1 Modeling and setup

Suppose that the zero-shot model’s latent space contains an (unknown) concept set; similar notions
have been studied frequently in the literature [DKAT]. For simplicity, we assume that this concept
set is given by the orthonormal vectors {z1, ..., zx }. The model’s encoder produces, for a particular
input a representation x that is a mixture of concepts > -, 7;2;, where ; > 0 are weights.

We shall work with the following theoretical model for zero-shot classification. It closely resembles
models like CLIP. For simplicity, we assume that there are two classes. It is straightforward to extend
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Algorithm 1: ROBOSHOT

1: Parameters: Input embedding z, class embeddings c*, ¢!, harmful insight representations
vl, ..., vl5l, helpful insight representations u', . .., ul*!

forj € {1,2,...,|5|} do
Reject harmful insight v;: set @ + z — (x,v7) /(v7, vI )07
Renormalize z = z/ || z||

end for

for k € {1,2,...,|R|} do
Increase helpful insight u: set x < x + (z, u”) /(u¥, u*)u”

end for

é=1{zTc® < aTct}

Returns: Robustified zero-shot prediction ¢

VRN R2D

Ju—

the analysis below to multiple classes. We take >, a;z; to be the embedding of a datapoint, while
e Zl Bi 0% is the embedding of the first class and cl = Zi Bi,1%; is that of the second. Finally,
we assume that we have access to m answers vl,...,v™ from the queries to the language model.
These are given by v/ = ), 7; jz; for j < m. We call these insight representations. Without our

approach, the prediction is made by 1{(>", a;2:)" (3=, Bi02i) < (X; izi)T (X, Bizi)}, so that
we predict whichever class has higher inner product with the datapoint’s embedding.

Next, we assume that each input representation = can be represented by partitioning the mixture
components into three groups,

s R B
T = Z al;armfulzs + Z al;elpfulzr + Z al;enignzb'
s T b
The same holds for class and insight representations.

Example We illustrate how harmful correlations produce errors on rare slices of data through a
standard task setting, Waterbirds [KSM™21].. In this dataset, the goal is to classify 1andbirds versus
waterbirds, and the background (1and or water) is spurious. Suppose that we have these terms
relate to concepts such that zyater = —21ana aNd Zyaterbird = —2landbird-

Consider a datapoint coming from a rare slice infrequently encountered in the training set. This might
be an image of a landbird over water. Its embedding might be z = 0.7zyater + 0.321andbira. We may
also have that

Cuaterbird = 0.42yater + 0.6Zvaterbira aNd Cianabira = 0.421an4 + 0.621anabira-

Then, 27 cyatervira = 0.1 > 27 ¢Clangpira = —0.1, so that the prediction is waterbird, and thus
incorrect. This is caused by the presence of harmful components in both the class embedding (caused
by seeing too many images with water described as waterbirds) and the datapoint embedding (where
the water background appears). Thus our goal is to remove harmful components (the z,’s) and boost
helpful components (the z,.’s). We explain our approach towards doing so next.

3.2 ROBOSHOT: Zeroshot robustification with LLM

We describe ROBOSHOT in Algorithm [I] It uses representations of insights from language models to
shape input and class embeddings to remove harmful components and boost helpful ones. Figure
is helpful in understanding the intuition behind these procedures. The left part (a) illustrates the
effect of ROBOSHOT on a true dataset. Note how unhelpful directions are neutralized while others
are boosted. The illustration on the right (b) shows this effect on the waterbirds running example.

Obtaining insight representations from LMs The first question is how to obtain insight repre-
sentations without training. To do so in a zero-shot way, we use textual descriptions of harmful and
helpful concepts by querying language models using only the task description. For example, in the
Waterbirds dataset, we use the prompt “What are the biased/spurious differences between waterbirds
and landbirds?”. We list the details of the prompts used in the Appendix [B.2] Let s1, s be the text
insights obtained from the answer (e.g., { ‘water background, ‘land background’}). We obtain
9(s1) — g(s2)

a spurious insight representation by taking the difference of their embedding v = ————————,
lg(s1) — g(s2)

where g is the text encoder of our model.
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In addition to attempting to discover harmful correlations, we seek to discover helpful components
in order to boost their magnitudes past remaining harmful ones (or noise). The procedure is similar.
We obtain insight representations using language models. For example, we ask “What are the true
characteristics of waterbirds and landbirds?’ and obtain e.g., { ‘short beak,” ‘long beak’}. The
remainder of the procedure is identical to the case of harmful components. Note that since we
are seeking to boost (rather than remove) components, it is also possible to fix a multiplicative
constant (to be treated as a hyperparameter) for the boosting procedure. That is, we could take
T+ x4+ v x (z,u")/(uF, u*)u* for some v > 0. While this is possible if we have access to a
labeled set that we can tune v over, we intentionally avoid doing so to ensure our procedure is truly

zero-shot.

