
Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] See Section 6
(c) Did you discuss any potential negative societal impacts of your work? [Yes] See

Appendix G
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes] See Appendix D

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main exper-

imental results (either in the supplemental material or as a URL)? [Yes] Code and
instructions will be uploaded in the supplementary material.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Appendix F

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] See Tables 1 and 2

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See Appendix F.4

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes] Licenses are included in the code

repository
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

We will provide our code.
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [Yes] All data we use are publicly available.
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A] Our data is generated by computers.
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

14



A Preliminaries

A.1 Group, Coset and Quotient Space

A group G is a set of elements equipped with a binary operation (denoted as ·) that satisfies the
following group axioms:

1. (Closure) For all a, b ∈ G, a · b ∈ G.
2. (Associative) For all a, b, c ∈ G, (a · b) · c = a · (b · c).
3. (Identity element) There exists an identity element e in G such that, for any a ∈ G we have

e · a = a · e = a.
4. (Inverse element) For each a ∈ G, there exists an element b ∈ G such that a · b = b · a = e

where e is the identity element.

The centered dot · can sometimes be omitted if there is no ambiguity.

In this work, we are mainly interested in symmetry groups where each group element is associated
with a symmetry of a pattern, which is a transformation that leaves the pattern invariant. In symmetry
groups, the binary operation corresponds to composition of transformations.

A subset H contained within G is a subgroup of G if it forms a group on its own under the same
binary operation. Given a subgroup H and an arbitrary group element g ∈ G, one can define left
cosets of H as follows:

gH = {g · h | h ∈ H}

The left cosets of H form a partition of G for any choice of H , i.e. the union of all cosets is G and all
cosets defined above are either identical or have empty interception. The set of all left cosets is called
the quotient space and is denoted as G/H = {gH | g ∈ G}.

As an example, all integers Z under addition forms a group and all multiples of n, denoted as nZ is a
subgroup of Z. For any integer k ∈ Z, the set nZ + k containing all integers that has the remainder
as k divided by n, is a coset of nZ. There are n distinct cosets like this, and they form the quotient
space Z/nZ.

A.2 Group Homomorphism, Group Actions and Group Equivariance

Given two groups (G, ·G) and (H, ·H), a group homomorphism from G to H is function f : G → H
such that for any u, v ∈ G

f(u ·G v) = f(u) ·H f(v).

It is a special mapping between two groups that is compatible with group structures. If f is an
one-to-one mapping, we call it a group isomorphism. Two groups G1 and G2 are isomporphic if
there is an isomorphism between them, and this is written as G1

∼= G2.

A group action is a group homomorphism from a given group G to the group of transformations on a
space X. We say the group G acts on the space X and the transformation corresponding to g ∈ G is
a bijection on X that maps x to g · x.

If the group actions of G on spaces X and Y are both defined, a function f : X → Y is said to be
group equivariant if

g · f(x) = f(g · x)

A.3 Homogeneous Spaces and Lifting Feature Maps

If the action of a group G on the space X is defined, and the action is transitive (i.e. ∀x, x′ ∈ X,∃g ∈
G, s.t. x′ = g · x), we refer to X as being a homogeneous space for G. There is a natural one-to-one
correspondence between the homogeneous space X and disjoint subsets of the group G. Given an
arbitrary origin x0 ∈ X, H = {g ∈ G|g · x0 = x0} is a subgroup of G, where H is called the
stabiliser of the origin. Because the group action on X is transitive, every element x ∈ X corresponds
to a left coset in s(x;x0)H ∈ G/H , where s(x;x0) is (any) group element that transforms x0 to x.
It can be shown that for x, x′ ∈ X, x ̸= x′, s(x;x0) and s(x′;x0) are disjoint.

15



Because spatial data is often represented as functions on the homogeneous space fX : xi 7→ fi, while
lifting-based group equivariant neural networks operate on feature maps defined on the group, there
is usually an operation called lifting, that maps the data to the feature space of functions on the group,
before applying equivariant modules. Using the correspondence between X and the quotient space
G/H , we can map each pair (xi, fi) to the set {(g, fi)|g ∈ s(xi;x0)H}. It can be seen as lifting the
input feature map fX : xi 7→ fi to the feature map LIFT(fX) : g 7→ fi for g ∈ s(xi;x0)H . In this
work, we assume all input feature maps have been lifted to feature maps on the group.

