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Organization. In Appendix A, we define Besov spaces and state some useful facts about them.
In Appendix B, we analyze the single-level estimator and prove Theorem 1.2. In Appendix C,
we analyze the multi-level estimator and prove Theorem 1.3. Finally, in Appendix D, we give
details of our lower bound technique and prove Theorem 1.1.

A Preliminaries
In this section, we formally define Besov spaces and provide some standard facts about them.
We then state two useful probabilistic inequalities. Finally, we recall the assumptions that we
make on the density function f .

A.1 Besov spaces

Our exposition here mainly derives from [4, 5]. We start with a discussion on wavelets.

Wavelets. A wavelet basis for L2(R) is generated using two functions: φ (father wavelet) and
ψ (mother wavelet). The main feature that distinguishes wavelet basis from the Fourier basis is
that the functions φ and ψ can have compact support. More precisely, there exists a function
φ : R→ R such that

1. {φ(· − k) : k ∈ Z} forms an orthonormal family of L2(R). Let V0 = span {φ(· − k) : k ∈ Z}.

2. For j ∈ Z, let Vj = span {φj,k : k ∈ Z}, where φj,k(x) = 2j/2φ(2jx− k). Then Vj ⊂ Vj+1.

3. φ ∈ L2(R),
∫
φ(x)dx = 1.

Remark: Conditions 1,2,3 ensure that ∩j∈ZVj = {0} and ∪j∈ZVj = L2(R).

4. φ satisfies the following regularity conditions for a given N ∈ Z+:

(a) There exists a bounded non-increasing function Φ such that
∫

Φ(|x|)|x|Ndx <∞, and
|φ(x)| ≤ Φ(|x|) almost everywhere.

(b) φ isN+1 times (weakly) differentiable and φ(N+1) satisfies ess supx
∑
k∈Z

∣∣∣φ(N+1)(x− k)
∣∣∣ <

∞.

φ satisfying (a),(b) is said to be N -regular.

LetWj ⊂ L2(R) be a subspace such that Vj+1 = Vj
⊕
Wj (i.e. Vj+1 = Vj+Wj and Vj∩Wj = {0}).

Then, there exists a function ψ : R→ R such that

1. {ψ(· − k) : k ∈ Z} forms an orthonormal basis of W0.

2. span {ψj,k : j ∈ Z, k ∈ Z} = L2(R), where ψj,k(x) = 2j/2ψ(2jx− k).

3. ψ satisfies the same regularity conditions as φ.

For any L ∈ Z, we can decompose L2(R) as

L2(R) = VL
⊕

WL

⊕
WL+1

⊕
· · · .

That is, for any f ∈ L2(R)

f =
∑
k∈Z

αL,kφL,k +
∑
j≥L

∑
k∈Z

βj,kψj,k, (1)
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where
αL,k =

∫
f(x)φL,k(x)dx, βj,k =

∫
f(x)ψj,k(x)dx

are called the wavelet coefficients of f , where the convergence is to be understood in the L2 sense
in general; however, when φ, ψ satisfies the regularity condition, then the convergence holds in
Lp sense for p ∈ [1,∞] (see Fact A.4). Moreover, for a father wavelet φ, there is a canonical
mother wavelet ψ (Section 5.2 in [5]) corresponding to φ.

Besov spaces. We now define Besov space B(p, q, s) with parameters p, q, s, where 1 ≤ p, q ≤ ∞,
s > 0. Let φ be a father wavelet satisfying properties (1)-(4) above, with N > s. Then,

f ∈ B(p, q, s) ⇐⇒ ‖α0·‖p +

 ∞∑
j=0

(
2s+

1
2−

1
p ‖βj·‖p

)q1/q

<∞ (2)

where ‖α0·‖p is the `p norm of the sequence {α0,k}k∈Z, ‖βj·‖p is the `p norm of the sequence
{βj,k}k∈Z. The sequences {α0,k}k∈Z , {βj,k}k∈Z come from the wavelet expansion of f using the
father wavelet φ and the corresponding mother wavelet ψ. The definition (2) of B(p, q, s) is
invariant to the choice of φ as long as N > s. For the purposes of defining Besov norm, we fix
a particular φ, ψ, where φ is N -regular with N > s. Then, the Besov norm of a function f is
defined as

‖f‖pqs := ‖α0·‖p +

 ∞∑
j=0

(
2s+

1
2−

1
p ‖βj·‖p

)q1/q

. (3)

A.2 Useful facts about Besov spaces

We record a few facts about Besov spaces that will be used in our analysis. Throughout, we
assume that f ∈ B(p, q, s) with ‖f‖spq ≤ 1 and supp(f) ⊆ [0, 1]. The following fact is apparent
from our discussion on wavelets.

Fact A.1. Let the wavelet expansion of f be as in (1). For H ≥ L, define f (H) :=
∑
k∈Z αL,kφL,k+∑H−1

j=L
∑
k∈Z βj,kψj,k. Then, f (H) =

∑
k∈Z αH,kφH,k.

Since supp(f) ⊆ [0, 1], and supp(φj,0), supp(ψj,0) ⊆ [−A2−j , A2−j ], there is no overlap between
supp(f) and supp(φj,k), supp(ψj,k) for all but a finite number of indices k. In particular, we have
the following.

Fact A.2. Let the wavelet expansion of f be as in (1). Then, for any given j ∈ Z+, there are
O(2j) translation indices k such that φj,k(x) or ψj,k(x) is possibly non-zero, where x ∈ supp(f).

For f ∈ B(p, q, s), it is clear from the definition of Besov norm that the wavelet coefficients must
decay sufficiently fast. More precisely, we have the following.

Fact A.3. If f ∈ B(p, q, s), then

lim
j→∞

2jp(s+ 1
2−

1
p

) ∑
k∈Z
|βj,k|p = 0

and in particular there exists C > 0 such that

‖βj‖pp =
∑
k∈Z
|βj,k|p ≤ C · 2−jp(s+ 1

2−
1
p

)
.
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The next fact quantifies the approximation error when the wavelet expansion of f is truncated.

Fact A.4. Let f (H) be as in Fact A.1. Then, for r ≥ 1,

∥∥∥f (H) − f
∥∥∥
r
≤ C

{
2−Hs if r ≤ p,
2−H(s−1/p+1/r) if r > p.

The next fact (from equation (15) in [4]) gives a bound on ‖f‖∞ when ‖f‖spq ≤ 1.

Fact A.5. Let s > 1/p. Then

‖f‖∞ ≤
(
1− 2−(s−1/p)q′

)1/q′

where 1/q + 1/q′ = 1.

Now, let X1, . . . , Xn be independent samples from distribution with density f . For j, k ∈ Z,
define

ᾱj,k := 1
n

n∑
i=1

φj,k(Xi), β̄j,k := 1
n

n∑
i=1

ψj,k(Xi). (4)

Observe that ᾱj,k (resp., β̄j,k) is an unbiased estimate of αj,k (resp., βj,k). The following fact is
from equation (16) in [4].

Fact A.6. Let n ≥ 2j. Then, for r ≥ 1,

E[|ᾱj,k − αj,k|r] ≤ Cn−r/2, E
[∣∣∣β̄j,k − βj,k∣∣∣r] ≤ Cn−r/2

where C is a constant that depends on p, q, s, r, φ, ψ.

We note another useful fact (obtained after setting β = 0 in equation (21) in [4]).

Fact A.7. Let g =
∑H
j=L

∑
k∈Z ĝj,kψj,k, where ĝj,k is random. Then, for r ≥ 1,

E[‖g‖rr] ≤ C(H − L)(r/2−1)+
H∑
j=L

2j(r/2−1) ∑
k∈Z

E[|ĝj,k|r]

where C is a constant that depends on r.

A.3 Useful probabilistic inequalities

Theorem A.8 (Rosenthal’s inequality [6]). Let X1, . . . , Xn be independent random variables
such that E[Xi] = 0. and E[|Xi|r] <∞ for every i.

1. Suppose E
[
X2
i

]
<∞ for every i. Then, for 1 ≤ r ≤ 2,

E
[∣∣∣∣∣

n∑
i=1

Xi

∣∣∣∣∣
r]
≤
(

n∑
i=1

E
[
X2
i

])r/2

.

