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Figure 1. We propose a new way to study query-key interactions via the Singular Value Decomposition. Many of the modes (i.e. pairs of
singular vectors corresponding to the query and the key respectively), are semantic. Two example modes are shown. Top row: ViT layer
8 head 7 mode 2. Bottom row: DINO layer 8 head 9 mode 2. The red channel indicates the projection of the embedding onto the left
singular vector which corresponds to the query; the cyan channel indicates the projection of the embedding onto the right singular vector
which corresponds to the key.

Abstract

Self-attention in vision transformers is often
thought to perform perceptual grouping where
tokens attend to other tokens with similar embed-
dings, which could correspond to semantically
similar features of an object. However, attending
to dissimilar tokens can be beneficial by provid-
ing contextual information. We propose to use
the Singular Value Decomposition to dissect the
query-key interaction (i.e. Wq

⊤Wk). We find
that early layers attend more to similar tokens,
while late layers show increased attention to dis-
similar tokens, providing evidence corresponding
to perceptual grouping and contextualization, re-
spectively. Many of these interactions between
features represented by singular vectors are inter-
pretable and semantic, such as attention between
relevant objects, between parts of an object, or
between the foreground and background. This
offers a novel perspective on interpreting the at-
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tention mechanism, which contributes to under-
standing how transformer models utilize context
and salient features when processing images.

1. Introduction
Vision transformers (ViTs) are a family of models that have
significantly advanced the computer vision field in recent
years (Dosovitskiy et al., 2021). The core computation
of ViTs, self-attention, is designed to promote interactions
between tokens corresponding to relevant image features
(Dosovitskiy et al., 2021). But this mechanism has different
interpretations with open questions such as what ”relevant”
refers to. Some interpret ”relevant” as tokens within the
same object. Highlighting objects in attention maps is usu-
ally considered a desirable property of ViTs (Dosovitskiy
et al., 2021; Caron et al., 2021; Chen et al., 2022). How-
ever, observations in the language domain suggest that self-
attention contextualizes tokens, such that the same token has
different meanings in different contexts(Ethayarajh, 2019a).
Contextualization in vision may require a token to receive
information not only from same-category tokens, but also
from a wider range of different-category tokens such as
backgrounds or other objects in the scene. Contextual ef-
fects also abound in neuroscience, whereby the responses
of neurons and perception are influenced by the context
(Cavanaugh et al., 2002; Jones et al., 2002; Ziemba et al.,
2018; Li, 1999; Itti & Koch, 2001; Clifford & Rhodes, 2005;
Angelucci et al., 2017; Choung et al., 2021). Therefore, two
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ideas exist regarding self-attention: a token attends to simi-
lar tokens, which could lead to grouping and highlighting
the objects; or attends to dissimilar tokens such as back-
grounds and different objects, which could lead to stronger
contextualization. The former has been supported by many
studies, while the latter has been largely ignored in previous
studies.

Much like all other deep learning models, though ViTs
are successful in many applications, researchers do not
have direct access to how information is processed semanti-
cally. This issue is particularly important when deploying
transformer-based large language models (LLMs) where
safety is a priority. As such, there have been studies trying
to find feature axes (also known as semantic axes) in the em-
bedding space (Geva et al., 2021; Bills et al., 2023; Bricken
et al., 2023; Dar et al., 2023; Radhakrishnan et al., 2024;
Ghiasi et al., 2022). A general finding is that embeddings in
feedforward layers (i.e. MLP layers) are more semantically
interpretable than in self-attention layers (Geva et al., 2021;
Ghiasi et al., 2022). It is believed that the embeddings in
the self-attention layers have more superposition, whereas
embeddings in the feedforward layers have less superposi-
tion due to the expansion of dimensionality (Bricken et al.,
2023). Thus, there has been less focus on finding feature
axes in the self-attention layers, and there has been little
study addressing interactions between feature axes. In this
study, while addressing the role of self-attention, we pro-
pose that singular vectors of the query-key interaction are
pairs of feature directions. Properties of self-attention heads
can be elucidated by studying the properties of their singu-
lar modes. We show that those singular vector pairs help
semantically explain the interaction between tokens in the
self-attention layers.

Our main contributions are as follows:

• We identify a role of self-attention in a variety of ViTs.
Specifically, early layers perform more grouping in
which tokens attend more to similar tokens; late layers
perform more contextualizing in which tokens attend
more to dissimilar tokens.

