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Appendix A: Performance and Computation Trade-off of Saliency Buffer

Saliency Buffer Implementation Details

* Image Global Index: Each image sample is assigned a global index, which is included as
additional data returned by the data loader.

* Random Cropping: When random cropping (pixel shift) is enabled, cropping randomisers
return the cropping parameters, which include the pixel coordinates of the top-left corner
and the cropping size. Assuming no additional down-sampling when saving, the buffer
maintains the saliency map at its original size before cropping. A saliency map derived
from cropped image is padded with zeros in the regions cropped out to match the full image
size. Upon retrieval, saliency maps are adjusted to the specified cropping parameters.

* Pixel Range Conversion: Each saliency map stored in the buffer is kept as a single-channel
8-bit unsigned integer (UINT8) image to optimise memory use. For augmentation, saliency
maps are normalised with pixel values scaled to [0, 1]. These values are converted to UINT8
when saved and back to float32 (FLOAT32) within [0, 1] upon retrieval.

» Saliency Warm-up: The buffer does not update and returns all-one saliency maps dur-
ing the first 7y epochs (default set to 10), allowing the encoders to develop task-specific
knowledge before strong data augmentation is applied. This warm-up strategy is also im-
plemented in the RoboSaGA variants: Random Overlay and Guided-Erase.

Performance and Computation Trade-off

Lift Can Square
Buffer No-Buffer Buffer No-Buffer Buffer No-Buffer

In-domain ~ 0.98+0.00 0.9940.01 0.9710.03 0.96+0.03 0.68+0.06 0.69+0.01

Background 0.89i0‘05 0.92i0_03 0‘87i0‘02 0.85i0_01 ().BQiQ_Ug 0.43i0_02
Distractor 0.9540.04 0.9840.02 0.71+0.07 0.674+0.03 0.69+0.09 0.67+0.02
mean 0.9240.05 0.9510.04 0.7940.09 0.7610.10 0.54+0.17 0.5510.12

Table 4: Performance of RoboSaGA with and without Saliency Buffer under visual domain shifts
(BC-MLP).

Buffer | No Buffer
0.22s | 0.70s

Table 5: Average augmentation time per batch

Here, we compare the performance and computational differences between utilising a saliency buffer
and directly computing the saliency. In the RoboSaGA experiments, detailed in Sec. 4.2, 10% of
the current batch is sampled for saliency updates and saved in the saliency buffer; the augmentation
ratio « is maintained at 50% of the current batch. By contrast, when the buffer is disabled, saliency
maps are directly computed for 50% of the batch. The experiments are conducted on the Lift, Can,
and Square tasks in simulation using the BC-MLP policy.

As shown in Tab. 4, the average success rates over three tasks for RoboSaGA, with and without the
saliency buffer under visual domain shifts, are 0.75 and 0.753, respectively. No significant perfor-
mance difference is observed. While the use of the saliency buffer does not enhance performance, it
significantly reduces the computation time required for saliency extraction to one-third (7ab. 5).
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Task Action Observation Proprio. Max.  Num. of Long Num. of

Dimension Dimension Dimension Steps Views Horizon Subtasks

Simulation

Lift 7 2 x 84 x 84 7 200 400 No 1

Can 7 2 x 84 x 84 7 200 400 No 2

Square 7 2 x 84 x 84 7 200 400 No 2

Transport 14 4 X 84 x 84 7 200 400 Yes 8
Real-world

Toy 7 2 x 84 x 84 12 160 - No 2

Table 6: Task Summary. Action Dimension: Robot action dimension, including end-effector 6-
DOF velocity and parallel gripper width. Observation Dimension: Number of views x Image ob-
servation dimension. Proprio. Dimension: the dimension of robot proprioceptive states. Num. of
Demos: Number of demonstrations provided. Maximum Steps: Maximum rollout steps in simula-
tion. Num. of Views: Number of camera views. Long-Horizon: Indicates whether the task requires
learning multiple behaviours together. Num. of Subtasks: Number of sub-tasks within each task.