(This just follows from concavity of f(x) = xr/2 for r ≤ 2.)
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2. Suppose E[|Xi|r] <∞ for every i. Then, for r > 2, there exists a constant Kr depending
only on r such that

E
[∣∣∣∣∣

n∑
i=1

Xi

∣∣∣∣∣
r]
≤ Kr


n∑
i=1

E[|Xi|r] +
(

n∑
i=1

E
[
X2
i

])r/2
 .

Theorem A.9 (Bernstein’s inequality). Let X1, . . . , Xn be independent random variables such
that |Xi| ≤ b almost surely, and E

[
X2
i

]
≤ vi for every i. Let X :=

∑n
i=1Xi and V :=

∑n
i=1 vi.

Then, for every u ≥ 0,

Pr(|X − E[X]| ≥ u) ≤ exp
(
− u2

2(V + bu
3 )

)

A.4 Assumptions

We recall here the assumptions we make on the density f :

1. f is compactly supported: without loss of generality, supp(f) ⊆ [0, 1].

2. Besov norm of f is bounded: without loss of generality, ‖f‖pqs ≤ 1.

Our algorithm works with any father and mother wavelets φ and ψ satisfying the following
conditions:

1. φ and ψ are N -regular, where N > s, and

2. supp(φ), supp(ψ) ⊆ [−A,A] for some integer A > 0 (which may depend on N).

As a concrete example, Daubechies’ family of wavelets [3] satisfies these assumptions.
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B Analysis of single-level estimator

Our goal is to upperbound the worst-case Lr loss E
[∥∥∥f̂ − f∥∥∥r

r

]
, where f̂ is the estimate output

by the referee. Arguments and results in Sections B.1 and B.2 will be used in the analysis of the
multi-level estimator as well.

B.1 Coupling of simulated and ideal estimators

Denote by p the probability distribution corresponding to density f . Recall that pZ(H) is the
distribution after quantization of samples from p. Suppose the referee has m samples from
pZ(H) using which it outputs the estimate f̂ . To compute E

[∥∥∥f̂ − f∥∥∥r
r

]
, consider the following

statistically equivalent situation:

• There are m i.i.d. samples X1, . . . , Xm ∼ p.

• For each i ∈ JmK, let

φ̂H,k(Xi) =

0 if k /∈ A(H)
Bi

,

2H/2Q(Vi)(k) if k ∈ A(H)
Bi

,
(5)

where Bi is the bin Xi lies in, Q(Vi) is obtained by quantizing
{

2−H/2φH,k(Xi)
}
k∈A(H)

Bi

using Algorithm 1, and Q(Vi)(k) is the entry in Q(Vi) corresponding to k ∈ A(H)
Bi

. In other
words,

{
φ̂H,k(Xi)

}
k∈Z

is the quantized version of {φH,k(Xi)}k∈Z.

• Define f̂ as

f̂ =
∑
k∈Z

α̂H,kφH,k, where α̂H,k = 1
m

m∑
i=1

φ̂H,k(Xi), k ∈ Z. (6)

Then, computing the Lr loss for the single-level estimator is equivalent to computing the Lr loss
for f̂ defined in (6). From here on, when we refer to f̂ , we mean f̂ defined in (6). Now,

E
[∥∥∥f̂ − f∥∥∥r

r

]
≤ 2r−1

(
E
[∥∥∥f̂ − f̄∥∥∥r

r

]
+ E

[∥∥∥f̄ − f∥∥∥r
r

])
(7)

where f̄ is defined as

f̄ =
∑
k∈Z

ᾱH,kφH,k where ᾱH,k = 1
m

m∑
i=1

φH,k(Xi), k ∈ Z. (8)

Note that this is just the classical density estimate obtained using m samples X1, . . . , Xm. The
idea behind introducing this coupling is to facilitate analysis by bringing in the classical density
estimate (8) and breaking up the Lr loss as in (7).
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B.2 Key lemmas

Since these lemmas will be used in the analysis of the multi-level estimator as well, we discuss
them in more generality than would be required for only analyzing the single-level estimator.
For j, k ∈ Z, define

α̂j,k := 1
m

m∑
i=1

φ̂j,k(Xi), β̂j,k := 1
m

m∑
i=1

ψ̂j,k(Xi), (9)

ᾱj,k := 1
m

m∑
i=1

φj,k(Xi), β̄j,k := 1
m

m∑
i=1

ψj,k(Xi), (10)

where
{
φ̂j,k(Xi)

}
k∈Z

and
{
ψ̂j,k(Xi)

}
k∈Z

are quantized versions of {φj,k(Xi)}k∈Z and {ψj,k(Xi)}k∈Z,

respectively (as in (5), with H replaced by j; φ replaced by ψ, and A(j)
Bi

replaced by B(j)
Bi

in the
case of β̂j,k). The following claim bounds the error between quantized and unquantized (classical)
estimates of wavelet coefficients.

Claim B.1 (Error between quantized and unquantized estimates). For r ≥ 1, we have

E[|α̂j,k − ᾱj,k|r] ≤ C
{ 1
mr/2 , if r ∈ [1, 2],
2j(r/2−1)

mr−1 + 1
mr/2 , if r > 2,

for a constant C. The same bound holds for E
[∣∣∣β̂j,k − β̄j,k∣∣∣r] as well.

Proof. For a given j, k,

E[|α̂j,k − ᾱj,k|r] = E

∣∣∣∣∣∣ 1
m

m∑
i=1

(
φ̂j,k(Xi)− φj,k(Xi)

)
1{
A(j)
Bi
3k
}∣∣∣∣∣∣
r = 1

mr
E
[∣∣∣∣∣

m∑
i=1

Yik

∣∣∣∣∣
r]

where
Yik :=

(
φ̂j,k(Xi)− φj,k(Xi)

)
1{

k∈A(j)
Bi

}.
Note that, since the quantization is unbiased, we have E[Yik] = 0. Moreover, |Yik| . 2j/2 almost
surely. We first consider the case r > 2. Then, by Rosenthal’s inequality (Theorem A.8),

E
[∣∣∣∣∣

m∑
i=1

Yik

∣∣∣∣∣
r]

. (2j/2)(r−2)
m∑
i=1

E
[
Yik

2
]
+
(

m∑
i=1

E
[
Y 2
ik

]) r
2

= 2j(
r
2−1)m E

[
Y1k

2
]
+m

r
2E
[
Y 2

1k

] r
2 (11)

Moreover,

E
[
Y 2
ik

]
= E

(φ̂j,k(Xi)− φj,k(Xi)
)2
1{

k∈A(j)
Bi

} . 2j Pr
(
k ∈ A(j)

Bi

)
.

Now, note that

Pr
(
k ∈ A(j)

Bi

)
= Pr(Xi ∈ supp(φj,k)) ≤

2A
2j ‖f‖∞ .

1
2j (using Fact A.5)

which gives
E
[
Y 2
ik

]
. 1.

Substituting this in (11), we get the desired result when r > 2. For r ∈ [1, 2], using part (1) of
Theorem A.8, only the second term in (11) remains. This gives the result for r ∈ [1, 2]. The
proof for E

[∣∣∣β̂j,k − β̄j,k∣∣∣r] is analogous.
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The claim above, combined with Fact A.6, lets us bound the error between quantized estimates
and true coefficients as follows.

Claim B.2 (Error between quantized estimates and true coefficients). Let m ≥ 2j. Then, for
r ≥ 1, we have

E[|α̂j,k − αj,k|r] ≤
C

mr/2 , E
[∣∣∣β̂j,k − βj,k∣∣∣r] ≤ C

mr/2

for a constant C.

Proof. Note that

E[|α̂j,k − αj,k|r] ≤ 2r−1(E[|α̂j,k − ᾱj,k|r] + E[|ᾱj,k − αj,k|r]) .

The first term can be handled with Claim B.1. The second term can be bound using Fact A.6.
Overall, for r > 2, we get

E[|α̂j,k − αj,k|r] .
2j(r/2−1)

mr−1 + 1
mr/2 ≤

2
mr/2 ,

since m ≥ 2j . We get the same bound for r ∈ [1, 2]. The result follows. The bound on
E
[∣∣∣β̂j,k − βj,k∣∣∣r] is obtained in the same way.

Since, for any j, there are O(2j) translations k for which the coefficients are non-zero (Fact A.2),
Claim B.2 readily implies the corollary below.