A.4 Wallpaper Groups

Wallpaper groups categorise symmetries of repetitive patterns on a 2D plane. For simplicity, we only
considered 3 different types of wallpaper symmetry groups p1, p4, and p4m in this work following
Cohen and Welling (2016). These groups are named using the crystallographic notation, where p
standards for primitive cells, the next digit indicates the highest order of rotational symmetries, and
m stands for mirror reflection. All symmetries contained in these groups can be deduced from their
name:

• p1: All 2D integer translations.
• p4: All compositions of 2D integer translations and rotations by a multiple of 90 degrees.
• p4m: All compositions of elements in p4 and the mirror reflection.

All three groups p1, p4, and p4m can be constructed from basic additive groups of integers Z and
cyclic groups Cn using the inner semi-direct product. Given a group G with a normal subgroup N
(i.e. ∀n ∈ N, g ∈ G, gng−1 ∈ N ), a subgroup H (not necessarily a normal subgroup), if G is the
product of subgroups G = NH = {nh|n ∈ N,h ∈ H}, and N ∩H = {e}, we say G is a inner
semi-direct product of N and H , written as G = N ⋊H . Using semi-direct product, p1, p4, and
p4m can be expressed as:

p1 ∼= Z2

p4 ∼= Z2 ⋊ C4

p4m ∼= Z2 ⋊ (C4 ⋊ C2) (11)

If G ∼= N ⋊ H , the binary and inverse operations for G can be determined from its subgroups
N and H . We represent group elements in G as a tuple (n, h) where n ∈ N and h ∈ H . Let
ϕh(n) = hnh−1, the binary operation on G can be given by:

(n1, h1) · (n2, h2) = (n1ϕh1(n2), h1h2)

and the inverse for element in G can also be derived from the above:

(n, h)−1 = (ϕh−1(n−1), h−1)

These properties can be used to simplify the implementation of the considered groups p1, p4, and
p4m following the decomposition in Equation (11), and the operations for basic groups Z and Cn are
easy to implement.

A.5 Feature Maps in G-CNNs

A general mathematical framework is introduced in Cohen et al. (2019) to specify convolutional
feature spaces used in G-CNNs, and feature maps are treated as fields over a homogeneous space.
It covers most previous works on equivariant neural networks including Cohen and Welling (2016,
2017); Cohen et al. (2018b); Weiler and Cesa (2019a). Under this framework, one way to represent
fields is through constrained functions defined on the whole symmetry group, also known as Mackey
functions (Cohen et al., 2019).

Formally, let G be a symmetry group, and H ≤ G together with G determines the homogeneous
space G/H . For a group representation (ρ, V ) of H , the action of the whole group G on fields can be
described by an induced representation π = IndGHρ, whose realisation depends on how we represent
these fields. Below we specify the feature space IM 4 for the Mackey function field representation

4IM corresponds to IG in Cohen et al. (2019)

16



discussed in (Cohen et al., 2018c, 2019):

IM = {f : G → V |f(gh) = ρ(h−1)f(g),∀g ∈ G, h ∈ H} (12)

which forms a vector space. Moreover, when ρ is a regular representation, which is the implicit
choice of Gens and Domingos (2014); Kanazawa et al. (2014); Dieleman et al. (2015, 2016); Cohen
and Welling (2016); Marcos et al. (2016), fields can also be represented as unconstrained functions
on G and the feature space can be written as

IG = {f : G → V ′}
with V ′ being a different vector space from V . If ρ is a regular representation.

Feature maps are represented as functions on G in both IM and IG, even though IM have additional
conditions given in Equation (12). Moreover, the induced representation π = IndG

Hρ for them have
the same form:

[π(u)f ](g) = f(u−1g)

B Equivariant Subsampling and Upsampling

B.1 Constructing Φ

In Section 2.3, we provide a simple construction of the equivariant map Φ : IG → G/K which
gives the sampling indexes. The construction is a valid one if the argmax is unique. In practice
one can insert arbitrary equivariant layers to f before and after we take the norm ∥ · ∥1 to avoid a
non-unique argmax (see Appendix F). However, in theory, there could be cases that the argmax is
always non-unique. We discuss this case below and provide a more complex construction for it.