Prompting a language model is typically inexpensive, which will enable obtaining multiple insight
vectors 91, ..., 9™. From these, we obtain an orthogonal basis v', ..., v™ separately for harmful
and helpful components. Thus we have access to recovered subspaces spanned by such components.

Removing and Boosting Components ROBOSHOT applies simple vector rejection to mitigate or
remove harmful components, which is described in lines 2-5 of Algorithm|[I]} Similarly, it boosts
helpful components as described in lines 6-9.

To see the impact of doing so, consider our earlier example. Suppose that v"™ = 0.9z, ... +
0.121angbird, and that this is our only harmful insight. Similarly, suppose that we obtain a single
helpful insight given by v"™P" = 0.1z,.ter + 0.921anavira- Note that even these insights can be
imperfect: they do not uniquely identify what are harmful or helpful concepts, as they have non-zero
weights on other components.

We first obtain from removing the harmful component (ignoring normalization for ease of calculation)

that

<£L' Uharmful>
JA: — T — ’—Uharmfm = _0-0244Zwater + 0.2195zlandbird.

<rUharmful’ vharmfu1>
Then, we already we have that 27 cyaterpiza = —0.1415 < 27 ¢1angpira = 0.1415, so that the correct
class is obtained. In other words we have already, from having access to a single insight, neutralized
a harmful correlation and corrected what had been an error. Adding in the helpful component further
helps. We obtain
<i‘, ,Uhelpfu1>
<,Uhelpful’ Uhelpful>

This further increases our margin. Note that it is not necessary to fully neutralize (i.e., to be fully
invariant to) spurious or harmful components in our embeddings. The only goal is to ensure, as much
as possible, that their magnitudes are reduced when compared to helpful components (and to benign
components). In the following section, we provide a theoretical model for the magnitudes of such
components and characterize the conditions under which it will be possible to correct zero-shot errors.
We note that there is a variant of our approach that can also update class embeddings as well.

F 3+ VPP — 00006 2pater + 0.4337 21andbird-

4 Analysis

Next, we provide an analysis that characterizes under what conditions ROBOSHOT is capable of
correcting zero-shot errors. First, we consider the following error model on the weights of the various
representations. For all benign representations, we assume that o, 8p, 7 ~ N (0, aﬁemgn). That is,
the magnitudes of benign components are drawn from a Gaussian distribution. The value of openign 1S
a function of the amount of data and the training procedure for the zero-shot model.

Next, we assume that the embedding insight v, = Zle vi,szi (where 1 < s < 5) satisfies the
property that for i # s, v; s ~ N (0, aiznsight), while 7, s is a constant. In other words, the vectors
v1,...,0s spanning the harmful component subspace are well-aligned with genuinely harmful
concepts, but are also affected by noise. We seek to understand the interplay between this noise,
benign noise, and the coefficients of the other vectors (i.e., helpful components). Let the result of
rejecting embedding insights vy, ...,vg be

T
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We provide a bound on Ag, the coefficient of a targeted harmful concept post-removal.

Theorem 4.1. Under the noise model described above, the post-removal coefficient for harmful
concept s satisfies

2 S 2
E[AJ]| < (k — 1)Oé;amsight n Z asaizsight 7
rYs,s t#s rYt,t

where k is the number of concepts.

The theorem illustrates how and when the rejection component of ROBOSHOT works—it scales
down harmful coefficients at a rate inversely proportional to the harmful coefficients of the insight
embeddings. As we would hope, when insight embeddings have larger coefficients for harmful vectors
(i.e., are more precise in specifying terms that are not useful), ROBOSHOT yields better outcomes.
In addition, we observe that the harmful coefficients decrease when the insight embeddings have
less noise. In fact, we have that lim,, ., ., 0 As = 0 — the case of perfectly identifying harmful
concepts. In the Appendix, we present additional theoretical results for control of helpful coefficients
along with a combined result.

S Experimental Results

This section evaluates the following claims about ROBOSHOT:

* Improving multi-modal models (Section [5.I): ROBOSHOT improves zero-shot classification
robustness of various multi-modal models, even outperforming prompting techniques that include
spurious insight descriptions (which we do not have access to) in the label prompts.

* Improving language models (Section [5.2): ROBOSHOT improves zero-shot robustness when
using language model embeddings for text zero-shot classification.

* Extracting concepts from LM with varying capacities (Section[5.3): ROBOSHOT can extract
insights from language models with varying capacities. Improvements persist with weaker LMs.

* Ablations (Section[5.4) ROBOSHOT benefits from both removing harmful and boosting helpful
representations (line 3 and line 7 in ROBOSHOT Algorithm|[T)).

Metrics and how to interpret the results. We use three metrics: average accuracy % (AVG),
worst-group accuracy % (WG), and the gap between the two (Gap). While a model that relies on
harmful correlations may achieve high AVG when such correlations are present in the majority of the
test data, it may fail in settings where the correlation is absent. A robust model should have high
AVG and WG, with a small gap between them.