Corollary B.3. Let m ≥ 2j. Then, for r ≥ 1 and a constant C., we have

∑
k∈Z

E[|α̂j,k − αj,k|r] ≤ C
2j

mr/2 ,

∑
k∈Z

E
[∣∣∣β̂j,k − βj,k∣∣∣r] ≤ C 2j

mr/2 .

B.3 Analyzing the error

For the single-level estimator

E
[∥∥∥f̂ − f∥∥∥r

r

]
= E

[∥∥∥f̂ − f (H) + f (H) − f
∥∥∥r
r

]
≤ 2r−1

(
E
[∥∥∥f̂ − f (H)

∥∥∥r
r

]
+
∥∥∥f − f (H)

∥∥∥r
r

)
, (12)

where f (H) =
∑
k∈Z αH,kφH,k. Now, from Fact A.4, we have

∥∥∥f − f (H)
∥∥∥r
r
. 2−Hrσ, where

σ =
{
s if , r ≤ p,
(s− 1/p+ 1/r), if r > p.

Moreover,

E
[∥∥∥f̂ − f (H)

∥∥∥r
r

]
= E

∥∥∥∥∥∥
∑
k∈Z

(α̂H,k − αH,k)φH,k

∥∥∥∥∥∥
r

r


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. 2H(r/2−1) ∑
k∈Z

E[|α̂H,k − αH,k|r] (Fact A.7)

. 2H(r/2−1) 2H

mr/2 (Corollary B.3)

=
(

2H

m

)r/2

.

(In our case, m,H will be such that m ≥ 2H holds, which is why we can use Corollary B.3.)
Substituting these in (12), we get

E
[∥∥∥f̂ − f∥∥∥r

r

]
. 2−Hrσ +

(
2H

m

)r/2

.

Recall that m is the number of quantized samples available with the referee, where, for a constant
C,

m =
{
n if 2H . 2` (no simulation required)
Cn2`/2H if 2H & 2` (after simulation).

In other words (ignoring constant C) m = n2`
2H∨2` , where a ∨ b = max {a, b}. Thus,

E
[∥∥∥f̂ − f∥∥∥r

r

]
. 2−Hrσ +

(
2H(2H ∨ 2`)

n2`

)r/2

≤ 2−Hrσ +
(

22H

n2`

)r/2

+
(

2H

n

)r/2

.

Setting H such that
2H = (n2`)

1
2s+2 ∧ n

1
2s+1

gives us
E
∥∥∥f̂ − f∥∥∥r

r
. (n2`)−

rσ
2σ+2 ∨ n−

rσ
2σ+1 .

For r ≤ p, σ = s, which proves Theorem 1.2 in the main paper.
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C Analysis of multi-level estimator

Our goal is to upper bound the worst-case Lr loss E
[∥∥∥f̂ − f∥∥∥r

r

]
, where f̂ is the estimate output

by the referee. We proceed by describing the coupling in the multi-estimator setting.

C.1 Coupling of simulated and ideal estimators

Denote by p the probability distribution corresponding to density f . Recall that we divide the
players into H −L+ 1 groups. Suppose the referee obtains mJ (quantized) samples from players
in group-J . To compute E

[∥∥∥f̂ − f∥∥∥r
r

]
, consider the following statistically equivalent situation:

• For each J ∈ JL,HK, there are mJ i.i.d. samples X1,J , . . . , XmJ ,J ∼ p.

• For each i ∈ JmLK, let

φ̂L,k(Xi,L) =

0 if k /∈ A(L)
Bi,L

,

2L/2Q(Vi,L)(k) if k ∈ A(L)
Bi,L

,
(13)

where Bi,L is the bin (out of 2L bins) Xi,L lies in, Q(Vi,L) is obtained by quantizing{
2−L/2φL,k(Xi,L)

}
k∈A(L)

Bi,L

using Algorithm 1, and Q(Vi,L)(k) is the entry in Q(Vi,L) cor-

responding to k ∈ A(L)
Bi,L

. In other words,
{
φ̂L,k(Xi,L)

}
k∈Z

is the quantized version of
{φL,k(Xi,L)}k∈Z.

• Similarly, for each J ∈ JL,HK, for each i ∈ JmJK, let

ψ̂J,k(Xi,J) =

0 if k /∈ B(J)
Bi,J

,

2J/2Q(Vi,J)(k) if k ∈ B(J)
Bi,J

.
(14)

That is, for each J ∈ JL,HK,
{
ψ̂J,k(Xi,J)

}
k∈Z

is the quantized version of {ψJ,k(Xi,J)}k∈Z.

• Given thresholds {tJ}J∈JL,HK, define f̂ as

f̂ =
∑
k

α̂L,kφL,k +
H∑
J=L

∑
k

β̃J,kψJ,k, (15)

where
α̂L,k = 1

mL

mL∑
i=1

φ̂L,k(Xi,L),

β̃J,k = β̂J,k1{|β̂J,k|≥tJ} with β̂J,k = 1
mJ

mJ∑
i=1

ψ̂J,k(Xi,J).
(16)

Then, computing Lr loss for the multi-level estimator is equivalent to computing Lr loss for f̂
defined in (15).
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C.2 Setting parameters

Since we want our multi-level estimator to be adaptive, the parameters L,H, and {tJ}J∈JL,HK
should not depend explicitly on Besov parameters. We set L,H as

2L := C

(
(n2`)

1
2(N+1)+2 ∧ n

1
2(N+1)+1

)
,

2H := C ′
( √

n2`
logn2` ∧

n

log2 n

)

where C,C ′ > 0 are two constants, sufficiently large and small, respectively. Also, note that,
since players in group-J have alphabet size O(2J), we have

mJ = n

(H − L+ 1) ·
(

2`

2J ∧ 1
)
� n2`

H(2J ∨ 2`) .

Note that the setting of H implies both H2H �
√
n2` and H22H � n, and consequently

mJ ≥ J2J .

Threshold values. How should we set the threshold values {tJ}J∈JL,HK? Since we will pay a
cost for the coefficients we zero out (increase in bias), we would like to choose tJ as small as
possible. But, in order to have reasonable concentration, we also need tJ to satisfy, for every
(sufficiently large) γ > 0,

Pr
(∣∣∣β̂J,k − βJ,k∣∣∣ ≥ γtJ) . 2−γJ .

so that our estimates concentrate well around their true value, and we only zero them out wrongly
with very small probability. Now, a natural approach to choose tJ according to the constraint
above would be to use Hoeffding’s inequality, as β̂J,k is the empirical mean of mJ unbiased
estimates of βJ,k, each with magnitude . 2J/2. One can check that this would lead to the setting
of tJ �

√
J2J/mJ , which, unfortunately, is too big (by a factor of 2J/2) to give optimal rates.

However, recall that the mJ unbiased estimates, ψ̂J,k(Xi,J ), are not only such that |ψ̂J,k(Xi,J)| .
2J/2; in many cases, they are actually zero, since |ψ̂J,k(Xi,J)| ' 2J/21{

k∈B(J)
Bi,J

}. This allows us
to derive the following, improving upon the naïve use of Hoeffding’s inequality.

Lemma C.1. For J ∈ JL,HK, setting tJ :=
√
J/mJ , we have

Pr
(∣∣∣β̂J,k − βJ,k∣∣∣ ≥ γtJ) ≤ 2−γJ

for every γ ≥ 6A‖f‖∞.

Proof. Fix J, k, and consider any i ∈ JmJK. Since
∣∣∣ψ̂J,k(Xi,J)

∣∣∣ ≤ b := 2J/2 and

E
[
ψ̂J,k(Xi,J)2

]
= 2J Pr

(
k ∈ B(J)

Bi,J

)
≤ 2J · ‖f‖∞ ·

2A
2J = 2A‖f‖∞ := v

where the inequality follows from our assumption that supp(ψ) ⊆ [−A,A]. In particular, we
have v � 1. Recalling the definition of β̂J,k from (16), we can apply Bernstein’s inequality
(Theorem A.9) to obtain, for t ≥ 0 and γ ≥ 3v,

Pr
(∣∣∣β̂J,k − βJ,k∣∣∣ ≥ γt) ≤ e− 3γ2mJt

2
6v+2bγt = e

− 3
2 ·

γmJt
2

3v
γ +2J/2t ≤ e−

3
2 ·

γmJt
2

1+2J/2t ≤ 2−
2γmJt

2

1+2J/2t .

