
Under review as a conference paper at ICLR 2024

A DEDUPLICATION

We follow SemDeDup (Abbas et al., 2023) in order to deduplicate the dataset. SemDeDup dedupli-
cates LAION by clustering the image embeddings of a pretrained model, and subsequently removing
samples within a certain similarity threshold. We choose the threshold value for SemDeDup manually
so that we reach the targeted dataset size. We follow the paper and keep 60%-80% of the data
(63% for LAION and 80% for DataComp) as this range of values was shown to perform the best on
the LAION dataset. For the k-means clustering step of SemDeDup we use 50,000 clusters for the
LAION-CAT-440M dataset and 30,000 clusters for the DataComp Medium dataset. We did not tune
the number cluster parameters as Abbas et al. (2023) show that it has a small effect on SemDeDup.
We refer the reader to Abbas et al. (2023) for more details about the SemDeDup method.

B DETAILS ON K-MEANS CLUSTERING

We use the Faiss library (Johnson et al., 2019) for clustering the embeddings on a single GPU.
We normalize the embeddings to have a unit length and run spherical k-means using Faiss. In
all experiments, we run 100 clustering iterations. We found that 100 iterations are enough as the
centroids do not change after this number of iterations.

C PYTHON CODE FOR DENSITY-BASED PRUNING

We include Python-code to solve the quadratic program defined in Eq. 3 in Table 5. The code to
calculate dinter and dintra can be found in Table 6.

D PRETRAINED MODELS FOR CALCULATING EMBEDDINGS FOR K-MEANS
CLUSTERING

Distilled DINOV2-L/14: We use a distilled DINOV2-L/14 model from Oquab et al. (2023). The
model is distilled from DINOV2 and has 300M parameters. We resize the images of the LAION or
the DataComp datasets to the size of 224x224 and take the output of the last layer of the model. Each
image is embedded into a vector of size 1024.

BLIP ViT-B/16: We use the BLIP model to generate a multimodal representation of each image-
caption pair in the data. We use the BLIP ViT-B/16 model introduced in Li et al. (2022a). The
model has 233M parameters and has been pretrained on a dataset of 129M examples. To embed an
image-caption pair, we first embed the image using the Image Encoder of BLIP into a vector of size
768. Then we condition the Image-Grounded Text Encoder of the model on the image embedding
and embed the caption. We take the average of the token embeddings (each of size 768) of the last
layer of the model as an embedding.

Sentence BERT: Sentence-BERT is a siamese BERT architecture introduced in Devlin et al. (2019).
Our motivation behind using this model is the fact that the model learns to maximize the cosine
similarity between embeddings of semantically meaningful sentences using a contrastive learning
objective. Namely, we use the ”all-MiniLM-L6-v2” Sentence BERT model from HuggingFace.
This model has been trained on 1B sentence pairs dataset. The model maps each caption onto a
384-dimensional vector. This vector is the output of an average pooling layer applied on top of the
last layer of the BERT model.

CLIP ViT-B/16 Encoder We embed the images using OpenAI’s CLIP-B/16 model (Radford et al.,
2021a) by mapping each image into a 512-dimensional vector using the Vision Transformer Encoder
of the CLIP model. This vector is the representation of the CLS token in the output layer of the
model.

CLIP B/16 Text Encoder We embed the captions using OpenAI’s CLIP-B/16 (Radford et al., 2021a)
model by mapping each caption into a 512-dimensional vector using the Text Encoder of the CLIP
model. This vector is the representation of the last token in the output layer of the model.

13

Under review as a conference paper at ICLR 2024

0 100 200 300 400 500
Cluster IDs

0K

100K

200K

300K

400K

Nu
m

. o
f e

xa
m

pl
es Pruned cluster size

Pj N

0 100 200 300 400 500
Cluster IDs

50K

100K

150K

200K

250K

Nu
m

. o
f e

xa
m

pl
es Pruned cluster size

Original cluster cize

Figure 7: (left) Pruned cluster size vs PjN after solving the quadratic program. (right) Pruned cluster
size vs original cluster size. We that the method tends to remove more examples from large clusters
resulting in a more cluster-balanced dataset. In both plots, the clusters are sorted in the x-axis by the
pruned cluster size. The results are for filtering the LAION-50M dataset down to 30M examples
using the DINOV2-L/14 embeddings.

35 40 45 50 55
Top1 ImageNet Zero-shot Acc.

0%

20%

40%

60%

80%

100%

Tr
ai

ni
ng

 C
os

t %

LAION50M Baseline
(50M)

CS
(30M)

Ours
(30M)

LAION50M Baseline
(50M)

CS
(30M)

Ours
(30M)

5 Epochs Training
45 Epochs Training

0.5B

1.0B

1.5B

2.0B

Nu
m

. o
f E

xa
m

pl
es

 S
ee

n
(B

)
Figure 8: Performance grows consistently with continued training and we close the gap to training on
the full LAION-50M dataset when training for 45 epochs, despite only using 30M samples. We also
outperform the LAION CLIP-B/16 score (CS) filtering.