One cannot avoid a non-unique argmax in Equation (7) when the input feature map f ∈ IG has
inherent symmetries, i.e. there exists u ∈ G, u ̸= e, such that f = π(u)f . Assuming there is a
unique argmax g∗ such that g∗ = argmaxg∈G ∥f(g)∥1, we would have:

f(u · g∗) = f(g∗) = max
g∈G

∥f(g)∥1

Therefore u · g∗ is also a valid argmax, hence the argmax is not unique. For example, when f is a
feature map representing a center-aligned circle, we would have f = π(u)f , where u ∈ O(2) is
associated with an arbitrary rotation around the center. One cannot find a unique argmax g∗ for this
example, because the feature map would take the same function values at u · g∗.

Under the circumstance described above, the argmax operation would return a set of elements where
each one attains the function’s largest values. We denote it as S∗ = argmaxg∈G ∥f(g)∥1, where S∗

is a subset of G. To obtain the sampling index (a coset) pK, we sample uniformly from the set S∗,
and let Φ outputs pK where p ∼ S∗. In this case, the map Φ is still equivariant in distribution even
though it is now a stochastic map.

Note that it is possible to consider more sophisticated solutions or even use learnable modules for Φ,
which we leave for future work.

B.2 Multiple Subsampling Layers

Translation equivariant subsampling We can stack convolutional and translation equivariant
subsampling layers to construct exactly translation equivariant CNNs. Unlike standard CNNs, each
translation equivariant subsampling layer with a scale factor ck outputs a subsampling index ik
in addition to the feature maps. Hence the equivariant representation output by the CNN with L
subsampling layers is a final feature map fL and a L-tuple of sampling indices (i1, ..., iL).

In the multi-layer case, the l-th subsampling layer takes in a feature map f on
∏l−1

k=1 ckZ and outputs:
1) a feature map on

∏l
k=1 ckZ and 2) a subsampling index il ∈

∏l−1
k=1 ckZ/

∏l
k=1 ckZ ∼= Z/clZ

given by:

(

l−1∏
k=1

ck) · il = pl = Φc(f) = mod(argmaxx∈(
∏l−1

k=1 ck)Z
∥f(x)∥1,

l∏
k=1

ck)

17



This is equivalent to treating the input feature map f as a feature map f ′ defined on Z (i.e. mapping
the support of f from

∏l−1
k=1 ckZ to Z via division by

∏l−1
k=1 ck), and the subsampling layer outputting:

1) a feature map on clZ and 2) a subsampling index il ∈ Z/clZ given by:

il = mod(argmaxx∈Z∥f ′(x)∥1, cl)

Hence the tuple (i1, ..., iL) that contains the sampling indices of all layers can be expressed equiva-
lently as a single integer:

req =

L∑
l=1

pl =

L∑
l=1

(

l−1∏
k=1

ck) · il

where req ∈ Z/(
∏L

k=1 ck)Z. Note that the conversion between req and (i1, ..., iL) can be seen as the
conversion between mixed radix notation and decimal notation. Mixed radix notation is a mixed
base numeral system where the numerical base varies from position to position, as opposed to base-n
systems that have the same base for all positions5. Thus there is an one-to-one correspondence
between the two. Moreover, when the input feature map is translated to the right by t ∈ Z, req

would become mod(req + t,
∏L

k=1 ck). See the statement of this result for the general group case in
Proposition B.1 and its proof in Appendix D.4.

Group equivariant subsampling Similarly, given an input feature map f ∈ IG, we can construct
CNNs/G-CNNs with multiple equivariant subsampling layers by specifying a sequence of nested
subgroups G = G0 ≥ G1 ≥ · · · ≥ GL. The l-th subsampling layer takes in a feature map on Gl−1,
outputs a feature map on Gl and a sampling index plGl ∈ Gl−1/Gl. Formally, the l-th subsampling
layer can be written as:

Sb↓
Gl−1

Gl
: IGl−1

→ IGl
×Gl−1/Gl

The equivariant representation output by the CNNs/G-CNNs with L subsampling layers is a feature
map in fL ∈ GL and a L-tuple (p1G1, p2G2, . . . , pLGL).

Similar to the 1D translation case, the sampling index tuple (p1G1, p2G2, . . . , pLGL) can be ex-
pressed equivalently as a single element in the quotient space G/GL:

req = (p̄1p̄2 . . . p̄L)GL = ν(p1G1, p2G2, . . . , pLGL) (13)

where p̄l denote the coset representive for the quotient space Gl−1/Gl. ν is a bijection from req to
the tuple, whose inverse can be computed by the following recursive procedure:

p′1GL = req

p′l = p̄′−1
l−1 · p

′
l−1

(p′1G1, p
′
2G2, . . . , p

′
LGL) = ν−1(req) (14)

Proposition B.1. ν−1 is the inverse of ν, hence ν is bijective. And ∀u ∈ G we have:

u · ν(p1G1, p2G2, . . . , pLGL) = ν(u · (p1G1, p2G2, . . . , pLGL)).