11



Setting tJ :=
√

J
mJ
∨ J2J/2

mJ
, we get Pr

(∣∣∣β̂J,k − βJ,k∣∣∣) ≤ 2−γJ . Finally, our setting of H and mJ

together imply that tJ :=
√

J
mJ

, as (from our choice of parameters) mJ ≥ J2J for all J ≤ H.

Conclusion. For constants C,C ′, κ > 0, the values of parameters are summarized below.

2L := C

(
(n2`)

1
2(N+1)+2 ∧ n

1
2(N+1)+1

)
(17)

2H := C ′
( √

n2`
logn2` ∧

n

log2 n

)
(18)

mJ := n

(H − L+ 1) ·
(

2`

2J ∧ 1
)
� n2`

H(2J ∨ 2`) (19)

tJ := κ

√
J

mJ
(20)

As previously mentioned choices imply both H2H �
√
n2` and H22H � n, and consequently

mJ ≥ J2J , J ∈ JL,HK.

C.3 Analysing the error

Following the outline of Theorem 3 of [4] and Theorem 5.1 of [2], we will bound Lr loss as

E
[∥∥∥f − f̂∥∥∥r

r

]
≤ 3r−1(bias(f) + linear(f) + details(f)) (21)

where

bias(f) = E

∥∥∥∥∥∥f −
∑
k∈Z

αH,kφH,k

∥∥∥∥∥∥
r

r


linear(f) = E

∥∥∥∥∥∥
∑
k∈Z

(α̂L,k − αL,k)φL,k

∥∥∥∥∥∥
r

r


details(f) = E

∥∥∥∥∥∥
H∑
J=L

∑
k∈Z

(β̃J,k − βJ,k)ψJ,k

∥∥∥∥∥∥
r

r


and handle each of the three terms separately. Note that only the third term relates to
thresholding.

C.3.1 Linear and bias terms

Linear term. To bound linear(f), we invoke Fact A.7 and Corollary B.3 as in the analysis of
single-level estimator. This gives

E

∥∥∥∥∥∥
∑
k∈Z

(α̂L,k − αL,k)φL,k

∥∥∥∥∥∥
r

r

 . 2L( r2−1) ∑
k∈Z

E[|α̂L,k − αL,k|r] . 2L( r2−1) · 2L

m
r/2
L

(22)

= H
r
2

(22L

n2`

)r/2

∨
(

2L

n

)r/2


12



. H
r
2

(
(n2`)−

r(N+1)
2(N+1)+2 ∨ n−

r(N+1)
2(N+1)+1

)
≤ H

r
2
(
(n2`)−

rs
2s+2 ∨ n−

rs
2s+1

)
(23)

where the second-to-last inequality relies on our choice of L.
Bias term. To bound bias(f), we use Fact A.4 to get, with s′ = s− 1/p+ 1/r,

bias(f) ≤ C · 2−Hs′r ≤ C ′ ·

√ log2(n2`)
n2` ∨ log2 n

n

r(s−1/p+1/r)

. (24)

C.3.2 Details term

To bound the term details(f), we define, for J ∈ JL,HK, the three sets of indices:

ÎJ := {k ∈ Z : |β̂J,k| > κtJ} (estimate big: not thresholded)
IsJ := {k ∈ Z : |βJ,k| ≤ 1

2κtJ} (small coefficients)
IbJ := {k ∈ Z : |βJ,k| > 2κtJ} (big coefficients)

We will partition the error according to these sets of indices, and argue about them separately.
Specifically, we write

details(f) = E
[∥∥∥ H∑

J=L

∑
k∈ÎJ∩IsJ

(β̃J,k − βJ,k)ψJ,k
∥∥∥r
r

]
+ E

[∥∥∥ H∑
J=L

∑
k∈ÎJ\IsJ

(β̃J,k − βJ,k)ψJ,k
∥∥∥r
r

]

+ E
[∥∥∥ H∑

J=L

∑
k∈IbJ\ÎJ

βJ,kψJ,k
∥∥∥r
r

]
+ E

[∥∥∥ H∑
J=L

∑
k/∈IbJ∪ÎJ

βJ,kψJ,k
∥∥∥r
r

]
= Ebs + Ebb + Esb + Ess, we

the four errors coming from the “big-small,” “big-big,” “small-big,” and“small-small” indices,
respectively. Our analysis is along the lines of that in [2].

The term Ebs. We can write

Ebs . Hr/2
H∑
J=L

2J( r2−1) ∑
k∈Z

E
[
|β̂J,k − βJ,k|r1k∈ÎJ∩IsJ

]
(Fact A.7)

. Hr/2
H∑
J=L

2J( r2−1) ∑
k∈Z

E
[
|β̂J,k − βJ,k|2r

] 1
2 Pr

(
k ∈ ÎJ ∩ IsJ

) 1
2 (Cauchy–Schwarz)

. Hr/2
H∑
J=L

2J( r2−1) ∑
k∈Z

E
[
|β̂J,k − βJ,k|2r

] 1
2 Pr

(
|β̂J,k − βJ,k| > κ

2 tJ
)

. Hr/2
H∑
J=L

2J( r2−1) ∑
k∈Z

E
[
|β̂J,k − βJ,k|2r

] 1
2 2−

κ
2 J (Lemma C.1)

. Hr/2
H∑
J=L

2J( r−κ2 −1) 2J

m
r/2
J

13



where the last inequality follows from Claim B.2 and the O(2J)-sparsity of coefficients (Fact A.2).
Going forward, recalling our setting of mJ we get

Ebs . Hr/2
H∑
J=L

2J
r−κ

2

m
r/2
J

. Hr/2
(
H

n2`
)r/2 H∑

J=L
2J

r−κ
2 (2J ∨ 2`)r/2

. Hr/2
(
H

n2`
)r/2 H∑

J=L
2J(r−κ2 ) +Hr/2

(
H

n

)r/2 H∑
J=L

2J
r−κ

2

. Hr/2
(
H

n2`
)r/2

2L(r−κ/2) +Hr/2
(
H

n

)r/2
2L

r−κ
2 . Hrn−r/2 (25)

where the inequalities hold for κ > 2r.

The term Ebb. Turning to the term Ebb, we have

Ebb =
∥∥∥ H∑
J=L

∑
k∈Z

(β̂J,k − βJ,k)ψJ,k1k∈ÎJ\IsJ

∥∥∥r
r

. Hr/2
H∑
J=L

2J(r/2−1) ∑
k∈Z

E
[
|β̂J,k − βJ,k|r1k∈ÎJ\IsJ

]
(Fact A.7)

. Hr/2
H∑
J=L

2J(r/2−1)

m
r/2
J

∑
k∈Z

1k/∈IsJ

using that 1
k∈ÎJ\IsJ

≤ 1k/∈IsJ and Claim B.2. Using the definition of IsJ , for any nonnegative
sequence (αJ)J we can further bound this as

Ebb . Hr/2
H∑
J=L

2J(r/2−1)

m
r/2
J

∑
k∈Z

1k/∈IsJ |βJ,k|
αJ (κtJ/2)−αJ

≤ Hr/2
H∑
J=L

2J(r/2−1)

m
r/2
J

(κtJ/2)−αJ
∑
k∈Z
|βJ,k|αJ

= Hr/2
H∑
J=L

2αJκ−αJJ−
αJ
2

2J(r/2−1)

m
(r−αJ )/2
J

∑
k∈Z
|βJ,k|αJ

≤ Hr/2
H∑
J=L

2J(r/2−1)

m
(r−αJ )/2
J

∑
k∈Z
|βJ,k|αJ (26)

the last inequality using κ/2 ≥ 1 and J ≥ 1 to simplify the expression a little. For now, we
ignore the factor Hr/2 (we will bring it back at the end), and look at two cases:

• If p > r
s+1 , we continue by writing

Ebb .
H∑
J=L

2J(r/2−1)

m
(r−αJ )/2
J

2−JαJ (s+ 1
2−

1
αJ

) �
H∑
J=L

m
− r−αJ2
J 2

1
2J(r−(2s+1)αJ ) =

H∑
J=L

2J
r
2m
− r2
J · 2

αJ
2 (logmJ−J(2s+1))

where the first inequality, which holds for any αJ ∈ [0, p], uses the following bound on∑
k |βJ,k|p: For any α ∈ [0, p], we have from Fact A.3 and Hölder’s inequality along with