Baselines We compare against the following sets of baselines:

1. Multimodal baselines: We compare against: (i) vanilla zero-shot classification (ZS) and (ii)
zero-shot classification with group information (Group Prompt ZS). We do so across a variety of
models: CLIP (ViT-B-32 and ViT-L-14) [RKH™21]], ALIGN [JYX™21]}, and AltCLIP [CLZ™22].
Group Prompt ZS assumes access to spurious or harmful insight annotations and includes them
in the label prompt. For instance, the label prompts for waterbirds dataset become [waterbird
with water background, waterbird with land background, landbird with water
background, landbird with land background]. We only report Group Prompt ZS results
on datasets where spurious insight annotations are available.

2. Language model baselines: We compare against zero-shot classification using multiple language
model embeddings, including BERT [RG19] and Ada [NXP™"22] (ZS).

5.1 Improving multi-modal models

Setup. We experimented on five binary and multi-class datasets with spurious correlations and
distribution shifts, coming from a variety of domains: Waterbirds [SKHL19]], CelebA [LLWT15]],
CXR14 [WPL™17], PACS [LYSHT17], and VLCS [FXR13]]. We use the default test splits of all
datasets. Dataset details are provided in Appendix For CXR 14, we use BiomedCLIP [ZXU™23],
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Table 1: Main results. Best WG and Gap performance bolded, second best underlined.
7S GroupPrompt ZS RoBOSHOT
AVG WG(T) Gap) AVG WG() Gap) AVG WG(H) Gap()

CLIP (ViT-B-32) 80.7 279 528 81.6 435 381 820 544 286
Waterbirds CLIP (ViT-L-14) 887 273 614 707 104 603 799 452 347
ALIGN 720 503 217 725 58 667 509 41.0 9.9
AItCLIP 90.1 358 543 824 294 530 785 548 237

CLIP (ViT-B-32) 80.1  72.7 7.4 804 749 55 84.8  80.5 4.3
CelebA CLIP (ViT-L-14) 80.6 743 63 779 689 9.0 855 82.6 2.9

Dataset Model

ALIGN 81.8 772 4.6 783 674 109 863 834 2.9
AltCLIP 823 79.7 2.6 823 79.0 33 86.0 77.2 8.8
CLIP (ViT-B-32) 96.7  82.1 146 979 827 152 970 86.3 10.7
PACS CLIP (ViT-L-14) 98.1 79.8 183 98.2  86.6 11.6  98.1 83.9 14.2
ALIGN 958 771 18.7 965 65.0 315 950 738 21.2
AItCLIP 98.5 82.6 159 986 854 132 98.7 89.5 9.2
CLIP (ViT-B-32) 75.6  20.5 55.1 - 76.5  33.0 43.5
VLCS CLIP (ViT-L-14) 72.6  4.20 68.4 - 71.1 12.6 58.5
ALIGN 788 330 45.8 - 77.6  39.8 37.8
AItCLIP 783 247 53.6 - 78.9  25.0 53.9
CXR14 BiomedCLIP 553 289 26.4 - 56.2  41.6 14.6
ALIGN Waterbirds CLIP Waterbirds ALIGN Waterbirds CLIP Waterbirds
@ 034 % *
017 & 1 024* 5 *
': 0.1 o
e
0.0 - ‘ * *
: ° % %01 % 01 *’é *
5 *
—0.14 ° 0195 X .
. . . | X1 . . . 021 | . | 29 * . ‘
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X c° o X original X projected X @ * v W
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Figure 3: (a) Original (green) and projected (red) input embeddings z, and label embeddings ¢ and
c'. (b) label embeddings ¢” and ¢!, harmful insight embeddings v* (black star) and helpful insight
embeddings v/ (blue star)

which is a variant of CLIP finetuned on biomedical images and articles. All experiments are conducted
using frozen pretrained models.

Results. Table|I| shows that ROBOSHOT significantly improves the worst group performance
(WG) and maintains (and sometimes also improves) the overall average (AVG) without any auxiliary
information (in contrast to Group Prompt, which requires access to spurious insight annotation).

Improved robustness nearly across-the-board suggests that both the insights extracted from LMs and
the representation modifications are useful. We also provide insights insights into the case where
our method does not improve the baseline (ALIGN model on Waterbirds) in Fig. [3] In Fig. 3a we
visualize the original and projected input embeddings (« in green and red points, respectively), and
the label embeddings (c° and c!). Fig. [3a| (left) shows the embeddings from the ALIGN model. We
observe that the projected embeddings (red) still lie within the original embedding space, even with
reduced variance. In contrast, when examining the CLIP model embeddings (Figure|[3a(right)), we
observe that the projected embeddings are significantly distant from the original ones. Unsurprisingly,
Figure [3b| (left) reveals that v/ and «* (harmful and helpful insight embeddings in black and blue
stars, respectively) are not distinguishable in the text embedding space of ALIGN, collapsing the
input embeddings after ROBOSHOT is applied.
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Table 2: ROBOSHOT text zero-shot classification. Best WG in bold.