• We propose a new way to interpret self-attention by
analyzing singular modes. Our method goes beyond
finding individual feature axes and extends model ex-
plainability to the interaction of pairs of feature di-
rections. This approach therefore constitutes progress
towards enhancing the explainability of transformer
models.

In section 2, we state the motivations of this study and list
related work. In section 3, we empirically analyze the pref-
erence of self-attention between tokens within and between
object categories. In section 4, to study the fundamental

properties of the query-key interaction, we propose a Singu-
lar Value Decomposition method. In section 5, we show that
many of the decomposed singular modes are semantic and
can be used to interpret the interaction between tokens. In
section 6, we discuss the limitations of this study. In section
7, we discuss the main findings and the significance of this
study. In the supplementary, we provide an extensive set of
visualization examples of the singular modes.

2. Related work
Attention map properties The properties of attention
maps have been studied since the invention of the ViT. The
original ViT paper reported that the model attends to image
regions that are semantically meaningful, showing that the
[CLS] token (i.e. a special token originally designed as the
final hidden vector) attends to objects (Dosovitskiy et al.,
2021). Later, a study showed that, in a self-supervised ViT
named DINO, the [CLS] attention map has a clearer seman-
tic segmentation property, highlighting the object (Caron
et al., 2021). Following this idea, studies further showed that
the attention map of tokens can highlight parts of an object,
and subsequently developed a segmentation algorithm by
aggregating attention maps (Oquab et al., 2023; Wang et al.,
2022). Other research analyzing the output of self-attention
layers indicates that self-attention may perform perceptual
grouping of similar visual objects, rather than highlighting a
salient singleton object that stands out from other objects in
the image (Mehrani & Tsotsos, 2023). Most of these studies
focus on the [CLS] token attention map or on the outputs
of attention maps. Our study, in contrast, seeks to interpret
the interactions between tokens within the self-attention
layers, to gain insights about properties like grouping and
contextualization.

Contextualization Our study is inspired by contextual
effects in visual neuroscience, in which neural responses
are modulated by the surrounding context (Angelucci et al.,
2017; Cavanaugh et al., 2002; Ziemba et al., 2018). For
instance, the response of a cortical visual neuron in a given
location of the image is suppressed when the surrounding
inputs are inferred statistically similar, but not when the
surround is inferred statistically different, thereby highlight-
ing salient stimuli in which the center stands out from the
surround (Li, 1999; Coen-Cagli et al., 2015). Some of these
biological surround contextual effects have been observed
in convolutional neural networks (Marques et al., 2021; Pan
et al., 2023). Here our goal is not to address biological
neural contextual effects in ViTs, but to dissect contextual
interactions in the self-attention layers. It is known that
language transformer models have a strong ability to con-
textualize tokens (Ethayarajh, 2019a). However, it’s not
clear what kinds of contextualization emerge in the ViT. In
this study, we seek to understand what kinds of interactions
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occur between a token and other tokens that carry impor-
tant contextual information, possibly representing different
objects, different parts of an object, or the background.

Finding feature axes Finding feature axes is crucial for
understanding and controlling model behavior. Since a
study found semanticity in the embeddings of feedforward
layers (Geva et al., 2021), research has primarily focused
on finding feature axes in the feedforward layers, and to a
lesser extent, in self-attention layers. Bills et al. proposed
a gradient-based optimization method to find explainable
directions in LLMs (Bills et al., 2023). Later, Bricken et
al. proposed a simpler method of sparse dictionary learn-
ing (Bricken et al., 2023); though see also (Huben). These
methods have not been applied to studies of ViTs. However,
similar to the findings in LLMs, a ViT study found that feed-
forward layers have less mixed concepts and can generate
interpretable feature visualizations (Ghiasi et al., 2022).

Some studies focused on finding feature directions in the
ViTs’ self-attention layers. In downstream tasks such as
semantic segmentation, researchers empirically found that
choosing the key embeddings as features leads to the best
performance (Siméoni et al., 2021; Amir et al., 2021; Adeli
et al., 2023). A study proposed that the singular value de-
composition of the weight matrix is a natural way to find
feature directions in any neural network (Radhakrishnan
et al., 2024). But they only focused on single feature di-
rections (right singular vectors), and did not consider the
feature interaction in the context of self-attention. Another
study suggested that singular vectors of value weights and
feedforward weights can be used as features in LLMs, but
they did not analyze the query-key interaction matrix (Mil-
lidge & Black, 2022). Another study in the language domain
proposed a singular vector decomposition on the union of
the query and key embeddings, but not on the query and key
weights (Lieberum et al., 2023).