14



the sparsity of coefficients (Fact A.2), that
∑
k∈Z
|βJ,k|α =

∑
k∈Z
|βJ,k|α1{βJ,k 6=0} ≤

(∑
k∈Z
|βJ,k|p

)α
p |BJ |1−

α
p ≤ C

α
p (2A+1)1−α

p ·2−Jα(s+ 1
2−

1
p

)·2J(1−α
p

)

so that
∑
k∈Z |βJ,k|α . 2−Jα(s+ 1

2−
1
α

), as in [2, Section C.2.3]. To bound the resulting sum,
we need to choose αJ ∈ [0, p] for all J in order to minimize the result. Since mJ ∝ 2J−` ∧ 1,
the quantity

logmJ − J(2s+ 1)

is decreasing in J , and thus becomes negative at some value M (for simplicity, assumed to
be an integer), such that1

2M �
(
n2`

H

) 1
2s+2

∧
(
n

H

) 1
2s+1

(27)

we see that we should set αJ := 0 for J ≤ M , and for J > M set all αJ to some value
α = α(r, s) which will balance the remaining terms. With this choice, we can write

H∑
J=L

m
− r−αJ2
J 2

1
2J(r−(2s+1)αJ ) ≤

M∑
J=L

m
− r2
J 2J

r
2 +

H∑
J=M

m
− r−α2
J 2

1
2J(r−(2s+1)α)

≤
(
H

n2`
) r

2
M∑
J=1

2Jr +
(
H

n

) r
2
M∑
J=1

2J
r
2

+
(
H

n2`
) r−α

2
H∑

J=M
2J(r−(s+1)α) +

(
H

n

) r−α
2

H∑
J=M

2
1
2J(r−(2s+1)α)

recalling for the second inequality that m−1
J � H

n (2J
2` ∨ 1). We can bound the first and

second terms as(
H

n2`
) r

2
M∑
J=1

2Jr ≤ 2r

2r − 1

(
H

n2`
) r

2
2rM ,

(
H

n

) r
2
M∑
J=1

2J
r
2 ≤ 2r/2

2r/2 − 1

(
H

n

) r
2
2
r
2M

and from (27) we get that their sum is then(
H

n2`
) r

2
M∑
J=1

2Jr +
(
H

n

) r
2
M∑
J=1

2J
r
2 .

(
H

n2`
) r

2
2rM ∨

(
H

n

) r
2
2
r
2M .

(
H

n2`
) rs

2s+2
∨
(
H

n

) rs
2s+1

.

Thus, it only remains to handle the third and fourth terms by choosing a suitable value
for α. Recalling that we are in the case p > r

s+1 , we pick any r
s+1 < α ≤ p; for instance,

α := p. Since r − (s+ 1)p < 0 we then have(
H

n2`
) r−p

2
H∑

J=M
2J(r−(s+1)p) ≤

(
H

n2`
) r−p

2 2M(r−(s+1)p)

1− 2r−(s+1)p �
(
H

n2`
) r−p

2
2M(r−(s+1)p) ;

1To see why, recall that

logmJ − J(2s+ 1) = log n

H
− (J − `)+ − J(2s+ 1) +O(1)

from our setting of mJ . Finding the value of J for which log n
H

− (J − `)+ − J(2s+ 1) cancels gives the claimed
relation.
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note that 1
1−2r−(s+1)p > 0 is a constant, depending only on r, s, p. Similarly, r−(2s+1)p < 0,

and so(
H

n

) r−p
2

H∑
J=M

2
1
2J(r−(2s+1)p) ≤

(
H

n

) r−p
2 2

1
2M(r−(2s+1)p)

1− 2
1
2 (r−(2s+1)p)

�
(
H

n

) r−p
2

2
1
2M(r−(2s+1)p).

From the setting of M from (27), by a distinction of cases we again can bound their sum as

(
H

n2`
) r−p

2
H∑

J=M
2J(r−(s+1)p) +

(
H

n

) r−p
2

H∑
J=M

2
1
2J(r−(2s+1)p) .

(
H

n2`
) rs

2s+2
∨
(
H

n

) rs
2s+1

.

Therefore, overall, in the case p > r
s+1 we have (bringing back the factor Hr/2 we had

ignored earlier)

Ebb . Hr/2
(
H

n2`
) rs

2s+2
∨Hr/2

(
H

n

) rs
2s+1

. (28)

• If p ≤ r
s+1 , we will choose αJ ≥ p for all J . Under this constraint, we can use the

monotonicity of `p norms (for every x, ‖x‖p ≤ ‖x‖q if p ≥ q) to write

Ebb .
H∑
J=L

2J(r/2−1)

m
(r−αJ )/2
J

∑
k∈Z
|βJ,k|αJ ≤

H∑
J=L

2J(r/2−1)

m
(r−αJ )/2
J

∑
k∈Z
|βJ,k|p

αJ/p

.
H∑
J=L

2J(r/2−1)

m
(r−αJ )/2
J

2−JαJ (s+ 1
2−

1
p

) (Fact A.3)

=
H∑
J=L

m
− r−αJ2
J 2J( r2−1−αJ (s+ 1

2−
1
p

))
.

As before, one can see that for there exists some M such that the best choice is to set
αJ = p for J ≤M (as small as possible given our constraint αJ ≥ p). Moreover, proceeding
as in the previous case,2 we can see that this M is such that

2M �
(
n2`

H

) 1
2(s−1/p)+2

∧
(
n

H

) 1
2(s−1/p)+1

. (29)

This part of the sum will then contribute

M∑
J=L

m
− r−p2
J 2J( r2−1−p(s+ 1

2−
1
p

)) �
(
H

n2`
) r−p

2
M∑
J=L

2J(r−1−p(s+1− 1
p

)) +
(
H

n

) r−p
2

M∑
J=L

2J( r2−1−p(s+ 1
2−

1
p

))

�
(
H

n2`
) r−p

2
2M(r−p(s+1)) +

(
H

n

) r−p
2

2M( r2−1−p(s+ 1
2−

1
p

))

�
(
H

n2`
) r(s−1/p+1/r)

2(s−1/p)+2
∨
(
H

n

) r(s−1/p+1/r)
2(s−1/p)+1

.

2That is, find the value J solving (approximately) the equation log n
H

− (J − `)+ − J(2s+ 1 − 2/p) = 0 (note
that the LHS is again decreasing in J).
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For J > M , we choose an arbitrary constant α ≥ p such that α > r−1
s+1−1/p (so that

r − 1 − α(s + 1 − 1/p) < 0), and set αJ = α for all J > M .3 Observe that this implies
α > r/2−1

s+1/2−1/p . This part of the sum will then contribute at most

H∑
J=M

m
− r−α2
J 2J( r2−1−α(s+ 1

2−
1
p

)) �
(
H

n2`
) r−α

2
H∑

J=M
2J(r−1−α(s+1− 1

p
)) +

(
H

n

) r−α
2

H∑
J=M

2J( r2−1−α(s+ 1
2−

1
p

))

�
(
H

n2`
) r−α

2
2M(r−1−α(s+1− 1

p
)) +

(
H

n

) r−α
2

2M( r2−1−α(s+ 1
2−

1
p

))

�
(
H

n2`
)− r(s−1/p+1/r)

2(s−1/p)+2
∨
(
H

n

) r(s−1/p+1/r)
2(s−1/p)+1

as well. Thus, overall, in the case p ≤ r
s+1 we have (bringing back the factor Hr/2 we had

ignored earlier)

Ebb . Hr/2
(
H

n2`
) r(s−1/p+1/r)

2(s−1/p)+2
∨Hr/2

(
H

n

) r(s−1/p+1/r)
2(s−1/p)+1

. (30)

The term Esb. To handle the term Esb, we will rely on the fact that, for any r ≥ p, we
have the inclusion B(p, q, s) ⊆ B(r, q, s′), for s′ = s−

(
1
p −

1
r

)
. This will let us use Fact A.3 on∑

k∈Z |βJ,k|r:

Esb . Hr/2
H∑
J=L

2J( r2−1) ∑
k∈Z

E
[
|βJ,k|r1k∈IbJ\ÎJ

]
(Fact A.7)

. Hr/2
H∑
J=L

2J( r2−1) ∑
k∈Z
|βJ,k|r Pr

(
|β̂J,k − βJ,k| > κtJ

)

. Hr/2
H∑
J=L

2J( r2−1) ∑
k∈Z
|βJ,k|r2−κJ (Lemma C.1)

. Hr/2
H∑
J=L

2J( r2−1−κ)2−Jr(s′+
1
2−

1
r

) (Fact A.3)

= Hr/2
H∑
J=L

2−J(rs′+κ) ≤ Hr/2 2−L(rs′+κ)

1− 2−(rs′+κ)

. Hr/22−Lr(N+1) . Hr/2(n2`)−
r(N+1)

2(N+1)+2 ∨Hr/2n
− r(N+1)

2(N+1)+1 ≤ Hr/2(n2`)−
rs

2s+2 ∨Hr/2n−
rs

2s+1

(31)

where for the third-to-last inequality we relied on our choice of κ ≥ r(N + 1), and for the
second-to-last, on our setting of L.