Dataset Model z8 RoBoSHOT
AVG  WG(1) Gap({) AVG WG Gap(])
.. BERT 48.1 33.3 14.8 49.7 42.3 7.4
CivilComments

Ada 56.2 43.2 13.0 56.6 44.9 11.7
BERT 604 0.0 60.4 57.3 14.0 43.3

HateXplain Ada 628 143 485 636 211 425
Amason BERT 811 642 168 810 644 166

z Ada 812 634 178 829 638 19
GenderBias  BERT 848 837 11 851 849 02

Ada 77.9 60.0 17.9 78.0 60.1 17.9

Table 3: ROBOSHOT with LMs of varying capacity. Best WG bolded, second best underlined
Dataset 7S Ours (ChatGPT)  Ours (Flan-T5)  Ours (GPT2)  Ours (LLaMA)
AVG WG AVG WG AVG WG AVG WG AVG WG
Waterbirds  80.7 27.9 82.0 544 72.1 324 88.0 399 848 36.5

CelebA 80.1 7277 8438 80.5 71.5 68.2 80.3 741 842 82.0
PACS 96.7 82.1 97.0 86.3 96.2 80.3 972 740 948 71.9
VLCS 75.6 205 765 33.0 69.6 20.5 755 261 720 18.2

5.2 TImproving language models

Setup. We experimented on four text classification datasets: CivilComments-WILDS [BDS™19,
KSM™21], HateXplain [MSY "21]], Amazon-WILDS [NLMT19, KSM™21]] and Gender Bias clas-
sification dataset [DEW 20, MFBT17]. We use the default test splits of all datasets. In text
experiments, the distinctions between harmful and helpful insights are less clear than for images.
For this reason, we only use harmful vector rejection (line 3 in ROBOSHOT) in text experiments.
CivilComments and HateXplain are toxic classification datasets with unwanted correlation between
toxicity labels and mentions of demographics (e.g., male, female, mentions of religions). The datasets
are annotated with demographic mentions of each text, and we directly use them to construct v7.
For Amazon and Gender Bias datasets, we query LMs with task descriptions. All experiments are
conducted using frozen pretrained models.

Results. Table[2]shows that ROBOSHOT also improves zero-shot text classification in text datasets,
as shown by our consistent boost over the baselines across all datasets.

5.3 Extracting concepts from LMs with varying capacities

Setup. We use LMs with different capacities: ChatGPT [OWJ"22], Flan-T5 [CHL+22], GPT2
[RWCT19], and LLaMA [TLIT23], to get harmful and helpful features insights (v’ and u*).

Results. Table shows that ROBOSHOT can get insights on v/ and u* from LMs of various capacities
and improves zero-shot performance. Even though the the LM capacity correlates with the zero-shot
performance, ROBOSHOT with weaker LMs still outperforms zero-shot (ZS) baseline.

5.4 Ablations

Setup. We run ROBOSHOT with only harmful component mitigation (reject v/: ROBOSHOT line 3),
only boosting helpful vectors (increase u*: ROBOSHOT line 7), and both.

Results. The combination of both projections often achieves the best performance, as shown in Table
Figure provides insights into the impact of each projection. Rejecting v’ reduces variance in one
direction, while increasing u* amplifies variance in the orthogonal direction. When both projections
are applied, they create a balanced mixture. We note that when doing both projections does not
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Table 4: Main results. Best WG and Gap performance bolded, second best underlined.
A Ours (v7 only) Ours (u” only) Ours (both)
AVGWG(T) Gap(1) AVG WG(T) Gap(l) AVG WG(T) Gap(}) AVG WG(T) Gap({)

CLIP (ViT-B-32) 80.7 279 52.8 82.0 504 31.6 82.6 30.2 524 83.0 544 28.6
Waterbirds CLIP (ViT-L-14) 88.7 27.3 61.4 82.7 358 469 883 298 585 799 452 34.7
ALIGN 72.0 503 21.7 564 41.6 148 628 564 64 509 41.0 9.9
AltCLIP 90.1 358 543 814 59.0 224 89.1 352 539 785 548 237

CLIP (ViT-B-32)80.1 72.7 74 852 81.5 3.7 79.6 713 83 84.8 805 43
CelebA  CLIP (ViT-L-14) 80.6 743 63 859 828 3.1 80.0 73.1 69 855 82.6 29