There has been limited work going beyond single features
to studying query-key interactions. A study focusing on
LLMs proposed that the corresponding columns of query
and key matrices are interpretable as pairs (Dar et al., 2023).
However, this approach does not find features beyond the
standard basis of the query and key embeddings. Here, in
contrast to previous works, we utilize the Singular Value
Decomposition to study the query-key interactions. We
propose that left and right singular vectors of the query-key
interaction matrix can be seen as pairs of interacting feature
directions, and study their properties in ViTs.

3. Grouping or contextualizing
Firstly, we empirically study whether an image token (i.e.
a patch in the image) attends to tokens belonging to the
same objects, different objects, or background. We utilized

a dataset that has been applied to studying visual salience
(Kotseruba et al., 2019), namely the Odd-One-Out (O3)
dataset (Mehrani & Tsotsos, 2023). This dataset was also
used by Mehrami et al (Mehrani & Tsotsos, 2023) in their
study but they only focused on the output of the attention
layers. However, we use a different experimental design
that focuses on the attention maps of image tokens. The
dataset consists of 2001 images that have a group of similar
objects (distractors) and a distinct singleton object (target)
(Fig 2 A). Our goal is to examine if the attention map of a
token of one category (target or distractors) covers more of
the same category, different category, or background.

We chose to study 12 different ViT models from 4 families:
the original ViT (Dosovitskiy et al., 2021), DeiT which
uses distillation to learn from a teacher model (Touvron
et al., 2021), DINO which is trained in a self-supervised
way (Caron et al., 2021), and CLIP which is jointly trained
with a text encoder (Radford et al., 2021).

In this study, the ”attention score” is defined as the dot prod-
uct of every query and key pair, which has the shape of the
number of tokens by the number of tokens and is defined per
attention head. The ”attention map” is the softmax of each
query’s attention score reshaped into a 2D image, which is
defined per attention head and token. For each image in the
dataset, two tokens are chosen to represent the target and
distractor. They are at the location of the maximum value
of the down-scaled target or distractor mask. Two attention
maps are obtained using the two tokens, each is normalized
to sum to 1. Inner products are computed between the two
attention maps and three masks, which can be interpreted as
the ratio of attention of an object (target or distractor) on the
same object, different object, or background. We use target-
target, target-distractor, target-background, distractor-target,
distractor-distractor, and distractor-background attention to
denote the 6 inner products. This measure is computed per
layer, head, and image. The averaged measure is shown in
Fig 2. Target-target and distractor-distractor attention are
categorized as ”attention on same objects”; target-distractor
and distractor-target attention are categorized as ”attention
on different objects”; target-to-background and distractor-
to-background attention are categorized as ”attention on
background”. The attention on the same objects should
be dominant if attention is to perform grouping. However,
the attention on the same objects is only dominant in early
layers. In the deeper layers, there is a trend that attention
gradually increases on the contextual features such as the
background or different objects. Attention on the back-
grounds surpasses that of attention on the same objects in
the last few layers.

This result provides new evidence that self-attention consid-
ers contextual features as much or more than similar features
in deeper layers. The self-attention only prefers the same
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Figure 2. Attention preference in the Odd-One-Out (O3) dataset (Kotseruba et al., 2019). A. An example from the O3 dataset. Two tokens
are chosen to correspond to the target and distractor in the image. Attention maps using two tokens as queries are computed. We examine
the overlap between the attention map of the target, and each of the mask labels of the target, distractor, and background masks. Similarly,
we examine the overlap between the attention map of the distractor, and each of the mask labels of the distractor, target, and background.
B. Ratio of attention on the same objects (target-target and distractor-distractor attention). C. Ratio of attention on the different objects
(target-distractor and distractor-target attention). D. Ratio of attention on the background (target-to-background and distractor-background
attention)

objects in early layers; in deeper layers, self-attention shifts
to prefer contextual information. As far as the authors are
aware, this finding has not been reported in previous ViT
studies (Dosovitskiy et al., 2021; Caron et al., 2021; Wang
et al., 2022; Mehrani & Tsotsos, 2023).