The term Ess. Finally, we bound the last error term for details(f), Ess. In view of proceeding
as for Ebb, for any nonnegative sequence (αJ)J with 0 ≤ αJ ≤ r, we can write

Ess . Hr/2
H∑
J=L

2J( r2−1) ∑
k∈Z

E
[
|βJ,k|r1k∈IsJ\ÎJ

]
(Fact A.7)

3It will be important later, when bounding Ess, to note that r−1
s+1−1/p < r, and thus one can also enforce α ≤ r.
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≤ Hr/2
H∑
J=L

2J( r2−1) ∑
k∈Z
|βJ,k|r1k∈IsJ

≤ Hr/2
H∑
J=L

2J( r2−1) ∑
k∈Z
|βJ,k|αJ (κtJ/2)r−αJ1k∈IsJ

≤ Hr/2(κ/2)r
H∑
J=L

2J( r2−1)J
r−αJ

2 m
−(r−αJ )/2
J

∑
k∈Z
|βJ,k|αJ

≤ (κ/2)rHr
H∑
J=L

2J(r/2−1)

m
(r−αJ )/2
J

∑
k∈Z
|βJ,k|αJ

which is, except for the extra factor of (κ/2)rH
r
2 , exactly the same expression as (26). We can

thus continue the analysis of Ess the same way as we did Ebb, noting that since r ≥ p all the
choices for αJ in that analysis are still possible; leading to the bound:

Ess .


Hr ·

((
H
n2`
) rs

2s+2 ∨
(
H
n

) rs
2s+1

)
p > r

s+1

Hr ·
((

H
n2`
) r(s−1/p+1/r)

2(s−1/p)+2 ∨
(
H
n

) r(s−1/p+1/r)
2(s−1/p)+1

)
p ≤ r

s+1 .
(32)

C.3.3 Total error

Defining, for r ≥ 1, s ≥ 0, and p ≥ 1, the quantities

ν(r, p, s) := rs

2s+ 21p>
r
s+1

+ r(s− 1/p+ 1/r)
2(s− 1/p) + 2 1p≤ r

s+1

and
µ(r, p, s) := rs

2s+ 11p>
r
s+1

+ r(s− 1/p+ 1/r)
2(s− 1/p) + 1 1p≤ r

s+1

we can gather all the error terms from Eqs. (23), (24), (25), (28), (30), (31) and (32), to get

E
[∥∥∥f − f̂∥∥∥r

r

]
. Hκ

(
(n2`)−

r(s−1/p+1/r)
2 ∨ n−r(s−1/p+1/r) + (n2`)−

rs
2s+2 ∨ n−

rs
2s+1 + (n2`)−ν(r,p,s) ∨ n−µ(r,p,s)

)
where κ = κ(s, r, p) is a constant obtained for simplicity by taking the maximum of the exponent
of H in the previous bounds. To simplify this expression, we observe that the following holds for
all p, r, s ≥ 1:

• ν(r, p, s) ≤ r(s−1/p+1/r)
2

• ν(r, p, s) ≤ rs
2s+2

• µ(r, p, s) ≤ r
(
s− 1

p + 1
r

)
• µ(r, p, s) > rs

2s+1 if, and only if, r ∈ ((s+ 1)p, (2s+ 1)p) (and of course µ(r, p, s) = rs
2s+1 if

r ≤ (s+ 1)p)

(this follows from somewhat tedious algebraic manipulations and distinctions of cases). Given
the above, we finally get the following bound (where we loosened the bound on the exponent of
H to make the result simpler to state):

E
[∥∥∥f − f̂∥∥∥r

r

]
. Hκ

(
(n2`)−ν(r,p,s) ∨ n−µ(r,p,s) ∨ n−

rs
2s+1

)
18



= logκ n ·


(n2`)−

rs
2s+2 ∨ n−

rs
2s+1 if r < (s+ 1)p

(n2`)−
r(s−1/p+1/r)

2(s−1/p)+2 ∨ n−
rs

2s+1 if (s+ 1)p ≤ r < (2s+ 1)p

(n2`)−
r(s−1/p+1/r)

2(s−1/p)+2 ∨ n−
r(s−1/p+1/r)

2(s−1/p)+1 if r ≥ (2s+ 1)p

(33)

which proves Theorem 1.3 in the main paper.
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D Lower Bounds
Our lower bound construction will depend on whether r < (s + 1)p or r ≥ (s + 1)p. Before
delving into these cases, we first (a) recall the result from [1] that we will use to upperbound
average discrepancy; (b) discuss how the consideration of binary hypothesis testing problem gives
a lower bound on average discrepancy.

D.1 Upper bound on average discrepancy

Consider the following assumptions on P = {pz : z ∈ {−1, 1}d}, where pz’s are probability
distributions on [0, 1].

Assumption D.1 (Densities exist). For every z ∈ {−1, 1}d and i ∈ JdK, there exist functions
φz,i : [0, 1]→ R such that Epz [φ2

z,i] = 1 and

dpz⊕i
dpz

= 1 + αφz,i

where α ∈ R is a fixed constant independent of z, i.

Assumption D.2 (Orthonormality). For all z ∈ {−1, 1}d and i, j ∈ JdK, Epz [φz,iφz,j ] = 1{i=j}.

Theorem D.3 (corollary 2 in [1]). Suppose P satisfies Assumptions D.1 and D.2. For some
τ ∈ (0, 1/2], let π be a prior on Z ∈ {−1, 1}d defined as Zi ∼ Rademacher(τ) independently for
each i ∈ JdK. For Z ∼ π, let X1, . . . , Xn be i.i.d. samples from pZ . Then, for any interactive
protocol generating `-bit messages Y1, . . . , Yn, we have(

1
d

d∑
i=1

dTV

(
pY n−i ,pY

n

+i

))2

≤ 7
d
nα22`.

D.2 Lower bound on average discrepancy

For Z ∼ π, let X1, . . . , Xn be i.i.d. samples from pZ distributed across n players, and let
Y1, . . . , Yn be `-bit messages sent by the players (possibly interactively) to the referee. Based
on the `-bit messages Y1, . . . , Yn, suppose the referee outputs an estimate Ẑ = (Ẑ1, . . . , Ẑd)
of Z = (Z1, . . . , Zd). Then, an upper bound on

∑d
i=1 Pr

{
Ẑi 6= Zi

}
gives a lower bound on∑d

i=1 D
(
pY n−i ‖pY

n

+i

)
. To see this, note that, for a given i ∈ JdK,

Pr
{
Ẑi 6= Zi

}
= Pr

{
Ẑi = −1|Zi = 1

}
Pr {Zi = 1}+ Pr

{
Ẑi = 1|Zi = −1

}
Pr {Zi = −1}

= τ
(
1− Pr

{
Ẑi = 1|Zi = 1

})
+ (1− τ) Pr

{
Ẑi = 1|Zi = −1

}
≥ τ

(
1− Pr

{
Ẑi = 1|Zi = 1

})
+ τ Pr

{
Ẑi = 1|Zi = −1

}
(since (1− τ) ≥ τ for τ ≤ 1/2)

= τ
(
1−

(
Pr
{
Ẑi = 1|Zi = 1

}
− Pr

{
Ẑi = 1|Zi = −1

}))
≥ τ

(
1− dTV

(
pY n+i ,pY

n

−i

))
.