Dataset  Model

ALIGN 81.8 772 4.6 839 78.0 57 839 814 25 863 834 29
AItCLIP 823 79.7 26 86.1 756 105 819 79.0 29 86.0 77.2 8.8
CLIP (ViT-B-32)96.7 82.1 14.6 97.0 83.7 133 96.6 842 124 97.0 863 10.7
PACS CLIP (ViT-L-14) 98.1 79.8 183 98.0 79.8 182 98.1 83.8 14.3 98.1 83.9 14.2
ALIGN 958 77.1 18.7 958 78.0 17.8 95.1 71.1 24.0 950 73.8 21.2
AItCLIP 98.5 82.6 159 984 83.0 154 98.6 88.8 9.8 98.7 89.5 9.2
CLIP (ViT-B-32) 75.6 20.5 55.1 75.6 2277 529 764 29.5 469 76.5 33.0 43.5
VLCS CLIP (ViT-L-14) 726 42 684 709 68 64.1 734 89 645 71.1 12.6 58.5
ALIGN 78.8 33.0 45.8 782 30.7 475 78.0 43.2 348 77.6 39.8 37.8
AltCLIP 783 247 53.6 77.5 244 53.1 79.0 20.5 585 789 25.0 539
CXR14 BiomedCLIP 553 289 264 557 41.8 139 548 21.8 33.0 562 41.6 14.6
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Figure 4: The effect of v/ (reject), u/ (increase), and both projections

improve the baseline, using only u* or v/ still outperforms the baseline. For instance, the ALIGN
model in the Waterbirds dataset achieves the best performance with only «* projection. This suggests
that in certain cases, harmful and helpful concepts are intertwined in the embedding space, and using
just one projection can be beneficial. We leave further investigation to future work.

6 Conclusion

We introduced ROBOSHOT, a fine-tuning-free system that robustifies zero-shot pretrained models in
a truly zero-shot way. Theoretically, we characterized the quantities required to obtain improvements
over vanilla zero-shot classification. Empirically, we found that ROBOSHOT improves both multi-
modal and language model zero-shot performance, has sufficient versatility to apply to various base
models, and can use insights from less powerful language models.
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26 A Theory details

427 A.1 Harmful concept removal
428 A.1.1 Proof of Theorem4.1]

429 We provide the proof of Theorem@ Recall our noise model:

S+R S+R+B
xr = Zaszs + Z Qp 2y + Z ap2p
r=S+1 b=S+R+1
430
S+R S+R+B
Z%tszr Dozt Y, wam  (1<t<S)
r=S+1 b=S+R+1

431 . Again, we assume that benign coefficients are drawn from a zero-centered Gaussian distribution,
432 i.e. ap, Vot ~ N(0, Obenign) and also helpful coefficients and non-target harmful coefficients are
433 assumed to be drawn from a Gaussian distribution, i.e. v, ~ N(0, omsight), where 1 < q < R,
43¢ ¢ # t so that only ~, ; is a constant. Now we prove the following Theorem.

435 Theorem [d.1} Under the noise model described above, the post-removal coefficient for harmful
436 concept s satisfies

2 S 2
E[A)]| < (k — 1)O;$Ui'nsight n Z asair;sight 7
Vss t2s bt

437 where k is the number of concepts.

438 Proof. Let T be the output of harmful concept removal procedure such that

) xvé
E=s —Z

||vs~H
iVi,
z zz ART) S
s=1 =1 ’Yls 7j=1

439 As the first step, we sort out the coefficients of features. For notational convenience, let Ty =
440 Zle 7?,. Then,

=1 s=1
k S k k
iV slyj s
DL ED IO I) D
i=1 s=11i=1 j=1
k E S k
_ az’}/z 57],
=2 s =) ) )
j=1 j=1s=1i=1 s
k S k
_ z’)/z 57] S
=2 (=2 =55
j=1 s=1i=1 s

441 Thus we can get the expression for the coefficient of the target feature z, (1 < s < .5),

ZZ 7.'71 ths t

t=1 i=1
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a4z Next, we get the bound of the absolute expectation |E [A]].

’)/zt’)/st
[E[A]] = |E |as - ZZ =
t=1 i= 121 17“
s asy?
S Is,t
=
t=1zz:1'712,t

<

E

+

s
> D i tips XVt Vst
D E .

t=1 D1 712,t

443 Here, the second term on RHS is 0 by independence, i.e.

s k
D it its Qi Vst D i1 is Qi Vst
E i E i

k = 2
21 %%t Vit
k o
= Z TlE [’Yz‘,t%,t] =0
i=1,i#s 'Ot

444 since E [, 4v;¢] = 0 by independence. Now we split the first term and get the bounds separately.

E[A]] <

S 2
aS’Ys,t
Elos=d =y
t=1 21:1 Vit

2 S
[0 . Qg
E [as o erb,s + Z E l ’Yst ]

N85 A2
Zl:l fyl,s t=1,t#s Zl 1 ’7[ )t

<

445 The upper bound for the first term can be obtained by

k
]E a Oés'}/z,s . E Zv;és aS’Yi%s
Jp——L L g =S T
le=1 7l2,s le=1 7125
k
<|E Zi;észas’yi%s
Vs,s
o k
< |z 2 Bl
Vs,s its
< (k - 1)04 U?n@?ghf
’Ys,s

446 . And, for the second term,

5 a2, 5 asy?,
> E 21672 <| Y E|—°

t=1,t#s i=1 Vit

447 Combining two bounds, we get the proposed result.

(k - 1)a501'2nsight
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448
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463

While the constant (k — 1) can look daunting since it actually increases as the number of concepts
increases, a bound less affected by o2, _. gnt CXists as well, scaling down the target coefficient c;.