4. Singular value decomposition of query-key
interaction

4.1. Formulation

In the previous section, we empirically study the allocation
of self-attention and find that self-attention does not only do
grouping. In this section, we try to find whether this self-
attention property can be better understood by analyzing
the underlying computation. The self-attention computation
is formulated as below, following the convention in the
field. Each token is first transformed into three embeddings,
namely query, key and value. The output of a self-attention
layer is the sum of values weighted by some similarity
measures between query and key. The original transformer
model used the softmax of the dot-product of the key and
query (Dosovitskiy et al., 2021):

Attention(Q,K,V) = softmax(
Q⊤K√

dk
)V

where Q, K, V denote the query, key, and value embeddings.
They are calculated from linearly transforming the input
sequence X = {x1, ..., xL} ∈ Rd×L, where d is the input
embedding size, L is the sequence length,

Q = WqX ∈ Rdk×L

K = WkX ∈ Rdk×L

V = WvX ∈ Rdv×L

where Wq ∈ Rdk×d, Wk ∈ Rdk×d, Wv ∈ Rdv×d are
trainable linear transformations that transform the input
embedding to the key, query, and value space. Sometimes
a bias term is also added to the transformation. Since the
bias term does not depend on the input embedding, we do
not include it in our analysis of token interactions. In the
formula of the attention output, the part that contains the
query and key interaction is named the attention score. In
this case which is based on the dot-product, the attention
score between two tokens xi (query) and xj (key) is

aij = q⊤
i kj = x⊤i Wq

⊤Wkxj

The attention score solely depends on the combined matrix
Wq

⊤Wk as a whole (Elhage et al., 2021), which represents
the query-key interaction. To better understand the behavior

4



Dissecting Query-Key Interaction in Vision Transformers

of this bilinear form, we factor the matrix using the singular
value decomposition,

W⊤
q Wk = UΣV⊤

where U = {u1, ...,udk
} ∈ Rd×dk is the left singular ma-

trix composed of left singular vectors, V = {v1, ..., vdk
} ∈

Rd×dk is the right singular matrix composed of right singu-
lar vectors, Σ = diag(σ1, ..., σdk

) ∈ Rdk×dk is a diagonal
matrix composed of singular values. We will refer to the nth
singular mode as the set {un, σn, vn}. Then the attention
score between two tokens can be decomposed into singular
modes.

x⊤
i Wq

⊤Wkxj =
dk∑
n=1

x⊤i unσnv⊤n xj

Consider the input embeddings projected onto the left and
right singular vectors, i.e. x⊤un and x⊤vn. The attention
score is non-zero when the two embeddings have a non-zero
dot-product with the corresponding left and right singular
vectors within the same singular mode. In other words, if
one embedding happens to be in the direction of a left singu-
lar vector, it only attends to tokens that have a component of
the corresponding right singular vector. It can be thought of
as a left singular vector ”query” looking for its right singular
vector ”key”.

4.2. Similarity between left and right singular vectors

Figure 3. Cosine similarity between left and right singular vectors.
The cosine similarity is computed per head and singular mode.
The weighted average value of cosine similarity is computed with
weights of corresponding singular values.

To determine if self-attention performs grouping or com-
bines contextual information, we examine whether tokens
in different layers have higher attention scores with simi-
lar tokens or dissimilar tokens. This can be measured for

each singular mode by how much the left singular vector
is aligned with the right singular vector, more specifically,
the cosine similarity between the left singular vector and
the right singular vector. A high cosine similarity value
means tokens attend to similar tokens (to itself if the value
is 1); a low value means tokens attend to dissimilar tokens
(to orthogonal tokens if 0; to opposite tokens if negative).
The average cosine similarity is weighted by the singular
values with the assumption that singular modes with higher
singular values are more influential to the total attention
score cosavg =

∑
i

σi∑
σj

cosi. We find that the averaged

cosine similarity is high in early layers, and there is a de-
creasing trend in deeper layers (Fig 3). In some models,
the averaged cosine similarity drops to 0 in some middle
layers. The cosine similarity distribution and singular value
spectrum of the vit-base-patch16-224 model is provided in
the Supplementary Figures S1 and S2.

It is known that embeddings in transformer models are to
some extent anisotropic (Ethayarajh, 2019b; Liang et al.,
2022; Godey et al., 2023), which means the expected value
of cosine similarity of two random sampled inputs tends
to be positive. We indeed find anisotropy effects in all the
models we examined using cosine similarity (Supplemen-
tary Figure S3) (though see other metrics (Rudman et al.,
2021)). If we treat anisotropy level as a baseline for cosine
similarity, the effect shown in Fig 3 still exists but the self-
attention is less biased to similar tokens (Supplementary
Figure S3).