Thus,
d∑
i=1

Pr
{
Ẑi 6= Zi

}
≥ τ

(
d−

d∑
i=1

dTV

(
pY n+i ,pY

n

−i

))
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which gives
1
d

d∑
i=1

dTV

(
pY n+i ,pY

n

−i

)
≥ 1− 1

dτ

d∑
i=1

Pr
{
Ẑi 6= Zi

}
. (34)

In conclusion, to get a lower bound on average discrepancy, it suffices to upperbound
∑d
i=1 Pr

{
Ẑi 6= Zi

}
for an estimator Ẑ of Z.

D.3 Lower bound on L∗r(n, `, p, q, s) for r < (s + 1)p
Construction. The family of distributions P1 that we will use to derive lower bound when
r < (s+ 1)p has also been used in deriving lower bounds in the unconstrained setting [4, 5] and
in the LDP setting [2].

Let g0 be a density function (see [5, p.157]) such that

1. supp(g0) ⊆ [0, 1];

2. ‖g0‖pqs ≤ 1/2;

3. g0 ≡ c0 > 0 on some interval [a, b] ⊆ [0, 1].

In what follows, j is a free parameter that will be suitably chosen later in the proof. Let ψj,k
be defined as ψj,k(x) = 2j/2ψ(2jx − k), where ψ is the mother wavelet used to define ‖·‖pqs
(see Section A). It is a fact that

∫
ψj,k(x)dx = 0 for every j, k [5].

For a given z ∈ {−1, 1}d, define
fz := g0 + γ

∑
k∈Ij

zkψj,k (35)

where

• Ij is the set of indices k ∈ Z such that

i. supp(ψj,k) ⊆ [a, b] for every k ∈ Ij ;
ii. for k, k′ ∈ Ij , k 6= k′, ψj,k and ψjk′ have disjoint support;
iii. d := |Ij | = C2j , for a constant C. Here on, we will assume for simplicity that d = 2j .

• γ is chosen such that

i. fz(x) ≥ c0/2 for every x ∈ [a, b]; this condition is satisfied if c0 − γ2j/2‖ψ‖∞ ≥ c0/2,
i.e., γ ≤ (c0/2‖ψ‖∞)2−j/2.

ii. ‖fz‖pqs ≤ 1; since ‖fz‖pqs ≤ ‖g0‖pqs + γ‖ψj,k‖pqs ≤ 1/2 + γC2j/p2j(s+1/2−1/p) (see pg.
160 in [5]), we get that ‖fz‖pqs ≤ 1 if γ ≤ (1/2C)2−j(s+1/2).

Since s > 1/p > 0, we get that for j large enough, if γ satisfies condition (ii), it automatically
satisfies condition (i). Thus, we choose γ = C2−j(s+1/2) for some constant C.

Finally, we define the family of distributions as

P1 =

pz : pz has density fz = g0 + γ
∑
k∈Ij

zkψj,k, z ∈ {−1, 1}d
 . (36)
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Prior on Z. We assume a uniform prior on Z ∈ {−1, 1}d, i.e., Zi ∼ Rademacher(1/2) inde-
pendently for each i ∈ JdK.

Upper bound on average discrepancy. To upperbound average discrepancy, we verify that
P1 satisfies the three assumptions described in Section D.1, and then use Theorem D.3. For any
z ∈ {−1, 1}d, k ∈ JdK, we have

dpz⊕k
dpz

(x) = 1− 2γzkψj,k(x)
c0 + γzkψj,k(x) .

Since supp(ψj,k) ∩ supp(ψj,k′) is empty for k 6= k′, it follows that Assumptions D.1 and D.2 hold.

We now compute an upper bound on α2 := Epz

[(
γzkψj,k(X)

c0+γzkψj,k(X)

)2
]
.

Epz

( 2γzkψj,k(X)
c0 + γzkψj,k(X)

)2
 = 4γ2

∫
supp(ψj,k)

ψj,k(x)2(c0 + γzkψj,k(x))
(c0 + γzkψj,k(x))2 dx

= 4γ2
∫

supp(ψj,k)

ψj,k(x)2

c0 + γzkψj,k(x)dx

≤ 2γ2c0

∫
supp(ψj,k)

ψj,k(x)2dx (as c0 + γzkψj,k(x) ≥ c0/2)

≤ 2γ2c0 × (2j/2‖ψ‖∞)2 × length(supp(ψj,k))

≤ 2γ2c0 × (2j/2‖ψ‖∞)2 × C ′′

2j (for a constant C ′′ > 0)

= C ′γ2 (for a constant C ′ > 0)
= C2−j(2s+1). (for a constant C > 0)

Thus, using Theorem D.3, we get 1
2j
∑
k∈Ij

dTV

(
pY n−k ,pY

n

+k

)2

. (n2`)2−2j(s+1). (37)

Lower bound on average discrepancy. To lower bound the average discrepancy, we will
use the idea described in Section D.2. Consider a communication-constrained density estimation
algorithm (possibly interactive) that outputs f̂ satisfying supf∈B(p,q,s) Ef

[∥∥f̂ − f∥∥r
r

]
≤ εr. Using

this density estimator, we estimate Ẑ as

Ẑ = argmin
z

∥∥∥fz − f̂∥∥∥
r
.

Then
Epz

[∥∥fz − fẐ∥∥rr] ≤ 2r−1
(
Epz

[∥∥∥fz − f̂∥∥∥r
r

]
+ Epz

[∥∥fz − fẐ∥∥rr]) ≤ 2rεr. (38)

Now, for z 6= z′, we have

‖fz − fz′‖rr =
∫ 1

0
|fz(x)− fz′(x)|rdx

= γr
∫ 1

0

∣∣∣∣∣∣
∑
k∈Ij

ψj,k(x)1{zk 6=z′k}

∣∣∣∣∣∣
r

dx
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= γr
∫ 1

0

∑
k∈Ij

|ψj,k(x)|r1{zk 6=z′k}dx (since the ψj,k’s have disjoint supports)

= γr
∑
k∈Ij

∫
supp(ψj,k)

|ψj,k(x)|r1{zk 6=z′k}dx

= γr(2j/2‖ψ‖∞)rC
′′

2j
∑
k∈Ij

1{zk 6=z′k} (for a constant C ′′ > 0)

= C ′γr2j(r/2−1) ∑
k∈Ij

1{zk 6=z′k} (for a constant C ′ > 0)

= C2−j(rs+1) ∑
k∈Ij

1{zk 6=z′k}. (for a constant C > 0)

which gives that, for an estimator Ẑ,

Epz

[∥∥fz − fẐ∥∥rr] = C2−j(rs+1) ∑
k∈Ij

Pr
{
Zk 6= Ẑk

}
.

Combining this with (38), we get∑
k∈Ij

Pr
{
Ẑk 6= Zk

}
. εr2j(rs+1). (39)

Thus, substituting d = 2j and τ = 1/2 in (34) (and ignoring multiplicative constants), we get

1
2j
∑
k∈Ij

dTV

(
pY n−k ,pY

n

+k

)
& 1− 2

2j ε
r2j(rs+1) ' 1− εr2jrs.

Now, observe that j is a free parameter that we can choose. If we choose j such that

εr2jrs ' 1 (40)

then we get
1
2j
∑
k∈Ij

dTV

(
pY n−k ,pY

n

+k

)
& 1

or  1
2j
∑
k∈Ij

dTV

(
pY n−k ,pY

n

+k

)2

& 1 (41)

Putting things together. From (37) and (41), we get that, for j satisfying εr2jrs ' 1,

1 . (n2`)2−2j(s+1).

which gives
2j . (n2`)

1
2s+2 .

Using εr2jrs ' 1, we finally get
εr & (n2`)−

rs
2s+2

which is our desired lower bound.
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D.4 Lower bound on L∗r(n, `, p, q, s) for r ≥ (s + 1)p
Construction. The family of distributions P2 that we will use to derive lower bound when
r ≥ (s+ 1)p is not exactly the same as that in the unconstrained and in the LDP setting [4, 5, 2];
but, combined with the prior that we will choose on Z, it will essentially mimic that.