C Group Equivariant Autoencoders

In Appendix B.2 we discussed that we can stack multiple subsampling layers by specifying a sequence
of nested groups G = G0 ≥ G1 ≥ · · · ≥ GL, and the CNN/G-CNNs with L subsampling layers
would produce a feature map on GL and a tuple zeq = (p1G1, p2G2, . . . , pLGL). Furthermore, we
know from Proposition B.1 that there is an one-to-one correspondence between the tuple representa-
tion zeq and the single group element representation req = ν(zeq) ∈ G/GL. For group equivariant
autoencoders, we specify a sequence of subgroups but with GL = {e}. In this case, req would simply
become a group element in G. And the group action simplifies to left-multiplying the corresponding
group elements.

5A commonly used example of mixed radix notation is to express time, where e.g. 12:34:56 has a base of 24
for the hour digit, base 60 for the minute digit and base 60 for the second digit.

18



Although one can simply use the tuple output by the encoder to perform upsampling in the decoder
(and hence use the same sequence of nested subgroups), this is not strictly necessary as one can use a
different sequence of nested subgroups for the decoder and obtain the tuple using the decomposition
procedure in Equation (14). Moreover, for more efficient implementation of GAEs, one does not
need to pass through Φ in Equation (7) for every subsampling layer. It would suffice to obtain the
tuple of subsampling indexes from the first subsampling layer using:

(p1G1, p2G2, . . . , pLGL) = ν−1(argmax
g∈G

∥f(g)∥1) (15)

D Proofs

D.1 Proof of Lemma 2.1 (See page 5)

Lemma 2.1. π′ defines a valid group action of G on the space IK ×G/K.

Proof. Since p̄ and up are coset representives for pK and (up)K, we can let p = p̄kp, up = upkup,
where kp, kup ∈ K. From Equation (6), note that p̄′ = up = upk−1

up . Hence

p̄′−1up̄ = (upk−1
up )

−1u(pk−1
p )

= kupp
−1u−1upk−1

p

= kupk
−1
p ∈ K (16)

Hence π′(u) (as defined in Equation (6)) defines a transformation from the space IK ×G/K to itself.

To prove π′ is a group action, we would like to show that for all u, u′ ∈ G

π′(u′)(π′(u)[fb, pK]) = π′(u′u)[fb, pK]

Let [f ′
b, p′K] = π′(u)[fb, pK] and [f ′′

b , p′′K] = π′(u′u)[fb, pK], by the definition of π′ in
Equation (6), we have

p′′K = ((u′u)p)K = u′(upK) = u′(p′K)

and

f ′′
b = π(p̄′′−1(u′u)p̄)fb = π(p̄′′−1u′p̄′)π(p̄′−1up̄)fb = π(p̄′′−1u′p̄′)f ′

b.

Hence

[f ′′
b , p

′′K] = π′(u′)[f ′
b, p

′K]

It is easy to also check that

[fb, pK] = π′(e)[fb, pK]

Therefore π′ defines a valid group action.

D.2 Proof of Proposition 2.2 (See page 5)

Proposition 2.2. If the action of group G on the space IG and IK × G/K are specified by π, π′

(as defined in Equations (3) and (6)), and Φ : IG → G/K is an equivariant map, then the
operations Sb↓GK and Su↑GK as defined in Equations (4) and (5) are equivariant maps between IG
and IK ×G/K.

Proof. We first define a restrict operation on f ∈ IG and an extend operation on f1 ∈ IK :

f↓GK(k) = f(k), k ∈ K

f1↑GK(g) =

{
f1(g) g ∈ K

0 g /∈ K

where f↓GK ∈ IK and f1↑GK ∈ IG.