Appendix B: Experimental Details

Task Descriptions

In this work, we utilise four simulation tasks from RoboMimic [5] with provided proficient human
(PH) demonstrations, and one real-world pick-and-place task collected via proficient human tele-
operation. All tasks employ Franka Panda as the manipulator within a 7-dimensional action space,
which includes the 6 degrees of freedom for end-effector pose and gripper width. In the simulation,
the proprioceptive states include the end-effector pose (rotation is represented by quaternion) and
gripper width. The real task utilises a 12-dimensional robot state represented by a flattened SE(3)
matrix (last row omitted). Except for the Transport task, all tasks use two camera views: a second-
person camera and a first-person camera. The Transport task features two camera views associated
with each manipulator. Task descriptions and details are summarised below and in 7ab. 6.

e Lift: Grasp and lift a red cube from the table.

* Can: Grasp a Coke Can from the left bin (sub-task 1), and place it into the corresponding
target bin on its right (sub-task 2).

* Square: Grasp the square nut by the handle (sub-task 1) and insert it into a matching square
peg (sub-task 2).

» Transport:

— Left arm: Pick the handle of the source bin’s lid (sub-task 1), place the lid in the empty
space (sub-task 2), grasp the hammer within the source bin (sub-task 3), and deliver it
to the workspace within the right arm’s reach (sub-task 4).

— Right arm: Pick up a red cube from the target bin (sub-task 5), place it into the trash
bin (sub-task 6), take the hammer delivered by the left arm (sub-task 7), and place it
into the target bin (sub-task 8).

* Toy: Pick up a green squashy toy (sub-task 1) and place it into a yellow cup (sub-task 2).
The location of the toy and the cup varies within a 10 x 10cm? area.

Policy and Training Details

BC-MLP and BC-RNN utilise the default network configurations as specified in RoboMimic [5].
Specifically, each image observation is processed by a ResNet18 [24] followed by a spatial-softmax
layer [25]. All observation features are then concatenated with the robot’s proprioceptive states,
forming a single feature vector. The flattened states are fed into either an MLP or an RNN. The
MLP employs ReLU activations, while the RNN consists of a 2-layer LSTM. The final layer’s

12
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Hyperparameter BC-MLP BC-RNN

Learning Rate (LR) 1x10°* 1x10°*
Actor MLP Dimensions [1024, 1024] -
RNN Hidden Dimension - 1000

RNN Sequence Length - 10

GMM Number of Modes 5 5
Image Encoder ResNet18 ResNet18

SpatialSoftmax (num-KP) 64 64

Table 7: Hyper-parameters for BC-MLP and BC-RNN.

hidden states are fed into the downstream Gaussian Mixture Model (GMM). As described in
RoboMimic [5], during the rollout with GMM policies, the learned standard deviations of each
mode are replaced with 1 x 10~*. Hyper-parameter settings are detailed in Tab. 7.

Diffusion Policy employs the hybrid-CNN architecture as detailed in [2]. It utilises a similar image
encoder as described above but replaces BatchNorm layers [26] with GroupNorm [27]. The input
horizon, action horizon, and action prediction horizon are set to 2, 8, and 16, respectively. The
learning rate is set to 1 x 1074,

All networks are trained from scratch with Adam [28] optimiser (learning rate set to 1 x 10™%).
Except for the simple Lift task is trained for 200 epochs, all tasks are trained for 600 epochs. 10%
of random cropping (i.e., 76 x 76 for 84 x 84 inputs) is applied to all images during training and
10% of centre cropping during evaluation.

Out-of-domain Images for RoboSaGA

MSCOCO Plain Gradient Chess Perlin

|
||
=
"
_I

Figure 6: Examples of out-of-domain images for data augmentation

RoboSaGA utilizes approximately 6,000 out-of-domain images for augmentation, comprising 5,000
real-world images from MSCOCO [23] and 1,000 synthetic images featuring plain, gradient, grid,
chess, and Perlin patterns (Fig. 6). All images are subject to random rotations and brightness adjust-
ments.