Let g0, ψj,k, Ij be as in Section D.3. For a given z ∈ {−1, 1}d (where d := |Ij |), define

fz := g0 + γ
∑
k∈Ij

(1 + zk)ψj,k. (42)

where we will choose γ after we describe the prior on Z. Finally, we define the family of
distributions as

P2 =

pz : pz has density fz = g0 + γ
∑
k∈Ij

(1 + zk)ψj,k, z ∈ {−1, 1}d
 . (43)

Prior on Z. We assume a “sparse” prior on Z ∈ {−1, 1}d, defined as Zk ∼ Rademacher(1/d)
independently for each k ∈ JdK. We call it “sparse” because, with high probability, for Z =
(Z1, . . . , Zd) sampled from this prior, the number of indices k with Zk = 1 will be small (we
will quantify this soon). Now, since fZ = g0 + γ

∑
k∈Ij (1 + Zk)ψj,k, this means that with high

probability 1 +Zk = 0 for a large number of k’s, and thus there will be only a few “bumps” in fZ .

Choosing γ. Define G ⊂ {−1, 1}d as

G :=
{
z ∈ {−1, 1}d :

d∑
k=1

1{zk=1} ≤ 2j
}
.

Then, by Bernstein’s inequality

Pr {Z ∈ G} ≥ 1− 4 · 2−2j . (44)

We will choose γ such that

i. fz(x) ≥ c0/2 for every x ∈ [a, b]; as seen in Section D.3, this condition is satisfied if
γ ≤ (c0/2‖ψ‖∞)2−j/2.

ii. ‖fz‖pqs ≤ 1 for every z ∈ G; argument similar to that in Section D.3 gives that ‖fz‖pqs ≤ 1
for z ∈ G if γ . 2−j(s+1/2−1/p)j−1/p.

Since s > 1/p, we get that for j large enough (j is a free parameter that we choose later),
if γ satisfies condition (ii), it automatically satisfies condition (i). Thus, we choose γ =
C2−j(s+1/2−1/p)j−1/p for some constant C.
Note that, for z /∈ G, this choice of γ still results in fz being a density function (since

∫
ψj,k(x)dx =

0), but it may be the case that ‖fz‖spq > 1.
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Upper bound on average discrepancy. To upperbound average discrepancy, we verify that
P2 satisfies the three assumptions described in Section D.1. For any z ∈ {−1, 1}d, k ∈ JdK, we
have

dpz⊕k

dpz
(x) =

g0 + γ
∑
k∈Ij (1− zk)ψj,k(x)

g0 + γ
∑
k∈Ij (1 + zk)ψj,k(x)

= 1− 2γzkψj,k(x)
c0 + γ

∑
k∈Ij zkψj,k(x)

which is same as what we had in Section D.3. Similar arguments lead to the conclusion that As-
sumptions D.1 and D.2 are satisfied. Moreover, an upper bound on α2 := Epz

[( 2γziψj,k(X)
c0+γziψj,k(X)

)2
]

follows similarly (with different value of γ), and we get that

α2 ≤ C2−2j(s+1/2−1/p)j−2/p. (for a constant C > 0)

Thus, using Theorem D.3, we get 1
2j
∑
k∈Ij

dTV

(
pY n−k ,pY

n

+k

)2

. (n2`)2−2j(s+1−1/p)j−2/p. (45)

Lower bound on average discrepancy. To lowerbound average discrepancy, we proceed as
in Section D.3. Consider a communication-constrained density estimation algorithm (possibly in-
teractive) that outputs f̂ satisfying supf∈B(p,q,s) Ef

[∥∥f̂ − f∥∥r
r

]
≤ εr. Using this density estimator,

we estimate Ẑ as
Ẑ = argmin

z

∥∥∥fz − f̂∥∥∥
r
.

Then, for z ∈ G,
Epz

[∥∥fz − fẐ∥∥rr] ≤ 2rεr. (46)

This only holds for z ∈ G because the estimator’s guarantee only holds if samples come from a
density f satisfying ‖f‖spq ≤ 1. Now, for z 6= z′, plugging in the value of γ in the calculation
done in Section D.3, we get

‖fz − fz′‖rr = Cj−r/p2−j(r(s−1/p)+1) ∑
k∈Ij

1{zk 6=z′k} (for a constant C > 0)

which gives that, for any estimator Ẑ,

Epz

[∥∥fz − fẐ∥∥rr] = Cj−r/p2−j(r(s−1/p)+1) ∑
k∈Ij

Pr
{
Ẑk 6= Zk

}
.

Combining this with (46), we get that∑
k∈Ij

Pr
{
Zk 6= Ẑk, Z ∈ G

}
. εrjr/p2j(r(s−1/p)+1). (47)

Thus,∑
k∈Ij

Pr
{
Ẑk 6= Zk

}
=
∑
k∈Ij

Pr
{
Zk 6= Ẑk, Z ∈ G

}
+
∑
k∈Ij

Pr
{
Zk 6= Ẑk, Z /∈ G

}
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≤
∑
k∈Ij

Pr
{
Zk 6= Ẑk, Z ∈ G

}
+

∑
k∈Ij

Pr
{
Ẑk 6= Zk|Z /∈ G

}Pr {Z /∈ G}

. εrjr/p2j(r(s−1/p)+1) + 2j2−2j . (using (47),(44))

Thus, substituting d = 2j and τ = 1/d = 2−j in (34) (and ignoring multiplicative constants), we
get

1
2j
∑
k∈Ij

dTV

(
pY n−k ,pY

n

+k

)
& 1− εrjr/p2j(r(s−1/p)+1) − 2−j

' 1− εrjr/p2jr(s−1/p+1/r).

Choosing j such that
εr2jr(s−1/p+1/r)jr/p ' 1 (48)

gives
1
2j
∑
k∈Ij

dTV

(
pY n−k ,pY

n

+k

)
& 1.

or  1
2j
∑
k∈Ij

dTV

(
pY n−k ,pY

n

+k

)2

& 1. (49)

Putting things together. From (45) and (49), we get, for any j satisfying εr2jr(s−1/p+1/r)jr/p '
1, that 1 . (n2`)2−2j(s+1−1/p)j−2/p. This then yields

22j(s+1−1/p)j2/p . n2`. (50)

To get a rough idea of the bound this will give, let us ignore j2/p to get,

2j .
(
n2`

) 1
2(s+1−1/p) . (51)

Now, since εr2jr(s−1/p+1/r)jr/p ' 1, we get, roughly, (ignoring jr/p)

2j ' (1/ε)
1

s−1/p+1/r . (52)

Combining (51), (52), we get that (up to logarithmic factors)

εr & (n2`)−
r(s−1/p+1/r)

2(s+1−1/p)

which is the desired bound, again up to logarithmic factors. We now show how a slightly more
careful analysis lets us obtain the tight bound.

Bringing in log factors. From (50), we get that

2j .
(
n2`

) 1
2(s+1−1/p)

(
log(n2`)

)− 2/p
2(s+1−1/p) . (53)

Now, since εr2jr(s−1/p+1/r)jr/p ' 1, we get

2j ' (1/ε)
1

s−1/p+1/r (log(1/ε))−
1

p(s−1/p+1/r) .
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Substituting this in (53), we get

(1/ε)
1

s−1/p+1/r (log(1/ε))−
1

p(s−1/p+1/r) .
(
n2`

) 1
2(s+1−1/p)

(
log(n2`)

)− 2/p
2(s+1−1/p)

or
1/ε (log(1/ε))−1/p .

(
n2`

) s−1/p+1/r
2(s+1−1/p)

(
log(n2`)

)−(2/p) (s−1/p+1/r)
2(s+1−1/p) .

This implies that

1/ε .
(
n2`

) s−1/p+1/r
2(s+1−1/p)

(
log(n2`)

)−(2/p) (s−1/p+1/r)
2(s+1−1/p)

(
log

((
n2`

) s−1/p+1/r
2(s+1−1/p)

(
log(n2`)

)−(2/p) (s−1/p+1/r)
2(s+1−1/p)

))1/p

'
(
n2`

) s−1/p+1/r
2(s+1−1/p)

(
log(n2`)

)−(2/p) (s−1/p+1/r)
2(s+1−1/p) + 1

p

=
(
n2`

) s−1/p+1/r
2(s+1−1/p)

(
log(n2`)

)− 1−1/r
p(s−1/p+1) .

Thus
εr &

(
n2`

) r(s−1/p+1/r)
2(s+1−1/p)

(
log(n2`)

)− r−1
p(s−1/p+1) . (54)

D.5 Concluding the proof of Theorem 1.1

Combining lower bounds from Sections D.3 and D.4 with lower bounds in the classical setting [4]
(where the rate transition happens at r = (2s+ 1)p), we get Theorem 1.1.
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