19



Recall that s : G/K → G is a function choosing a coset representive p̄ for each coset pK. Using
the restrict operation, the subsampling operation Sb↓GK(f ; Φ) in Equation (4) can equivalently be
described as:

pK = Φ(f)

fb = [π(p̄−1)f ]↓GK
[fb, pK] = Sb↓GK(f ; Φ)

And the upsampling operation Su↑GK can be rewritten using the extend operation as:

fu = Su↑GK(f1, pK) = π(p̄)(f1↑GK)

For any u ∈ G let f ′ = π(u)f and [f ′
b, p′K] = π′(u)[fb, pK] where π and π′ are specified in

Equation (3) and Equation (6) respectively. Since Φ is equivariant, we have

Φ(f ′) = Φ(π(u)f) = u · Φ(f) = u · pK = p′K (17)

Recall that p̄′−1up̄ = kupk
−1
p from Equation (16). Hence p̄′−1 = kupk

−1
p p̄−1u−1 and we have

[π(p̄′−1)f ′]↓GK = [π(kupk
−1
p p̄−1u−1)f ′]↓GK

= π(kupk
−1
p )[π(p̄−1)π(u−1)f ′]↓GK

= π(kupk
−1
p )[π(p̄−1)f ]↓GK

= π(kupk
−1
p )fb = f ′

b (18)

From Equations (17) and (18), Sb↓GK is equivariant, i,e.

π′(u)Sb↓GK(f ; Φ) = Sb↓GK(π(u)f ; Φ)

For the upsampling operation, let [f ′
1, p

′
1K] = π′(u)[f1, p1K] and f ′

u = π(u)fu. From Equation (6)
we have f ′

1 = π(p̄′−1up̄)f1. Hence

Su↑GK(f ′
1, p

′K) = π(p̄′)f ′
1↑

G
H

= π(p̄′)[π(p̄′−1up̄)f1]↑GH
= π(p̄′)π(p̄′−1up̄)(f1↑GH)

= π(up̄)f1↑GH = π(u)fu = f ′
u

Therefore, Su↑GK is equivariant, i.e.

π(u)Su↑GK([f1, p1K]) = Su↑GK(π′(u)[f1, p1K])

D.3 Proof of Proposition 2.3 (See page 5)

Proposition 2.3. If Sb↓GK : IG → IK ×G/K (as defined in Equation (4)) is an equivariant map,
then the corresponding Φ : IG → G/K must be equivariant.

Proof. For any u ∈ G, let

f ′ = π(u)f

[fb, pK] = Sb↓GK(f ; Φ)

[f ′
b, p

′K] = Sb↓GK(f ′; Φ)

If Sb↓GK is an equivariant map, we have

[f ′
b, p

′K] = π′(u)[fb, pK]

20



Since π′(u) corresponds to an invertible transformation, fb, f ′
b must contain function values of f at

the same set of inputs. Because π(u)f(·) = f(u−1·), fb contains the evaluation of f at pK and f ′
b

contains the evaluation of f at u−1p′K. Therefore, we have

p′K = u(pK),

i.e. Φ is equivariant.

Note that the proof above does not require the specific definition of the group action π′ on the space
IK ×G/K.

D.4 Proof of Proposition B.1 (See page 18)

Proposition B.1. ν−1 is the inverse of ν, hence ν is bijective. And ∀u ∈ G we have:

u · ν(p1G1, p2G2, . . . , pLGL) = ν(u · (p1G1, p2G2, . . . , pLGL)).

Proof. Firstly, we prove that ν−1 ◦ ν is an identity map, i.e. ν−1 ◦ ν = 1z . Let req =
ν(p1G1, p2G2, . . . , pLGL) = (p̄1p̄2 . . . p̄L)GL and (p′1G1, p

′
2G2, . . . , p

′
LGL) = ν−1(req). From

Equation (14), we know that p′1GL = req. Hence we can let p′1 = p̄1p̄2 . . . p̄LgL where gL ∈ GL.
Since (p̄2p̄3 . . . p̄L) ∈ G1, for l = 1 we have

p̄′1 = p̄1

p′2 = p̄′−1
1 · p′1 = p̄2p̄3 . . . p̄LgL

And recursively, for l = 1, . . . , L we would have

p̄′l = p̄l

p′l+1 = p̄l+1 . . . p̄LgL

Hence (p1G1, p2G2, . . . , pLGL) = (p′1G1, p
′
2G2, . . . , p

′
LGL) and ν−1 ◦ ν = 1z .