E TRAINING HYPERPARAMETERS

We include the training hyperparameters in Table 7.

F ADDITIONAL RESULTS

We show results for continued training in Fig.8. For this, we train the same models for five and
forty-five epochs on the LAION-50M subset, and on 30M examples filtered from it using our pipeline.
We consistently outperform CLIP score filtering (CS) throughout training and even close the gap to
training on the full LAION-50M dataset when training for forty-five epochs.

We show consistent improvements of DBP over SSP-Pruning in Table 8.

G SOFTWARE STACK

We use different open-source software packages for our experiments, most notably SLURM (Yoo
et al., 2003), OpenCLIP (Ilharco et al., 2021), scipy and numpy (Virtanen et al., 2020), GNU parallel
(Tange, 2011), Faiss (Johnson et al., 2019), PyTorch (Paszke et al., 2017) and torchvision (Marcel &
Rodriguez, 2010).

14

Under review as a conference paper at ICLR 2024

Table 5: Python code for the quadratic program solver

1

2 import numpy as np
3 import torch
4 from qpsolvers import solve_qp
5

6 # Input: d_inter (List), d_intra (List), temp (float), num_centroids (int
), filtered_dataset_size (int), num_items_in_each_cluster (List)

7

8 # Output: X (list) <- Number of samples per cluster
9

10 softmax = torch.nn.Softmax()
11 probs = softmax((d_inter * d_intra)/temp)
12 P = np.eye(num_centroids)
13 q = - probs * filtered_dataset_size
14 A = np.array(1.0 * num_centroids)
15 b = np.array([filtered_dataset_size])
16

17 # Define the lower and upper bounds
18 min_samples = 1
19 bounds = np.array([(min_samples, num_items_in_each_cluster[i])
20 for i in range(num_centroids)]
21

22 X = solve_qp(P=P, q=q, A=A, b=b,
23 lb=bounds[:,0], ub=[:,1], solver=’osqp’)
24

25 X = np.rint(X).astype(int)

Table 6: Python code for computing dinter and dintra.

1

2 import numpy as np
3 import faiss
4

5 # Input: norm_embs (array), emb_dim (int), num_centroids (int),
filtered_dataset_size (int), niter (int), seed (int), num_NNs (int)

6

7 # Output: d_intra (list), d_inter (list)
8

9 # Cluster the data
10 kmeans = faiss.kmeans(dim, num_centroids, niter=niter, seed=seed,
11 spherical=True, gpu=True, verbose=True)
12 kmeans.train(norm_embs)
13

14 # Compute d_intra
15 sim_to_centroid, nearest_cent = kmeans.index.search(norm_embs, 1)
16

17 d_intra = []
18 for cluster_id in range(num_centroids):
19 cluster_item_ids = np.where(nearest_cent==cluster_id)
20 cluster_d_intra = (1 - sim_to_centroid[cluster_item_ids]).mean()
21 d_intra.append(cluster_d_intra)
22

23 # Compute d_inter
24 sim_to_NN_centroids = kmeans.index.search(kmeans.centroids, num_NNs+1)
25 dist = 1 - sim_to_NN_centroids[:, 1:]
26 d_inter = np.mean(dist, axis=1)

15

Under review as a conference paper at ICLR 2024

Table 7: Training parameters for CLIP. We follow the standard hyperparameters used for each dataset.
We use the OpenCLIP hyperparameters for experiments on the LAION dataset and the DataComp
hyperparameters for experiments on the DataComp Medium dataset.

Parameter Value

Model CLIP ViT-B-32
Warmup (LAION) 2000 training steps

Warmup (DataComp) 500 training steps
Batch size (LAION) 33,792

Batch size (DataComp) 4,096
Learning rate 5.0e-4, cosine scheduler

Optimizer AdamW, wd=0.2, betas=(0.9, 0.98), eps=1.0e-6

Table 8: Density-based pruning (DBP) helps improve the performance of SSP-Pruning. We duplicate
the LAION-CAT-440M dataset to 277M examples and then apply SSP pruning or DBP to filter the
dataset to 112M or 166M examples and train CLIP-B/32 on them for 32 epochs. We report the
average zero-shot accuracy on 38 datasets from Gadre et al. (2023). We set the cluster balancing
value of SSP-Pruning method to 1.0.

Method/ Dataset size 112M (3.6B examples seen) 166M (5.3B examples seen)

DBP 49.8 51.6
SSP-Pruning 48.6 50.7

16

	Deduplication
	Details on k-means Clustering
	Python code for Density-Based Pruning
	Pretrained Models for calculating embeddings for k-means clustering
	Training hyperparameters
	Additional results
	Software stack