Corollary A.0.1. Under the noise model of Theorem the post-removal coefficient for harmful

concept s satisfies

2
|IE [As] | < o, 5 (k - 1)Jzn519ht
Vs,s (k - 1) znszght

where k is the number of concepts.

S

t#s

2
asainsight

2
Vit

)

Proof. With the identical steps to the proof of Theorem[4.1I] we can obtain

_ s )
043’73 t
E[A) < [Ejaw =) =5
i) P 7127t
_ o s
S E g — ;75752 + Z ]E S’ys ,t
>t Vs t=1,t#s Zl 171 it
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k 2 2 s,t
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We improve the first term as follows.

Ela. — as’}/s,s = la 785
S S 2 - S
-1 Vs Zl 1%3
2
< lag — as%
E {21:1 Vz,s}
2
o [1- Vs,s

E [T 2

-~ Jensen’s inequality
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o (1o Ves

insight

Oin %ght> |
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M52+ (k= 1o

A.1.2 Effects on helpful, benign coefficients

Based on the coefficient expression

(67903 tqu,
Z Z Zz 1 ’Yl t

ql | for S+ 1 < ¢ < k. Basically, the following theorem implies help-

t=1 i=1
, we analyze the bound of |E [A

mazght)

ful, benign coefficients are less affected than harmful coefficients as long as the harmful coefficients

of insight embeddings are significant and the noise is small.

Theorem A.1.
or benign concept q satisfies

S
IE [Aq} - O‘q| <

=1 Vit
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Under the same noise model described above, the post-removal coefficient for helpful
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Proof. The proof technique is essentially identical to Theorem .1]
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This bound implies the differences of helpful or benign features by harmful concept removal are
proportional to the noise of insight embeddings o and inversely proportional to the coefficients
of harmful coefficients of insight embeddings.

insight?

A.2 Helpful concept addition

With a similar fashion to the harmful concept removal, we consider the following noise model for the
helpful concept addition.

S+R S+R+B
xr = Zaszs —+ Z Q2 + Z ap2p
r=S+1 b=S+R+1
S+R S+R+B
Uf*Z’stZs‘i” Z 771‘Zr+ Z Vb,t b (S+1§t§ S+R)
r=S+1 b=S+R+1

. Again, we assume that benign coefficients are drawn from a zero-centered Gaussian distribution,
ie. ap, e ~ N(O, Obenign) and also harmful coefficients and non-target helpful coefficients
are assumed to be drawn from another Gaussian distribution, i.e. 4 ~ N(0, amsight), where
1 <q< S+ R,q+# sso that only -, ; are constants.

A.2.1 Lower bound for the coefficient of helpful concept

To show the lower bound for the coefficient of helpful concepts, we need additional mild assumptions.
ForS+1<r<S+R

l. a >0

2. 73,7" > O-zznsight
The first assumption can be interpreted that the input embedding is already somewhat aligned with
the label embeddings’ concepts — since typically pretrained models provide embeddings aligned

with class text, it can be justified. The second assumption is also a natural assumption: the signal is
stronger than noise. Now we state Theorem and show the proof of the theorem.

Theorem A.2. Assuming o, > 0,77, > ammght for S +1 < r < .S+ Runder the described noise

model, the post-addition coefficient for helpful concept r satisfies

72
E[A]> |1+ nr a,
[ ] ( 772‘,T + (k - 1) znszght)

16




488

Proof. Let 2 be the output of helpful concept addition procedure such that

A S+R xT’Us
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489

490

k
> =174 Then,

As the first step, we sort out the coefficients of concepts. For notational convenience, let T; =

k S+R k k
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ae1  Thus we can get the expression for the coefficient of the target concept z,. (S +1<r < S+ R),

S+R o 7 .
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S+R 7 5
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493 Here, the third term can be dropped since 7; ; and -, ; are independent. Thus,
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Finally, we obtain the result.

,YQ
E[A]> |1+ nr o
[ ] < 772-,7' + (k - l)a-zznsight>

O
iy
Note that the nonnegative condition can be dropped by keeping E P 5 where a; < 0 terms,
1=1 Vi

which linearly loosens the lower bound.

A.3 Effects on harmful, benign coefficients

For the notational convenience, let I, ;. ., be the non-helpful concept index set such that Iy, .., =

{ieN[i<SorS+R+1<i<S5+ R+ B}. For q € If,, we obtain the bound of effects on
harmful, benign coefficients with a similar fashion to the harmful concept removal case.