Secondly, we prove that ν ◦ ν−1 is also an identity map, i.e. ν ◦ ν−1 = 1r. Let
(p′1G1, p

′
2G2, . . . , p

′
LGL) = ν−1(req) and r′eq = ν(p′1G1, p

′
2G2, . . . , p

′
LGL). From Equation (14),

we have req = p′1GL and p′l = p̄′−1
l−1 · pl−1. Hence

req = p′1GL = p̄′1p
′
2GL = · · · = p̄′1p̄

′
2 . . . p̄

′
L−1p

′
LGL = p̄′1p̄

′
2 . . . p̄

′
LGL = r′eq

Therefore ν ◦ ν−1 = 1r and ν is bijective.

Lastly, we prove ν is equivariant. Let (p′1G1, p
′
2G2, . . . , p

′
LGL) = u · (p1G1, p2G2, . . . , pLGL)

where the group action is implied by Equation (6). From Equation (16), we know that when u ∈ G,
π(p̄′−1

1 up̄1) ∈ G1. Recursively, we have

p̄′−1
l . . . p̄′−1

2 p̄′−1
1 up̄1p̄2 . . . p̄l ∈ Gl (19)

for l = 1, . . . , L. When l = L, from p̄′−1
L . . . p̄′−1

2 p̄′−1
1 up̄1p̄2 . . . p̄l ∈ GL, we have

p̄′1p̄
′
2 . . . p̄

′
LGL = u · (p̄1p̄2 . . . p̄LGL)

Hence u · ν(p1G1, p2G2, . . . , pLGL) = ν(u · (p1G1, p2G2, . . . , pLGL)). So that the group action
given by Equation (6) is simplified to the left-action on the single group element.

D.5 Proof of Proposition 3.1 (See page 6)

Proposition 3.1. When ENC and DEC are given by Equations (8) and (9), and the group actions are
specified as in Equation (3) and Equation (6), for any g ∈ G and f ∈ IG, we have

[zinv, g · zeq] = ENC(π(g)f)

π(g)f̂ = DEC(zinv, g · zeq)

21



Proof. Let f, f ′ ∈ IG be the input feature maps where f ′ = π(g)f . Let [fl, plGl] and [f ′
l , p′lGl]

be the feature maps and subsampling indexes output by the l-th subsampling layer for f and f ′

respectively. Let [zinv, zeq] = ENC(f) and [z′inv, z
′
eq] = ENC(f ′) and let req = ν(zeq), r′eq = ν(z′eq)

where ν is given in Equation (13).

From Equation (6) and the equivariance of G-CNNl(·), we have

f ′
1 = π(p̄′−1

1 gp̄1)f1
and recursively:

f ′
l = π((p̄′1p̄

′
2 . . . p̄

′
l)
−1g(p̄1p̄2 . . . p̄l))fl (20)

where l = 1, . . . , L and (p̄′1p̄
′
2 . . . p̄

′
l)
−1g(p̄1p̄2 . . . p̄l) ∈ Gl (see Equation (19)).

Since GL = {e} when l = L, we have
(p̄′1p̄

′
2 . . . p̄

′
L)

−1g(p̄1p̄2 . . . p̄L) = e

Hence
f ′(e) = f(e)

(p̄′1p̄
′
2 . . . p̄

′
L) = g · (p̄1p̄2 . . . p̄L)

which can be rewritten as
z′inv = zinv

r′eq = g · req

From Proposition B.1 we have
z′eq = ν−1(r′eq) = ν−1(ureq) = g · ν−1(req) = g · zeq

Therefore, for the encoders we have [zinv, g · zeq] = ENC(π(g)f).

For the decoders, let
z′eq = (p′1G1, p

′
2G2, . . . , p

′
LGL) = g · zeq

Since the feature map at the l-th subsampling layer is transformed according to Equation (20), the
sampling index is transformed accordingly:

p′lGl = (p̄′−1
l−1 . . . p̄

′−1
2 p̄′−1

1 gp̄1p̄2 . . . p̄l−1)plGL

fFrom the definition of equivariant upsampling in Equation (5), we have
f ′
l−1 = π(p̄′−1

l−1 . . . p̄
′−1
2 p̄′−1

1 gp̄1p̄2 . . . p̄l−1)fl−1

where l = L, . . . , 1. When l = 1, we have f ′
0 = π(g)f0 so that π(g)f̂ = DEC(zinv, g · zeq).