There is a further implication of the singular value decom-
position approach. The left and right singular vectors of
each attention head are two incomplete orthonormal bases
of embedding. We suggest that these bases are feature direc-
tions since they are intrinsic properties of the self-attention
layer. The query and key embeddings can be made arbitrary,
since one can change the basis without affecting the atten-
tion score. However, the singular vectors are invariant to
the change of basis. If an invertible matrix A ∈ Rdk×dk

acts on the query and key weights as Wq → A⊤Wq and
Wk → A−1Wk, then the attention score does not change
but the query and key embeddings change. The singular vec-
tor decomposition of (A⊤Wq)

⊤A−1Wk stays the same as
decomposing Wq

⊤Wk. Thus singular vectors are uniquely
special and may show interesting properties. Due to the sign
ambiguity of the singular value decomposition, we consider
the opposite directions of singular vectors also as feature
directions.

5. Semanticity of singular modes
The singular value decomposition of self-attention offers an
intuitive way to explain the self-attention layer. A feature
represented by a left singular vector attends to the feature
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Figure 4. Examples of optimal attention images of singular modes and query and key map in dino-vitb16. Optimal attention images are
found from the Imagenet validation set that induce the largest attention score (sorted by the product of the maximum of query map and
maximum of key map). The red and cyan (i.e. green and blue) channels are the projection values of embedding onto the left and right
singular vectors of a singular mode. They correspond to query and key. The white area is where the query map and key map overlap. The
name code we assign to singular modes specifies the layer, head, and mode numbers. For example, ”L1 H5 M1” means layer 1, head 5,
and mode 1. The value below indicates the cosine similarity between the left and right singular vectors.

represented by the corresponding right singular vector. The
feature of a singular vector can be found by finding the
image that has the maximum embedding projection on the
singular vector. Similarly, the typical interactions of a singu-
lar mode can be identified by finding the image that has the
maximum product of the projections on a singular vector
pair. Previous studies on the explainability of deep learning
models only focused on the explainability of single neurons
or individual feature axes. The singular value decomposi-
tion extends model explainability to the interaction of pairs
of ”neurons” (i.e. singular vectors). Note that this is very
different from the standard approach of visualizing the atten-
tion map of the [CLS] token without addressing interactions
between tokens (Dosovitskiy et al., 2021; Caron et al., 2021;
Oquab et al., 2023).

Some example modes (selected from the top 10 modes)
from dino-vitb16 are shown in Fig. 4. For each mode,
we choose the top 8 images in the Imagenet (Hugging Face
version) (Russakovsky et al., 2015) validation set that induce
the largest attention score. For each image, a query map
(red channel in the figure) and a key map (cyan channel
in the figure) are obtained by projecting the embedding
onto the left and right singular vectors. Each map tells
what information the left or right singular vector represents.
Jointly, the highlighted regions in the query map attend to

the highlighted regions in the key map. In other words,
the information in the highlighted regions of the key map
flows to the highlighted regions of the query map. More
examples are shown for a range of ViT architectures in the
Supplementary Figures S4 - S15.

In early layers, singular vectors usually represent low-level
visual features like color or texture, and sometimes posi-
tional encoding. In higher layers, singular vectors can rep-
resent more complex visual features like parts of objects or
whole objects. As shown in the previous sections, high at-
tention scores can be induced between similar tokens (more
often in early layers) or dissimilar tokens (more often in late
layers). The correspondence to image structure for similar
and dissimilar tokens can be seen in the query and key maps.
For the modes with high cosine similarity, query and key
maps are similar which could represent color, texture, parts,
objects, or positional encoding. For the modes with low
cosine similarity, query and key maps look different which
could represent different object parts, different objects, or
foreground and background. Some examples include: in
”L6 H4 M1” the animal face (query) attends to eyes, nose
and mouth (key); in ”L7 H2 M3” the lower part of a car
attends to the upper part of a car and wheels; in ”L8 H9 M2”
the fish or other things in hand attend to human; in ”L10 H9
M1” the kettle attends to its background.
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The attention between dissimilar tokens could be thought of
as providing contextual information to a given token. In the
part-to-part case, finding more parts of an object increases
the confidence of finding the object and helps merge smaller
concepts into a larger concept. In the object-to-object case,
an object attending to a different object could add additional
attributes to it, for example, a fish attending a human may
add the attribute ”be held” to the fish tokens, which helps un-
derstanding of the whole scene. These interactions between
tokens, though conceptually simple, as far as the authors are
aware, have not been reported before this study. This result
further supports the idea that self-attention combines contex-
tual information from dissimilar tokens such as backgrounds
or different objects.