Theorem A.3. Under the same noise model described above, the post-addition coefficient for helpful
or benign concept q satisfies

S+R 2

Quos
IE[Ag] — o] < Z q+szght .
=511 bt
Proof.
> O‘q'yg,t + Zj:l i#q XaVa,t V5t
|E[Ag] — aq| = |ag — E aq"‘z T 2
t=1 di-1 Vit
S+R
. qu%?,t Zj:l,j;éq QqVq,t7Vj,t
<|E Z k 2 + B k 2
t=S-+1 >t Vit >t Vit
S+R
—E Z %%?,t ‘| . ’E [Zj—l}jiq aq%i%’i] —0
= =t || - : =
t=S-+1 doi-1 712,t D1 sz,t
S+R o
q 2
<| > =E[i
=51 Vit
S+R
. Z aqo-zznsight
= p)
=511 bt
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520
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524

525

A.4 Combined results

Now, we are ready to provide the combine result, i.e. the coefficient bounds with harmful concept
removal and helpful concept addition. The noise model can be described as follows.

S+R S+R+B
a:—Zoc Zs + Z QpZp + Z ap2p
r=S+1 b=S+R+1
S+R S+R+B
Z'Yetzs+ vzt D>, wezm  (1<t< S+R)
r=S+1 b=S+R+1

Qp, Vbt ™~ N(Oa Ubenign)
Yq,t ~ N(Oa Uinsight)

,where 1 < g < S+ R, q # s so that only ~; ; is a constant. We can obtain the expression for each

coefficient as before.

S k S+R k y
ZZ z’st’YJs+ Z Z Q; zr’Ygr) 2

14i=1 r=S+111=1
S+R k

S & /st’Yq, Q57i, r7q7
D > Y

1i=1 r=S+1i=1

, where A, is the coefficient of z,(1 < ¢ < k) after ROBOSHOT(ignoring normalization) and

T, = Zle '712,t~ Using the results from the previous subsections, we provide an upper bound on
harmful coefficients, a lower bound on helpful coefficients, and an upper bound on the change in the

benign coefficients.

Theorem A.4. Under the combined noise model described above, the post-ROBOSHOT coefficient
Sor harmful concept q (1 < q < S) satisfies

B [Ag]| <

where k is the number of concepts.

Proof.

S
|E[Aq]‘= laq ZZ z%s’qu+ Z Z z’er’qu

s=11i=1

(k - 1)O‘q U'L‘Qnsight

IN

2
Vd.q

(k - l)o‘q O"L'Qnsight

2
Vd.q

+

_|_

2 S+R 2
(k - 1)aqainsight aqo—insz'ght
5 + 2 5 |
Ta.q t=1,t#q Vit

r=S+1 i=1
S 2 S+R 2
Z aqainsight + Z aqainsight
T T
s=1,s#q 8,8 t=S+1 tt
S+R aqag )
insight . .
E — . two terms have the same sign by a,
t=1,1q Vit

O

Next, we state the lower bound for the helpful features. Still, we assume the signs of helpful, harmful
concepts in input embeddings for the clarity of theorem.

Also, we assume yt > amszght

a; <0 (1<s<9)

a,>0 (S+1<r<S+R)
(1<t<S+R)
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s26 Theorem A.5. With additional assumptions as <0 (1 < s < S),a. >0 (S+1<r <
527 S+ R), ’Ytz,t > Ufmight under the combined noise model, the post-ROBOSHOT coefficient for helpful
528 concept ¢(S + 1 < q < S+ R) satisfies

2

y
E[4,]>(1+ .4 e!
! ( ’yl?;q + (k - 1) znszght 1

Proof.
av Yoo | o 7 Ya,
T S SR S ot
L s=1i=1 r=5S+1 =1
S+R ’y Y. S k QYo
L r=S+1 i=1 s=1 i=1 s
S+R 7 Y. a’yz S k Qs
SIS o of-=r= ] it B gl o
S
L r=5S+1i=1 s=1 s=1i=1,i#q

015’7315
T.

S

529 Here, E {Zg 1 Zl Litq W} is zero by independence, and —E lzg 1

530 s < 0 by assumption, which can be dropped for a lower bound.

] > 0 since

S+R

S S k
sz Qi%i,57q,s
siag=sfos 3 o] gl el gy $ o
r=5S+1i=1 s=1 s=1i=1,i#q ‘
S+R k
a 171r7qr
ZElag+ Y Y
r=S+1 i=1
Y4,9
> 1+ : Qg
< ’y‘%q + (k - 1)02'2nsight>
531 [

532 Now, we state the upper bound on the changes in benign concepts. The proof is straightforward from
533 the previous ones in harmful concept removal and helpful concept addition.