E Additional Experiments

E.1 Rot-Translation-MNIST Classification

We train a P4CNN model (Cohen and Welling, 2016) on the rotated MNIST dataset (Larochelle et al.,
2007). To better explore the effects of subsampling methods, we pad the 28× 28 images to 32× 32,
and insert 5 subsampling (max-pooling) layers with a scale factor of 2 between convolutional layers
and perform max-pooling on the 4 rotations in the end. This model achieves classification accuracy
that is close to the results reported in Cohen and Welling (2016).

We replace these max-pooling layers with our equivariant subsampling layers. The final predictions
indeed have perfect invariance to translations and rotations. However, so far we did not observe
performance gains, likely because the rotated MNIST dataset is center-aligned, so the exact translation
equivariance from our subsampling module offers no advantage over baselines.

To investigate whether our approach offers performance gain when data is not well-aligned, we pad
the images to 48× 48 and augment them with translations. We observed that the baseline P4CNN
achieves 93.82± 0.08% by training on 12000 examples and test on 50000 held-out examples (using
the same data split setting as Cohen and Welling (2016)), while P4CNN with equivariant subsampling
achieves 96.43± 0.16%, showing that the exact equivariance (and hence invariance for the classifier)
leads to noticeable gains in generalisation performance.

22



Table 3: Stability of sampling indices

Type of Φ Plain Argmax Argmax after smoothing equivariant layers

Gaussian noise σ σ = 0.01 σ = 0.1 σ = 0.2 σ = 0.5 σ = 0.01 σ = 0.1 σ = 0.2 σ = 0.5

x 3.86 3.99 4.41 9.95 0.03 0.36 0.33 1.13
y 3.92 4.05 4.48 9.92 0.04 0.36 0.34 1.16
cos(x) 0.69 0.69 0.69 0.70 0.13 0.53 0.63 0.70
sin(x) 0.68 0.69 0.68 0.70 0.11 0.56 0.65 0.69

E.2 Stability of sampling indices

We provide an empirical analysis of the stability of zeq with different choices of Φ below: We first
convert the tuple zeq to a single group element req (see Appendix B.2), and estimate the standard
deviation (std) of req as we add i.i.d. Gaussian noise to the inputs. In the case of p4 group, req can
be written as a vector req = [x, y, r] where x, y correspond to horizontal/vertical translations and
r corresponds to rotations. For the rotation dimension r in req, it may not make sense to directly
estimate its std, so we instead estimate the std of cos(r) and sin(r). The results are shown in Table 3.

The original input feature maps take values within [0, 1], and we add Gaussian noise from N (0, σ) to
the inputs. The std σ controlling the noise level is specified in the table. The output x, y are in the
range of [0, 63], and r ∈ {0, π

2 , π,
3π
2 }. As shown in the table, argmax with smoothing equivariant

layers (used in our experiments) is relatively stable. The stds of the translation dimension are below
one pixel until at least a noise level of σ = 0.2. The rotation dimension is relatively unstable for all
versions of Φ, and we will explore preprocessing equivariant layers that could improve its stability
in the future. We also notice that the plain argmax function is indeed unstable, which justify the
necessity of inserting equivariant layers before taking the argmax.

Moreover, If we could find a way to differentiate through the sampling index, we could use trainable
equivariant layers (possibly parameterised by G-convolutional layers) in Φ. However, how to design
such differentiable sampling indices is not trivial, and we consider exploring this in the future.

F Implementation Details

In this section, we outline a few important implementation details, and leave other details to the
reference code at https://github.com/jinxu06/gsubsampling.

F.1 Data

For Colored-dSprites and FashionMNIST datasets, we add colours to grayscale images from Matthey
et al. (2017) and Xiao et al. (2017) by sampling random scaling for each channel uniformly between
0.5 and 1 following Locatello et al. (2019). For FashionMNIST, we also apply zero-paddings to
images to reach the size of 64 × 64. We then translate the images with random displacements
uniformly sampled from {(x, y)| − 18 ≤ x, y ≤ 18, x, y ∈ Z}, and rotate the images with uniformly
sampled degrees from { 360×k

32 |k = 0, . . . , 32}. We use the original Multi-dSprites dataset as provided
in Kabra et al. (2019). For CLEVR6, we crop images from the original CLEVR (Johnson et al., 2017)
at y-coordinates (29, 221) bottom and top, and at x-coordinates (64, 256) left and right as stated in
Burgess et al. (2019). We then resize the images to 64× 64 so that we can use the same model for
both multi-object datasets. We only use images with up to 6 objects in CLEVR following Greff et al.
(2019). For evaluation, we use a randomly sampled test set with 10000 examples that has no overlap
with training data for all datasets. In Figure 6, we show examples from different datasets.

F.2 Model Architectures

The equivariant map Φ One can insert arbitrary equivariant layers before and after we take the
norm ∥ · ∥1 in Equation (7). In experiments, we apply mean subtraction followed by average pooling
with kernel size 5 before taking the norm, and apply Gaussian blur with kernel size 15 after taking the
norm. They are inserted in the purpose of smoothing feature maps and avoiding non-unique argmax
when possible (in Appendix B.1 we discuss the case when non-unique argmax cannot be avoided). In

23

https://github.com/jinxu06/gsubsampling


(a) Colored-dSprites (b) FashionMNIST

(c) Multi-dSprites (d) CLEVR6

Figure 6

practice, we use Equation (15) to obtain all subsampling indexes at the same time rather than passing
through Φ multiple times.

Autoencoders For all single object experiments, we use 5 layers of (G-)equivariant convolutional
layers in encoders, and the decoders mirror the architecture of the encoders except for the output
layers. In baseline models, we use strided convolution as a way to perform subsampling/upsampling,
while in equivariant models we use equivariant downsampling/upsampling. We rescale the number of
channels such that the total number of parameters of the models roughly match one another. However,
exact correspondence is not achievable because exact equivariant models use equivariant subsampling
to transform feature maps into vectors at the final layer of the encoder, while baseline models apply
flattening. Please see the reference implementation for other details about network architectures.

We use scale factor 2 for all subsampling and upsampling layers in baseline models. For GAE-
p1, the feature maps at each layer are defined on the following chain of nested subgroups: Z2 ≥
(2Z)2 ≥ (4Z)2 ≥ (8Z)2 ≥ (16Z)2 ≥ {e}. For For GAE-p4, we use Z2 ⋊ C4 ≥ (2Z)2 ⋊ C4 ≥
(4Z)2 ⋊ C4 ≥ (8Z)2 ⋊ C4 ≥ (16Z)2 ⋊ C2 ≥ {e}. And for GAE-p4m, we use Z2 ⋊ (C4 ⋊ C2) ≥
(2Z)2 ⋊ (C4 ⋊ C2) ≥ (4Z)2 ⋊ (C4 ⋊ C2) ≥ (8Z)2 ⋊ (C4 ⋊ C2) ≥ (16Z)2 ⋊ (C2 ⋊ C2) ≥ {e}.

Object discovery For baseline models, we adopt the exact same architecture as the original MONet
(Burgess et al., 2019) using the implementation provided by Engelcke et al. (2020). For MONet-GAEs,
we simply replace Component VAEs in the original MONet with our V-GAEs. Both Component
VAEs and V-GAEs have a latent size of 16.

F.3 Hyperparameters

For all single object experiments, we use Adam optimizer (Kingma and Ba, 2015) with a learning
rate of 0.0001 and a batch size of 16. We use 16-bits precision to enable faster training and reduce
memory consumption. For experiments on multi-object datasets, hyperparameters will match the
original MONet (Burgess et al., 2019) except that we still use a batch size of 16 instead of 64 stated
in the original paper. This is because we observed that in the low data regime, batch size 16 trains
faster and performs no worse than batch size 64 for the problems we considered here.

F.4 Computational Resources

In theory, the only computational overhead is caused by computing sampling indices, which is
negligible compared to the forward pass of (G-)Convolutional layers. In practice, our current
implementation uses torch.gather to perform subsampling, and relies on for-loops over data
batches when applying group actions to feature maps, which we believe can be made more efficient.
Hence on a single GeForce GTX 1080 GPU card, a standard GAE-p1 takes around 30 minutes to
train for 100k steps, compared to 16 minutes for standard ConvAEs.

G Societal Impacts

This work presents group equivariant subsampling and upsampling operations, which can be combined
with lifting-based group equivariant neural networks to construct more computational efficient

24



equivariant models. Therefore, it can potentially cut down energy consumption and carbon footprint
for training these models. Furthermore, because these operations are exactly equivariant, they can
improve sample complexity in many scenarios, which further reduce model training time and require
less data collection. However, as we have shown in Section 5, group equivariant autoencoders
constructed using these subsampling/upsampling layers enable us to manipulate reconstructions.
Hence they can be used to generate fake images that have many potential malicious usages.

25