Backgrounds and Distractors for Evaluation

In the simulation, as illustrated in Fig. 7, table textures are derived from images of textiles and
patterns. Floor textures utilise common materials such as tiles and wooden flooring, while wall
textures are selected from both indoor and outdoor scenes. Distractors, including items like a Coke
can, bottle, cereal, bread, and lemon, form the default set. Some distractors may be removed to
prevent duplicating task-specific objects. For example, the Coke can is excluded from the Can task.
Distractors are strategically placed to minimise collisions with the manipulator and targets, although
collisions are still possible. Each selected distractor has a 50% chance of appearing.

In the real-world setting, as shown in Fig. 8, background shuffling is achieved by varying the
combinations of textiles drawn from the default textile set. These textiles sufficiently cover the

13



54

Floor Texture Table Texture Wall Texture Distractors

Figure 7: Examples of textures and distractors in simulation evaluation

Textile Set Distractor Set Background Shuffle Distractor Shuffl

Figure 8: Examples of textiles and distractors in real-world evaluation

441 field of view for both the second-person camera and the eye-in-hand camera, with examples of the
442 respective fields of view illustrated in Fig. 5. Distractors are also drawn from the default distractor
443 set, forming cluttered arrangements.

44 Appendix C: Full Tables for Simulated Experiments

BC BC-RNN
None Overlay SODA SaGA None Overlay SODA SaGA

Domain

In-domain 0.9710.00 0.9910.01 1.0010.00 0.9810.00 0.99+0.01 1.0010.00 0.95+0.02 0.99+0.02

k=1
3 Background 0.0040.00 0.87+0.05 0.80+0.04 0.8940.05 0.0240.03 0.9240.03 0.6510.090 0.9310.04
Distractor 0.2140.08 0.66+0.06 0.9640.02 0.9540.04 0.0840.05 0.96410.02 0.9240.03 1.00+0.00
mean 0.1040.12  0.7710.12  0.88+0.09 0.9210.05 0.05+0.05 0.9410.03 0.79+0.15 0.9610.05
In-domain 0.95:{:0.03 0.92:{;0_03 0.93:{:0_04 0.97:{:0,03 0.99:{:0,01 0.97:(:0,01 0.96:(:0402 0.97:(:0401

=
& Background 0.03+0.04 0.79+0.04 0.6540.06 0.87+0.02 0.0240.02 0.71i0.06 0.69+0.07 0.79+0.06
Distractor ~ 0.4310.03 0.5310.01 0.5710.05 0.71li0.07 0.3210.02 0.5510.04 0.6410.03 0.70+10.02
mean 0.2310.20 0.661£0.14 0.6110.07 0.791t0.09 0.1710.15 0.6310.09 0.6610.06 0.7410.06
® In-domain 0.6240.07 0.5140.06 0.4740.01 0.68+0.06 0.67+0.06 0.70+0.00 0.74+0.03 0.7540.03

=}
g_ Background 0.00:{:0_00 0.25:{:0_09 0.07:{:0_02 0-39:!:0.08 0.00:(:0_00 0.38:(:0_03 0.22:(:0_04 0.47:{:0_15
@ Distractor 0.37+0.06 0.4210.04 0.41t0.05 0.6910.09 0.33+0.07 0.591+0.05 0.38+0.10 0.7240.07
mean 0.1840.19 0.3410.11 0.2410.17 0.5410.17 0.1710.17 0.4910.11 0.3010.11 0.5910.17
E In-domain ~ 0.4910.01 0.37+0.05 0.4110.01 0.4610.07 0.6110.01 0.591+0.05 0.65+0.10 0.58+0.02

2
E Background  0.00+0.00 0.0540.02 0.01t0.01 0.0540.02 0.0010.00 0.1440.04 0.0540.02 0.20+0.06
; Distractor 0.2140.03 0.2140.03 0.2340.02 0.3440.11 0.2440.08 0.3540.03 0.394+0.05 0.41+0.02

mean 0.1110.11  0.1310.08 0.1240.11  0.2010.17 0.1240.13 0.2540.11  0.2240.17 0.30%0.11

Table 8: Performance of Random Overlay, SODA and RoboSaGA under visual domain shifts.
Each is evaluated with BC-MLP, BC-RNN, across four simulated tasks against distractors and back-
ground variations.
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Policy Diffusion Policy

Method None Overlay SODA SaGA

Task Domain

In-domain 1.00;&0,00 1.00;&0,00 1‘00:&0.00 1‘00:&0.00

E Background 0.86:&0‘02 0‘98:&0.02 0.98;&0,03 0‘93:&0‘03
Distractor 0.5540.01 1.0040.00 1.0040.00 1.0040.00
mean  0.7040.16 0.9940.02 0.9940.02 0.97+0.04
In-domain 1.0010.00 0.98+0.00 0.9710.02 0.97+0.01
=
(‘3 Background 0.5540.04 0.87+0.04 0.75+p.02 0.9140.02
Distractor 0.58:&0‘00 0.75:&0‘01 0.77:&0,01 0.86;&0,02
mean  0.56+0.03 0.81+t0.07 0.7610.02 0.89+0.03
° In-domain 0.9310.01 0914001 0.8710.01 0.9140.01
% Background 0.0119.01 0.5910.05 0.6310.0r 0.7610.06
@ Distractor 0.4840.07 0.8940.01 0.8140.05 0.901002
mean  0.2510.24 0.7410.15 0.7210.11 0.8310.08
B In-domain~ 0.9110.01 0.9040.03 0.90+0.06 0.90+0.02
&
é Background O‘OO:EOAOO 0‘45:&0‘03 0‘33:&0‘07 0‘61:&0.05
= Distractor 0.4440.06 0.58+0.04 0.611p01 0.60+0.06

mean  0.2240.22 0.51t0.08 0.47+0.15 0.6140.06

Table 9: Performance of Random Overlay, SODA and RoboSaGA under visual domain shifts.
Each is evaluated with Diffusion Policy, across four simulated tasks against distractors and back-
ground variations.

us  Appendix D: Interpretability Misalignment in Saliency Maps:

446 Here, we select three representative examples from the Transport task to illustrate the potential
447 misalignment between input saliency from the policies and human interpretation.

[ol0))] Random  Guided Robo- FullGrad
Tmage  Overlay Erase SaGA Saliency

Left Eill

Right EiH

Left 2nd

Right 2nd

Figure 9: Saliency Visualisation of Transport Task from BC-MLP. EiH: eye-in-hand camera.
2nd: second-person-camera

448 As observed in Fig. 9, the saliency maps produced by the history-independent BC-MLP align more
449 closely with human intuition compared to those from BC-RNN (Fig. 10a) and the Diffusion Policy
450 (Fig. 10b). In these visualisations, the Left Eye-in-Hand (EiH) camera focuses on the box handle,
451 while the Right EiH camera does not provide task-critical information, exhibiting random focus
452 instead. The left second-person camera focuses on the right arm, and the right second-person camera
453 focuses on the right hand. Notably, the left second-person camera does not focus on the lid handle, as
454 this piece of information is already provided by the left EiH camera. However, despite the alignment
455 of the saliency maps with human intuition, experimental results indicate that this alignment does
456 not necessarily translate into improved robustness against background variations. Indeed, none of
457 the tested augmentation methods enhanced the performance of BC-MLP in the Transport task (see
458 Tab. 8).
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4

Figure 10: Saliency Visualisation of Transport Task. EiH: eye-in-hand camera. 2nd: second-
person-camera

459 Although achieving higher robustness against background variations, the saliency maps produced
460 by the history-dependent BC-RNN and Diffusion Policy, in contrast to the history-independent BC-
461 MLP, are less interpretable from a human perspective. These maps can focus on elements considered
462 trivial by humans. Given that the task relies on historical observations, the robot’s states, multi-
463 views, and exhibits varying levels of visual dependency throughout its execution, we argue that
464 what humans perceive as visually important may not always align with the network’s focus.
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