53¢ Corollary A.5.1. Under the same combined noise model, the post-ROBOSHOT coefficient for benign
535 concept q satisfies

S+R 2
[0 To ]
|]E[Aq] _Olq| S 2 : q zgszght )
-1 Vi

sss B Experiments details

s37  B.1 Datasets

s3s  Table[5|provides details of the datasets used in our experiments. For Gender Bias dataset [DEWT20)
sss IMFBT17], we test using the train set to get more data. For all other datasets, we use the default test
s40  set. For Amazon-WILDS [NLM19] dataset, we convert the original 5-class rating classification into
541 binary, by removing all samples with rating 3, and convert rating 1 and 2 into bad label, and 4 and 5
542 into good label.
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543

544
545
546
547
548
549

Dataset

Groups Nau Nuwg

Nclass

classes

Waterbirds

{ landbird in land,
landbird in water,
waterbird on land,
waterbird on water }

5794 642

{landbird,
waterbird }

CelebA

{ male & not blond,
female & not blond,
male & blond ,
female & blond }

19962 180

{not blond,
blond}

PACS

{ art, cartoons,
photos, sketches, } 9991 80

{dogs, elphant,
giraffe, guitar,
house, person }

VLCS

{ Caltech101,
LabelMe,
SUNO09,
VOC2007 }

10725 20

{bird, car,
chair, dog, person}

CXR14

{ no-pneumothorax,

pneumothorax } 2661 20

{no-pneumothorax,
pneumothorax }

CivilComments-WILDS

{male, female, LGBTQ,
christian, muslim, 133782 520
other religions, black, white }

{non-toxic,
toxic }

HateXplain

{hindu, islam, minority,
refugee, indian, caucasian,
hispanic, women, disability,
homosexual, arab, christian,
jewish, men, african,
nonreligious, asian, indigenous,
heterosexual, buddhism,
bisexual, asexual }

1921 6

{normal,
offensive }

Amazon-WILDS

{beauty, garden, books,
luxury beauty, kindle store,
movies and TV, pet supplies,
industrial and scientific,
office products,

CDs and vinyl, electronics,
cell phones, magazine,
clothing, groceries, music,
instruments, tools, sports,
automotive, toys, arts crafts,
kitchen, video games,
pantry, software, gift cards }

90078 25

{good,bad}

Gender Bias

{male, female } 22750 3594

2

{female, male}

B.2 Prompt templates

We provide details on prompts used to get the v"*"™/% and v

Table 5: Dataset details

helpful

on image datasets in Table

As mentioned in the main body, for NLP datasets we only used v"2"™/%Additionally, we use
the demographic mentions annotations to construct v"*"%! in CivilComments-WILDS [BDST 19,
KSMT21] and HateXplain [MSYT21]]. We provide prompt details to get v"*"f% for Amazon-
WILDS [NLMT19, KSM™21]] and Gender Bias [DFW ™20, MFB T 17] datasets in Table[7| We also
provide class prompts in Table|[]
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551
552
553

Dataset Model vharmful prompt vhetPfel prompt
ChatGPT "List the biased/spurious differences "List the true visual differences
between [classes]." between [classes]."
Flan-T5 & GPT2  {"[class] typically", "[class] usually"}  {"a characteristic of [class]: ",
All "[class] are", ""a [class] is",
"Charactericstics of [class]"
"Stereotype of [class]"
"Typical characteristic of [class]"}
LLaMA "List the biased/spurious "List the visual characteristics of [class]"
characteristics of [class]"
Table 6: Image dataset prompt details
Dataset Model vharmful prompt
Amazon-WILDS  ChatGPT  "what are the biased differences between good and bad amazon reviews?"
. "what are the biased differences
Gender bias ChatGPT between comments about female and comments about male?"
Table 7: NLP dataset prompt details
Dataset Class prompt
Waterbirds [ "a landbird", "a waterbird" ]
CelebA [ "person with dark hair", "person with blond hair" |
PACS "an image of [class]"
VLCS "this object is [class]"
CXR14 "non-pneumothorax”, "pneumothorax" |

" non

CivilComments-WILDS non-toxic", "toxic" |

[
[
[ "normal", "offensive" ]
[
[

HateXplain
Amazon-WILDS "negative", "positive" |
Gender Bias "female", "male" |

Table 8: Class prompt details

B.3 Model and hyperparameters

All experiments are carried out using frozen weights and embeddings from huggingface (ALIGN,
AItCLIP) and open-clip|(CLIP ViT-B-32 and ViT-L-14, BiomedCLIP), and no training is involved.
There is no randomness in the experiment results reported in the main body of the paper.
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https://huggingface.co/docs/transformers/model_doc/align
https://huggingface.co/docs/transformers/model_doc/altclip
https://github.com/mlfoundations/open_clip

	Introduction
	Related Work
	RoboShot: Robustifying Zero-shot Models
	Modeling and setup
	RoboShot: Zeroshot robustification with LLM

	Analysis
	Experimental Results
	Improving multi-modal models
	Improving language models
	Extracting concepts from LMs with varying capacities
	Ablations

	Conclusion
	Theory details
	Harmful concept removal
	Proof of Theorem 4.1
	Effects on helpful, benign coefficients

	Helpful concept addition
	Lower bound for the coefficient of helpful concept

	Effects on harmful, benign coefficients
	Combined results

	Experiments details
	Datasets
	Prompt templates
	Model and hyperparameters


