
Diffusion Models for Graphs Benefit From Discrete State
Spaces

Anonymous Author(s)
Anonymous Affiliation
Anonymous Email

Abstract1

Denoising diffusion probabilistic models and score-matching models have proven2

to be very powerful for generative tasks. While these approaches have also been3

applied to the generation of discrete graphs, they have, so far, relied on continuous4

Gaussian perturbations. Instead, in this work, we suggest using discrete noise for5

the forward Markov process. This ensures that in every intermediate step the graph6

remains discrete. Compared to the previous approach, our experimental results on7

four datasets and multiple architectures show that using a discrete noising process8

results in higher quality generated samples indicated with an average MMDs9

reduced by a factor of 1.5. Furthermore, the number of denoising steps is reduced10

from 1000 to 32 steps leading to 30 times faster sampling procedure.11

1 Introduction12

Score-based [1] and denoising diffusion probabilistic models (DDPMs) [2, 3] have recently achieved13

striking results in generative modeling and in particular in image generation. Instead of learning a14

complex model that generates samples in a single pass (like a Generative Adversarial Network [4]15

(GAN) or a Variational Auto-Encoder [5] (VAE)), a diffusion model is a parameterized Markov Chain16

trained to reverse an iterative predefined process that gradually transforms a sample into pure noise.17

Although diffusion processes have been proposed for both continuous [6] and discrete [7] state spaces,18

their use for graph generation has only focused on Gaussian diffusion processes which operate in19

the continuous state space [8, 9]. We believe that using a continuous diffusion process to generate a20

discrete adjacency matrix is sub-optimal as a significant part of the model expressive power will be21

wasted in learning to generate “discrete-like” outputs. Instead, a discrete noising process forces each22

intermediary step of the chain to be a “valid” graph.23

In this contribution, we follow the Discrete DDPM procedure proposed by Austin et al. [7], Hooge-24

boom et al. [10] and obtained forward noising process that leads to random Erdős–Rényi graphs [11].25

Our experiments show that using discrete noise indeed greatly reduces the number of denoising steps26

that are needed and improves the sample quality. We also suggest the use of a simple expressive27

graph neural network architecture [12] for denoising, which, while bringing expressivity benefits,28

contrasts with more complicated architectures currently used for graph denoising [8].29

2 Related Work30

Traditionally, graph generation has been studied through the lens of random graph models [11, 13, 14].31

However, due to the complexity of the graph generation problem, deep generative models have32

achieved better results. The most successful graph generative models can be divided into two different33

techniques: a) auto-regressive graph generative models, which generate the graph sequentially34

node-by-node [15, 16]; b) one-shot generative models which generate the whole graph in a single35

forward pass [8, 9, 17–21]. While auto-regressive models can generate graphs with hundreds or even36

thousands of nodes, they can suffer from mode collapse [20, 21]. Finally, graph Variational Auto37

Encoders (VAE) remain difficult to train, as the loss function needs to be permutation invariant [22]38

which can necessitate an expensive graph matching step [17].39
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In contrast, the score-based models [8, 9] have the potential to provide both, a simple, stable training40

objective similar to the auto-regressive models and good graph distribution coverage provided by the41

one-shot models. Niu et al. [8] provided the first score-based model for graph generation (directly42

using the score-based model formulation by Song and Ermon [1]). Jo et al. [9] extended this to43

featured graph generation, which lead to promising results for molecule generation. Importantly,44

both contributions rely on a continuous Gaussian noise process and use a thousand denoising steps to45

achieve good results, which makes for a slow graph generation.46

As shown by Song et al. [6], score matching is tightly related to denoising diffusion probabilistic47

models [3] which provide a more flexible formulation, more easily amendable for graph generation.48

In particular, for the noisy samples to remain discrete graphs, the perturbations need to be discrete.49

Discrete diffusion, using multinomial distribution, was proposed in Hoogeboom et al. [10] and then50

extended in Austin et al. [7]. It has been successfully used for quantized image generation [23, 24]51

and text generation [25]. A new, concurrent work by Vignac et al. [26] also investigates discrete52

DDPM for graph generation and confirms the benefits we outline in this paper.53

3 Discrete Diffusion for Simple Graphs54

Diffusion models [2] are generative models based on a forward and a reverse Markov process.55

The forward process, denoted q(A1:T | A0) =
∏T

t=1 q(At | At−1) generates a sequence of56

increasingly noisier latent variables At from the initial sample A0, to white noise AT . Here57

the sample A0 and the latent variables At are adjacency matrices. The learned reverse process58

pθ(A1:T ) = p(AT )
∏T

t=1 q(At−1 | At) attempts to progressively denoise the latent variable At in59

order to produce samples from the desired distribution. Here we will focus on simple graphs, but the60

approach can be extended in a straightforward manner to account for different edge types. We use the61

model from [10] and, for convenience, adopt the representation of [7] for our discrete process.62

3.1 Forward Process63

Let the row vector aij
t ∈ {0, 1}2 be the one-hot encoding of i, j element of the adjacency matrix64

At. Here t ∈ [0, T ] denotes the timestep of the process, where A0 is a sample from the data65

distribution and AT is an Erdős–Rényi random graph. The forward process is described as repeated66

multiplication of each adjacency element type row vector q(aij
t |a

ij
t ) = Cat(aij

t |p = aij
t−1Qt with a67

double stochastic matrix Qt. Note that the forward process is independent for each edge/non-edge68

i ̸= j . The matrix Qt ∈ R2×2 is modeled as69

Qt =

[
1− βt βt

βt 1− βt

]
, (1)

where βt is the probability of not changing the edge state1. This formulation2 has the advantage70

to allow direct sampling at any timestep of the diffusion process without computing any previous71

timesteps. Indeed the matrix Qt =
∏

i<t Qi can be expressed in the form of (1) with βt being72

replaced by βt =
1
2 − 1

2

∏
i<t(1 − 2βi). Eventually, we want the probability βt ∈ [0, 0.5] to vary73

from 0 (unperturbed sample) to 0.5 (pure noise). In this contribution, we limit ourselves to symmetric74

graphs and therefore only need to model the upper triangular part of the adjacency matrix. The noise75

is sampled i.i.d. over all of the edges.76

3.2 Reverse Process77

To sample from the data distribution, the forward process needs to be reversed. Therefore, we need to78

estimate q(At−1|At,A0). In our case, using the Markov property of the forward process this can be79

rewritten as (see Appendix A for derivation):80

q(At−1|At,A0) = q(At|At−1)
q(At−1|A0)

q(At|A0).
(2)

Note that (2) is entirely defined by βt and β̄t and A0 (see Appendix A, Equation 4).81

1Note that two different β’s could be used for edges and non-edges. This case is left for future work.
2Note that we use a different parametrization for (1) than [10]. To recover the original formulation, one can

simply divide all βt by 2.
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3.3 Loss82

Diffusion models are typically trained to minimize a variational upper bound on the negative log-83

likelihood. This bound can be expressed as (see Appendix C or [3, Equation 5]):84

Lvb(A0)) := Eq(A0)

DKL(q(AT |A0)∥pθ(AT ))︸ ︷︷ ︸
LT

+

T∑
t=1

Eq(At|A0) DKL(q(At−1|At,A0)∥pθ(At−1|At))︸ ︷︷ ︸
Lt

−Eq(A1|A0) log(pθ(A0|A1))︸ ︷︷ ︸
L0


Practically, the model is trained to directly minimize the losses Lt, i.e. the KL divergence85

DKL(q(At−1 | At,A0)∥pθ(At−1 | At)) by using the tractable parametrization of q(At−1|At,A0)86

from (2). Note that the discrete setting of the selected noise distribution prevents training the model to87

approximate the gradient of the distribution as done by score-matching graph generative models [8, 9].88

Parametrization of the reverse process. While it is possible to predict the logits of pθ(At−1 | At)89

in order to minimize Lvb, we follow [3, 7, 10] and use a network nnθ(At) that predict the logits of90

the distribution pθ(A0 | At). This parametrization is known to stabilize the training procedure. To91

minimize Lvb, (2) can be used to recover pθ(At−1 | At) from A0 and At.92

Alternate loss. Many implementations of DDPMs found it beneficial to use alternative losses. For93

instance, [3] derived a simplified loss function that reweights the ELBO. Hybrid losses have been94

used in [27] and [7]. As shown in Appendix D, using the parametrization pθ(A0 | At), one can95

express the term: Lt as Lt = − log (pθ (A0 | At)). Empirically, we found that minimizing96

Lsimple := −Eq(A0)

T∑
t=1

(
1− 2 · βt +

1

T

)
· Eq(At|A0) log pθ (A0 | At)) (3)

leads to stable training and better results. Note that this loss equals the cross-entropy loss between97

A0 and nnθ(At). The re-weighting 1− 2 · βt +
1
T , which assigns linearly more importance to the98

less noisy samples, has been proposed in [23, Equation 7].99

3.4 Sampling100

For each loss, we used a specific sampling algorithm. For both approaches, we start by sampling each101

edge independently from a Bernoulli distribution with probability p = 1/2 (Erdős–Rényi random102

graph). Then, for the Lvb loss we follow Ho et al. [3] and iteratively reverse the chain by sampling103

Bernoulli-sampling from pθ(At−1 | At) until we obtain at our sample of pθ(A0 | A1). For the loss104

function Lsimple, we sample A0 directly from pθ(A0|At) for each step t and obtain At−1 by sampling105

again from q(At−1 | A0). The two approaches are described algorithmically in Appendix E.106

The values of β̄t are selected following a simple linear schedule for our reverse process [2] . We107

found it works similarly well as other options such as cosine schedule [27]. Note that in this case βt108

can be obtained from β̄t in a straightforward manner (see Appendix B).109

4 Experiments110

We compare our graph discrete diffusion approach to the original score-based approach proposed by111

Niu et al. [8]. Models using this original formulation are denoted by score. We follow the training112

and evaluation setup used by previous contributions [8, 9, 15, 19]. More details can be found in113

Appendix G. For evaluation, we compute MMD metrics from [15] between the generated graphs and114

the test set, namely, the degree distribution, the clustering coefficient, and the 4-node orbit counts. To115

demonstrate the efficiency of the discrete parameterization, the discrete models only use 32 denoising116

steps, while the score-based models use 1000 denoising steps, as originally proposed. We compare117

two architectures: 1. EDP-GNN as introduced by Niu et al. [8], and 2. a simpler and more expressive118
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provably powerful graph network (PPGN) [12]. See Appendix F for a more detailed description of119

the architectures.120

Community Ego
Model Deg. Clus. Orb. Avg. Deg. Clus. Orb. Avg. Total

GraphRNN† 0.030 0.030 0.010 0.017 0.040 0.050 0.060 0.050 0.033
GNF† 0.120 0.150 0.020 0.097 0.010 0.030 0.001 0.014 0.055
EDP-Score† 0.006 0.127 0.018 0.050 0.010 0.025 0.003 0.013 0.031
SDE-Score† 0.045 0.086 0.007 0.046 0.021 0.024 0.007 0.017 0.032

EDP-Score3 0.016 0.810 0.110 0.320 0.04 0.064 0.005 0.037 0.178
PPGN-Score 0.081 0.237 0.284 0.200 0.019 0.049 0.005 0.025 0.113

PPGN Lvb 0.023 0.061 0.015 0.033 0.025 0.039 0.019 0.027 0.03
PPGN Lsimple 0.019 0.044 0.005 0.023 0.018 0.026 0.003 0.016 0.019
EDP Lsimple 0.024 0.04 0.012 0.026 0.019 0.031 0.017 0.022 0.024

Table 1: MMD results for the Community and the
Ego datasets. All values are averaged over 5 runs with
1024 generated samples without any sub-selection. The
"Total" column denotes the average MMD over all of
the 6 measurements. The best results of the "Avg." and
"Total" columns are shown in bold. † marks the results
taken from the original papers.

SBM-27 Planar-60
Model Deg. Clus. Orb. Avg. Deg. Clus. Orb. Avg. Total

EDP-Score 0.014 0.800 0.190 0.334 1.360 1.904 0.534 1.266 0.8

PPGN Lsimple 0.007 0.035 0.072 0.038 0.029 0.039 0.036 0.035 0.036
EDP Lsimple 0.046 0.184 0.064 0.098 0.017 1.928 0.785 0.910 0.504

Table 2: MMD results for the SBM-27 and the Planar-
60 datasets.

Table 1 shows the results for two datasets,121

Community-small (12 ≤ n ≤ 20) and122

Ego-small (4 ≤ n ≤ 18), used by Niu123

et al. [8]. To better compare our approach124

to traditional score-based graph genera-125

tion, in Table 2, we additionally perform126

experiments on slightly more challeng-127

ing datasets with larger graphs. Namely,128

a stochastic-block-model (SBM) dataset129

with three communities, which in total con-130

sists of (24 ≤ n ≤ 27) nodes and a planar131

dataset with (n = 60) nodes. Detailed in-132

formation on the datasets can be found in133

Appendix H. Additional details concerning134

the evaluation setup are provided in Ap-135

pendix G.4.136

Results. In Table 1, we observe that the137

proposed discrete diffusion process using138

the Lvb loss and PPGN model leads to139

slightly improved average MMDs over the140

competitors. The Lsimple loss further im-141

prove the result over Lvb. The fact that the142

EDP-Lsimple model has significantly lower143

MMD values than the EDP-score model is a strong indication that the proposed loss and the discrete144

formulation are the cause of the improvement rather than the PPGN architecture. This improvement145

comes with the additional benefit that sampling is greatly accelerated (30 times) as the number of146

timesteps is reduced from 1000 to 32. Table 2 shows that the proposed discrete formulation is even147

more beneficial when graph size and complexity increase. The PPGN-Score even becomes infeasible148

to run in this setting, due to the prohibitively expensive sampling procedure. A qualitative evaluation149

of the generated graphs is performed in Appendix I. Visually, the Lsimple loss leads to the best samples.150

4 8 16 32 64 128 256 512 1024
Sampling steps

0.02

0.04
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0.08

0.10

0.12

Av
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 M
M

D

PPGN Lsimple

PPGN-Score

Figure 1: Average MMD compared to the num-
ber of denoising steps used on the Ego dataset
for PPGN Lsimple, which uses discrete noise and
PPGN-Score, which uses Gaussian noise.

To further showcase the performance improve-151

ment of using discrete diffusion we performed152

a study on how the number of sampling steps153

influences generated sample quality for PPGN154

Lsimple, which uses discrete noise and PPGN-155

Score, which uses Gaussian noise. In Figure 1156

we can see that our model using discrete noise157

already achieves the best generation quality with158

just 48 denoising steps, while the model with159

Gaussian noise achieves worse results even after160

1024 steps.161

5 Conclusion162

In this work, we demonstrated that discrete dif-163

fusion can increase sample quality and greatly164

improve the efficiency of denoising diffusion165

for graph generation. While the approach was166

presented for simple graphs with non-attributed167

edges, it could also be extended to cover graphs168

with edge attributes.169

3The discrepancy with the EDP-Score† results comes from the fact that using the code provided by the
authors, we were unable to reproduce their results. Strangely, their code leads to good results when used with
our discrete formulation and Lsimple loss improving over the result reported in their contribution.
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A Reverse Process Derivations251

In this appendix, we provide the derivation of the reverse probability q(At−1|At,A0). Using the252

Bayes rule, we obtain253

q(At−1|At,A0) =
q(At | At−1,A0) · q(At−1,A0)

q(At,A0)

=
q(At | At−1) · q(At−1 | A0)q(A0)

q(At | A0) · q(A0)

= q(At | At−1) ·
q(At−1 | A0)

q(At | A0)
,

where we use the fact that q(At | At−1,A0) = q(At | At−1) since At is independent of A0 given254

At−1.255

This reverse probability is entirely defined with βt and β̄t. For the i, j element of A (denoted Aij),256

we obtain:257

q(Aij
t−1 = 1|Aij

t ,A
ij
0 ) =



(1− βt) ·
(1−βt−1)

1−βt

, ifAij
t = 1,Aij

0 = 1

(1− βt) ·
βt−1

βt

, if Aij
t = 1,Aij

0 = 0

βt ·
(1−βt−1)

βt

, if Aij
t = 0,Aij

0 = 1

βt ·
βt−1

1−βt

, if Aij
t = 0,Aij

0 = 0

(4)
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B Conversion of βt to βt258

The selected linear schedule provides us with the values of βt. In this appendix, we compute259

an expression for βt from βt, which allows us easy computation of (2). By definition, we have260

Qt = Qt−1Qt which is equivalent to261 (
1− β̄t−1 β̄t−1

β̄t−1 1− β̄t−1

)(
1− βt βt

βt 1− βt

)
=

(
1− β̄t β̄t

β̄t 1− β̄t

)
Let us select the first row and first column equality. We obtain the following equation262 (

1− β̄t−1

)
(1− βt) + β̄t−1βt = 1− β̄t,

which, after some arithmetic, provides us with the desired answer263

βt =
β̄t−1 − β̄t

2β̄t−1 − 1
.

C ELBO derivation264

The general Evidence Lower Bound (ELBO) formula states that265

log (pθ (x)) ≥ Ez∼q

[
log

(
p (x, z)

q (z)

)]
for any distribution q and latent z. In our case, we use A1:T as a latent variable and obtain266

− log (pθ (A0)) ≤ EA1:T∼q(A1:T |A0)

[
log

(
pθ (A0:T )

q (A1:T | A0)

)]
:= Lvb(A0)

We use Lvb = E [Lvb(A0))] and obtain267

Lvb = Eq(A0:T )

[
− log

(
pθ (A0:T )

q (A1:T | A0)

)]
= Eq

[
− log (pθ (AT ))−

T∑
t=1

log

(
pθ (At−1 | At)

q (At | At−1)

)]

= Eq

[
− log (pθ (AT ))−

T∑
t=2

log

(
pθ (At−1 | At)

q (At | At−1)

)
− log

(
pθ (A0 | A1)

q (A1 | A0)

)]

= Eq

[
− log (pθ (AT ))−

T∑
t=2

log

(
pθ (At−1 | At)

q (At−1 | At,A0)
· q (At−1 | A0)

q (At | A0)

)
− log

(
pθ (A0 | A1)

q (A1 | A0)

)]
(5)

= Eq

[
− log

(
pθ (AT )

q (AT | A0)

)
−

T∑
t=2

log

(
pθ (At−1 | At)

q (At−1 | At,A0)

)
− log (pθ (A0 | A1))

]

= EEq(A0)

[
DKL(q(AT |A0)∥pθ(AT )) +

T∑
t=2

Eq(At|A0)DKL(q(At−1|At,A0)∥pθ(At−1|At))

−Eq(A1|A0) log(pθ(A0|A1))
]

where (5) follows from268

q (At−1 | At,A0) =
q (At | At−1,A0) q (At−1,A0)

q (At,A0)

=
q (At | At−1) q (At−1 | A0)

q (At | A0)
.

The ELBO loss can be optimized by optimizing each of the DKL(q(At−1|At,A0)∥pθ(At−1|At))269

terms corresponding to different time steps t. Since we are dealing with the categorical distributions270

optimization of DKL(q(At−1|At,A0)∥pθ(At−1|At)) is equivalent to optimizing the cross entropy271

loss between q(At−1|At,A0) and pθ(At−1|At). So for training the model, we can select a random272

time step t and optimize the corresponding KL divergence term using corss entropy loss.273
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Algorithm 1 Sampling for Lvb

1: ∀i, j|i > j: Aij
T ∼ Bp=1/2

2: for t = T, ..., 1 do
3: Compute pθ(At−1|At)
4: At−1 ∼ pθ(At−1|At)
5: end for

Algorithm 2 Sampling for Lsimple

1: ∀i, j|i > j: Aij
T ∼ Bp=1/2

2: for t = T, ..., 1 do
3: Ã0 ∼ pθ(A0|At)

4: At−1 ∼ q(At−1|Ã0)
5: end for

Sampling algorithms. To sample a new graph, we start by generating a random Erdős–Rényi graph
AT , i.e., each edge is randomly drawn independently with a probability p = 1/2. Then, we reverse
each step of the Markov chain until we get to A0. Algorithms 1 and 2 differ in how this is done.
In Algorithm 1, we obtain At−1 from At by 1. computing edge probabilities using the model
pθ(At−1|At), and 2., sampling the new adjacency matrix At−1.
In Algorithm 2, we obtain At−1 from At by 1. computing edge probabilities of the target adjacency
matrix A0 using the model pθ(A0|At), 2. sampling to get an estimate to obtain Ã0, and 3., sampling
the new adjacency matrix At−1 from q(At−1|Ã0).

D Simple Loss274

Using the parametrization pθ(A0 | At), we can simplify the KL divergence of the term Lt.275

DKL (q (At−1 | At,A0) ∥pθ (At−1 | At)) = Eq(At−1|At,A0)

[
− log

(
pθ (At−1 | At)

q (At−1 | At,A0)

)]
= Eq(At−1|At,A0) [− log (pθ (A0 | At))]

= − log (pθ (A0 | At))

We note that this term corresponds to the cross-entropy of the distribution pθ (A0 | At) with the276

ground truth of A0. Thus, its optimization is straightforward and follows the setup described in the277

previous section.278

E Sampling Algorithms279

Here in Algorithms 1 and 2 we provide an algorithmic description of the two sampling approaches280

described in Section 3.4. Here Bp=1/2 denotes the Bernoulli distribution with parameter p = 1/2,281

which corresponds to the Erdős–Rényi random graph model.282

F Models283

F.1 Edgewise Dense Prediction Graph Neural Network (EDP-GNN)284

The EDP-GNN model introduced by Niu et al. [8] extends GIN [28] to work with multi-channel285

adjacency matrices. This means that a GIN graph neural network is run on multiple different adjacency286

matrices (channels) and the different outputs are concatenated to produce new node embeddings:287

X(k+1)′

c = Ã(k)
c X(k) + (1 + ϵ)X(k),

288

X(k+1) = Concat(X(k+1)′

c for c ∈ {1, . . . , C(k+1)}),
where X ∈ Rn×h is the node embedding matrix with hidden dimension h and C(k) is the number of289

channels in the input multi-channel adjacency matrix Ã(k) ∈ RC(k)×n×n, at layer k. The adjacency290

matrices for the next layer are produced using the node embeddings:291

Ã
(k+1)
·,i,j = MLP(Ã(k)

·,i,j ,Xi,Xj).

For the first layer, EDP-GNN computes two adjacency matrix Ã(0) channels, original input adjacency292

A and its inversion 11T −A. For node features, node degrees are used X(0) =
∑

i Ai.293

8
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To produce the final outputs, the outputs of all intermediary layers are concatenated:294

Ã = MLPout(Concat(Ã(k) for k ∈ {1, . . . ,K})).
The final layer always has only one output channel, such that A(t) = EDP-GNN(A(t−1)).295

To condition the model on the given noise level βt, noise-level-dependent scale and bias parameters296

αt and γt are introduced to each layer f of every MLP:297

f(Ã·,i,j) = activation((WÃ·,i,j + b)αt + γt).

F.2 Provably Powerful Graph Network (PPGN)298

The input to the PPGN model used is the adjacency matrix At concatenated with the diagonal matrix299

βt · I , resulting in an input tensor Xin ∈ Rn×n×2. The output tensor is Xout ∈ Rn×n×1, where300

each [Xout]ij represents p([A0]ij | [At]ij).301

Our PPGN implementation, which closely follows Maron et al. [12] is structured as follows:302

Let P denote the PPGN model, then303

P (Xin) := (lout ◦ C)(Xin) (6)
304

C : Rn×n×2 → Rn×n×(d·h) (7)
305

C(Xin) := