
Appendix A: Performance and Computation Trade-off of Saliency Buffer355

Saliency Buffer Implementation Details356

• Image Global Index: Each image sample is assigned a global index, which is included as357

additional data returned by the data loader.358

• Random Cropping: When random cropping (pixel shift) is enabled, cropping randomisers359

return the cropping parameters, which include the pixel coordinates of the top-left corner360

and the cropping size. Assuming no additional down-sampling when saving, the buffer361

maintains the saliency map at its original size before cropping. A saliency map derived362

from cropped image is padded with zeros in the regions cropped out to match the full image363

size. Upon retrieval, saliency maps are adjusted to the specified cropping parameters.364

• Pixel Range Conversion: Each saliency map stored in the buffer is kept as a single-channel365

8-bit unsigned integer (UINT8) image to optimise memory use. For augmentation, saliency366

maps are normalised with pixel values scaled to [0, 1]. These values are converted to UINT8367

when saved and back to float32 (FLOAT32) within [0, 1] upon retrieval.368

• Saliency Warm-up: The buffer does not update and returns all-one saliency maps dur-369

ing the first γ epochs (default set to 10), allowing the encoders to develop task-specific370

knowledge before strong data augmentation is applied. This warm-up strategy is also im-371

plemented in the RoboSaGA variants: Random Overlay and Guided-Erase.372

Performance and Computation Trade-off373

Lift Can Square

Buffer No-Buffer Buffer No-Buffer Buffer No-Buffer

In-domain 0.98±0.00 0.99±0.01 0.97±0.03 0.96±0.03 0.68±0.06 0.69±0.01

Background 0.89±0.05 0.92±0.03 0.87±0.02 0.85±0.01 0.39±0.08 0.43±0.02

Distractor 0.95±0.04 0.98±0.02 0.71±0.07 0.67±0.03 0.69±0.09 0.67±0.02

mean 0.92±0.05 0.95±0.04 0.79±0.09 0.76±0.10 0.54±0.17 0.55±0.12

Table 4: Performance of RoboSaGA with and without Saliency Buffer under visual domain shifts
(BC-MLP).

Buffer No Buffer

0.22s 0.70s

Table 5: Average augmentation time per batch

Here, we compare the performance and computational differences between utilising a saliency buffer374

and directly computing the saliency. In the RoboSaGA experiments, detailed in Sec. 4.2, 10% of375

the current batch is sampled for saliency updates and saved in the saliency buffer; the augmentation376

ratio α is maintained at 50% of the current batch. By contrast, when the buffer is disabled, saliency377

maps are directly computed for 50% of the batch. The experiments are conducted on the Lift, Can,378

and Square tasks in simulation using the BC-MLP policy.379

As shown in Tab. 4, the average success rates over three tasks for RoboSaGA, with and without the380

saliency buffer under visual domain shifts, are 0.75 and 0.753, respectively. No significant perfor-381

mance difference is observed. While the use of the saliency buffer does not enhance performance, it382

significantly reduces the computation time required for saliency extraction to one-third (Tab. 5).383
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Task Action
Dimension

Observation
Dimension

Proprio.
Dimension

Max.
Steps

Num. of
Views

Long
Horizon

Num. of
Subtasks

Simulation

Lift 7 2 × 84 × 84 7 200 400 No 1
Can 7 2 × 84 × 84 7 200 400 No 2
Square 7 2 × 84 × 84 7 200 400 No 2
Transport 14 4 × 84 × 84 7 200 400 Yes 8

Real-world

Toy 7 2 × 84 × 84 12 160 – No 2

Table 6: Task Summary. Action Dimension: Robot action dimension, including end-effector 6-
DOF velocity and parallel gripper width. Observation Dimension: Number of views × Image ob-
servation dimension. Proprio. Dimension: the dimension of robot proprioceptive states. Num. of
Demos: Number of demonstrations provided. Maximum Steps: Maximum rollout steps in simula-
tion. Num. of Views: Number of camera views. Long-Horizon: Indicates whether the task requires
learning multiple behaviours together. Num. of Subtasks: Number of sub-tasks within each task.

Appendix B: Experimental Details384

Task Descriptions385

In this work, we utilise four simulation tasks from RoboMimic [5] with provided proficient human386

(PH) demonstrations, and one real-world pick-and-place task collected via proficient human tele-387

operation. All tasks employ Franka Panda as the manipulator within a 7-dimensional action space,388

which includes the 6 degrees of freedom for end-effector pose and gripper width. In the simulation,389

the proprioceptive states include the end-effector pose (rotation is represented by quaternion) and390

gripper width. The real task utilises a 12-dimensional robot state represented by a flattened SE(3)391

matrix (last row omitted). Except for the Transport task, all tasks use two camera views: a second-392

person camera and a first-person camera. The Transport task features two camera views associated393

with each manipulator. Task descriptions and details are summarised below and in Tab. 6.394

• Lift: Grasp and lift a red cube from the table.395

• Can: Grasp a Coke Can from the left bin (sub-task 1), and place it into the corresponding396

target bin on its right (sub-task 2).397

• Square: Grasp the square nut by the handle (sub-task 1) and insert it into a matching square398

peg (sub-task 2).399

• Transport:400

– Left arm: Pick the handle of the source bin’s lid (sub-task 1), place the lid in the empty401

space (sub-task 2), grasp the hammer within the source bin (sub-task 3), and deliver it402

to the workspace within the right arm’s reach (sub-task 4).403

– Right arm: Pick up a red cube from the target bin (sub-task 5), place it into the trash404

bin (sub-task 6), take the hammer delivered by the left arm (sub-task 7), and place it405

into the target bin (sub-task 8).406

• Toy: Pick up a green squashy toy (sub-task 1) and place it into a yellow cup (sub-task 2).407

The location of the toy and the cup varies within a 10× 10cm2 area.408

Policy and Training Details409

BC-MLP and BC-RNN utilise the default network configurations as specified in RoboMimic [5].410

Specifically, each image observation is processed by a ResNet18 [24] followed by a spatial-softmax411

layer [25]. All observation features are then concatenated with the robot’s proprioceptive states,412

forming a single feature vector. The flattened states are fed into either an MLP or an RNN. The413

MLP employs ReLU activations, while the RNN consists of a 2-layer LSTM. The final layer’s414
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Hyperparameter BC-MLP BC-RNN

Learning Rate (LR) 1× 10−4 1× 10−4

Actor MLP Dimensions [1024, 1024] -
RNN Hidden Dimension - 1000
RNN Sequence Length - 10

GMM Number of Modes 5 5
Image Encoder ResNet18 ResNet18

SpatialSoftmax (num-KP) 64 64

Table 7: Hyper-parameters for BC-MLP and BC-RNN.

hidden states are fed into the downstream Gaussian Mixture Model (GMM). As described in415

RoboMimic [5], during the rollout with GMM policies, the learned standard deviations of each416

mode are replaced with 1× 10−4. Hyper-parameter settings are detailed in Tab. 7.417

Diffusion Policy employs the hybrid-CNN architecture as detailed in [2]. It utilises a similar image418

encoder as described above but replaces BatchNorm layers [26] with GroupNorm [27]. The input419

horizon, action horizon, and action prediction horizon are set to 2, 8, and 16, respectively. The420

learning rate is set to 1× 10−4.421

All networks are trained from scratch with Adam [28] optimiser (learning rate set to 1 × 10−4).422

Except for the simple Lift task is trained for 200 epochs, all tasks are trained for 600 epochs. 10%423

of random cropping (i.e., 76 × 76 for 84 × 84 inputs) is applied to all images during training and424

10% of centre cropping during evaluation.425

Out-of-domain Images for RoboSaGA426

Figure 6: Examples of out-of-domain images for data augmentation

RoboSaGA utilizes approximately 6,000 out-of-domain images for augmentation, comprising 5,000427

real-world images from MSCOCO [23] and 1,000 synthetic images featuring plain, gradient, grid,428

chess, and Perlin patterns (Fig. 6). All images are subject to random rotations and brightness adjust-429

ments.430

Backgrounds and Distractors for Evaluation431

In the simulation, as illustrated in Fig. 7, table textures are derived from images of textiles and432

patterns. Floor textures utilise common materials such as tiles and wooden flooring, while wall433

textures are selected from both indoor and outdoor scenes. Distractors, including items like a Coke434

can, bottle, cereal, bread, and lemon, form the default set. Some distractors may be removed to435

prevent duplicating task-specific objects. For example, the Coke can is excluded from the Can task.436

Distractors are strategically placed to minimise collisions with the manipulator and targets, although437

collisions are still possible. Each selected distractor has a 50% chance of appearing.438

In the real-world setting, as shown in Fig. 8, background shuffling is achieved by varying the439

combinations of textiles drawn from the default textile set. These textiles sufficiently cover the440
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Figure 7: Examples of textures and distractors in simulation evaluation

Figure 8: Examples of textiles and distractors in real-world evaluation

field of view for both the second-person camera and the eye-in-hand camera, with examples of the441

respective fields of view illustrated in Fig. 5. Distractors are also drawn from the default distractor442

set, forming cluttered arrangements.443

Appendix C: Full Tables for Simulated Experiments444

BC BC-RNN

None Overlay SODA SaGA None Overlay SODA SaGA

Domain

L
ift

In-domain 0.97±0.01 0.99±0.01 1.00±0.00 0.98±0.00 0.99±0.01 1.00±0.00 0.95±0.02 0.99±0.02

Background 0.00±0.00 0.87±0.05 0.80±0.04 0.89±0.05 0.02±0.03 0.92±0.03 0.65±0.09 0.93±0.04

Distractor 0.21±0.08 0.66±0.06 0.96±0.02 0.95±0.04 0.08±0.05 0.96±0.02 0.92±0.03 1.00±0.00

mean 0.10±0.12 0.77±0.12 0.88±0.09 0.92±0.05 0.05±0.05 0.94±0.03 0.79±0.15 0.96±0.05

C
an

In-domain 0.95±0.03 0.92±0.03 0.93±0.04 0.97±0.03 0.99±0.01 0.97±0.01 0.96±0.02 0.97±0.01

Background 0.03±0.04 0.79±0.04 0.65±0.06 0.87±0.02 0.02±0.02 0.71±0.06 0.69±0.07 0.79±0.06

Distractor 0.43±0.03 0.53±0.01 0.57±0.05 0.71±0.07 0.32±0.02 0.55±0.04 0.64±0.03 0.70±0.02

mean 0.23±0.20 0.66±0.14 0.61±0.07 0.79±0.09 0.17±0.15 0.63±0.09 0.66±0.06 0.74±0.06

Sq
ua

re

In-domain 0.62±0.07 0.51±0.06 0.47±0.01 0.68±0.06 0.67±0.06 0.70±0.09 0.74±0.03 0.75±0.03

Background 0.00±0.00 0.25±0.09 0.07±0.02 0.39±0.08 0.00±0.00 0.38±0.03 0.22±0.04 0.47±0.15

Distractor 0.37±0.06 0.42±0.04 0.41±0.05 0.69±0.09 0.33±0.07 0.59±0.05 0.38±0.10 0.72±0.07

mean 0.18±0.19 0.34±0.11 0.24±0.17 0.54±0.17 0.17±0.17 0.49±0.11 0.30±0.11 0.59±0.17

Tr
an

sp
or

t In-domain 0.49±0.01 0.37±0.05 0.41±0.01 0.46±0.07 0.61±0.01 0.59±0.05 0.65±0.10 0.58±0.02

Background 0.00±0.00 0.05±0.02 0.01±0.01 0.05±0.02 0.00±0.00 0.14±0.04 0.05±0.02 0.20±0.06

Distractor 0.21±0.03 0.21±0.03 0.23±0.02 0.34±0.11 0.24±0.08 0.35±0.03 0.39±0.05 0.41±0.02

mean 0.11±0.11 0.13±0.08 0.12±0.11 0.20±0.17 0.12±0.13 0.25±0.11 0.22±0.17 0.30±0.11

Table 8: Performance of Random Overlay, SODA and RoboSaGA under visual domain shifts.
Each is evaluated with BC-MLP, BC-RNN, across four simulated tasks against distractors and back-
ground variations.

14



Policy Diffusion Policy

Method None Overlay SODA SaGA

Task Domain

L
if

t

In-domain 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00

Background 0.86±0.02 0.98±0.02 0.98±0.03 0.93±0.03

Distractor 0.55±0.01 1.00±0.00 1.00±0.00 1.00±0.00

mean 0.70±0.16 0.99±0.02 0.99±0.02 0.97±0.04

C
an

In-domain 1.00±0.00 0.98±0.00 0.97±0.02 0.97±0.01

Background 0.55±0.04 0.87±0.04 0.75±0.02 0.91±0.02

Distractor 0.58±0.00 0.75±0.01 0.77±0.01 0.86±0.02

mean 0.56±0.03 0.81±0.07 0.76±0.02 0.89±0.03

Sq
ua

re
In-domain 0.93±0.01 0.91±0.01 0.87±0.01 0.91±0.01

Background 0.01±0.01 0.59±0.05 0.63±0.07 0.76±0.06

Distractor 0.48±0.07 0.89±0.01 0.81±0.05 0.90±0.02

mean 0.25±0.24 0.74±0.15 0.72±0.11 0.83±0.08

Tr
an

sp
or

t In-domain 0.91±0.01 0.90±0.03 0.90±0.06 0.90±0.02

Background 0.00±0.00 0.45±0.03 0.33±0.07 0.61±0.05

Distractor 0.44±0.06 0.58±0.04 0.61±0.01 0.60±0.06

mean 0.22±0.22 0.51±0.08 0.47±0.15 0.61±0.06

Table 9: Performance of Random Overlay, SODA and RoboSaGA under visual domain shifts.
Each is evaluated with Diffusion Policy, across four simulated tasks against distractors and back-
ground variations.

Appendix D: Interpretability Misalignment in Saliency Maps:445

Here, we select three representative examples from the Transport task to illustrate the potential446

misalignment between input saliency from the policies and human interpretation.447

Figure 9: Saliency Visualisation of Transport Task from BC-MLP. EiH: eye-in-hand camera.
2nd: second-person-camera

As observed in Fig. 9, the saliency maps produced by the history-independent BC-MLP align more448

closely with human intuition compared to those from BC-RNN (Fig. 10a) and the Diffusion Policy449

(Fig. 10b). In these visualisations, the Left Eye-in-Hand (EiH) camera focuses on the box handle,450

while the Right EiH camera does not provide task-critical information, exhibiting random focus451

instead. The left second-person camera focuses on the right arm, and the right second-person camera452

focuses on the right hand. Notably, the left second-person camera does not focus on the lid handle, as453

this piece of information is already provided by the left EiH camera. However, despite the alignment454

of the saliency maps with human intuition, experimental results indicate that this alignment does455

not necessarily translate into improved robustness against background variations. Indeed, none of456

the tested augmentation methods enhanced the performance of BC-MLP in the Transport task (see457

Tab. 8).458
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(a) BC-RNN (b) Diffusion Policy

Figure 10: Saliency Visualisation of Transport Task. EiH: eye-in-hand camera. 2nd: second-
person-camera

Although achieving higher robustness against background variations, the saliency maps produced459

by the history-dependent BC-RNN and Diffusion Policy, in contrast to the history-independent BC-460

MLP, are less interpretable from a human perspective. These maps can focus on elements considered461

trivial by humans. Given that the task relies on historical observations, the robot’s states, multi-462

views, and exhibits varying levels of visual dependency throughout its execution, we argue that463

what humans perceive as visually important may not always align with the network’s focus.464
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