Figure 5. The probability that the left and right singular vectors
highlight the same object in maximum attention images.

Finally, we study whether tokens prefer to attend to the
same object or different objects at the singular mode level.
We choose to use a semantic segmentation dataset, namely
ADE20K (Zhou et al., 2017). We first find the top 5 images
that induce maximum attention of a singular mode, then
find the optimal objects in each image that have the maxi-
mum projections on the left and right singular vectors per
object area. The probability of the left and right singular
vectors having the same optimal object is computed with
the weight of singular values, following the same method in
the previous experiment. We find that, in early layers, there
is a higher probability that the left and right singular vectors
attend to the same object; in late layers, the probability is
lower, though the variability between models is consider-
ably large. This result further supports that self-attention
performs more grouping in early layers; in late layers, to-
kens attend to different objects which could contextualize
the token with background information.

6. Limitation
We are aware of some limitations of this study and interest-
ing open questions that remain. There is behavioral variabil-
ity between the models, which may be due to the distinct
training objectives. Identifying how the training paradigm
alters the learned embedding space is a potential future
direction to explore. We have focused on the query-key
interactions in the self-attention, and future studies could
address the role of the value matrix.

7. Discussion
Inspired by the observation that self-attention gathers infor-
mation from relevant tokens within an object, and the impor-
tance of contextualization in neuroscience, we study funda-
mental properties of token interaction inside self-attention
layers in ViTs. Both empirical analysis of the Odd-One-Out
(O3) dataset, and singular decomposition analysis of singu-
lar modes for the Imagenet dataset, show that in early layers
the attention score is higher between similar tokens, while
in late layers the attention score is higher between dissimilar
tokens.

The singular decomposition analysis provides a new per-
spective on the explainability of ViTs. Two directions (left
and right singular vectors) in the embedding space could be
analyzed in pairs to interpret the interaction between tokens.
Using this method, we find interesting semantic interactions
such as part-to-part attention, object-to-object attention, and
foreground-to-background attention which have not been
reported in previous studies. Our reported findings pro-
vide evidence that self-attention in vision transformers is
not only about gathering information between tokens with
similar embeddings, but a variety of interactions between
a token and its context. The method of analyzing singular
vectors can be easily adapted to study token interactions
in transformer networks trained on other modalities like
language. Adapting this method to real-world applications
can increase transparency of what the transformer models
are capturing.
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A. Supplemental material

Figure S1. Histogram of cosine similarity between the left and right singular vector in ViT-base-patch16-224. The yellow layers are earlier
layers; the blue layers are later layers. The red line indicates 95% confidence interval, which is calculated from embeddings sampled from
a random distribution.

Figure S2. Singular value spectrum (blue) and cosine similarity (red) in ViT-base-patch16-224. Row number indicates layer number.
Column number indicates head number. The dotted line indicates 95% confidence interval, which is calculated from embeddings sampled
from a random distribution.
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Figure S3. Anisotropy effects in ViTs. A. Averaged embedding cosine similarity between the center tokens of different images from the
Imagenet validation set. Consisting with previous studies, the cosine similarities are all positive, which is referred to as anisotropy or
cone effect. B. Considering A as the baseline, relative cosine similarity is defined as subtracting cosine similarity between left and right
singular vectors by the embedding cosine similarity in A.
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Figure S4. Examples of semantic singular modes in ViT-base-patch16-224 (part 1).
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Figure S5. Examples of semantic singular modes in ViT-base-patch16-224 (part 2).
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Figure S6. Examples of semantic singular modes in ViT-base-patch16-224 (part 3).
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Figure S7. Examples of semantic singular modes in dino-vitb16 (part 1).
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Figure S8. Examples of semantic singular modes in dino-vitb16 (part 2).
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Figure S9. Examples of semantic singular modes in dino-vitb16 (part 3).
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Figure S10. Examples of semantic singular modes in deit-base-distilled-patch16-224 (part 1).
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Figure S11. Examples of semantic singular modes in deit-base-distilled-patch16-224 (part 2).
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Figure S12. Examples of semantic singular modes in deit-base-distilled-patch16-224 (part 3).
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Figure S13. Examples of semantic singular modes in clip-vit-base-patch16 (part 1).

21



Dissecting Query-Key Interaction in Vision Transformers

Figure S14. Examples of semantic singular modes in clip-vit-base-patch16 (part 2).
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Figure S15. Examples of semantic singular modes in clip-vit-base-patch16 (part 3).
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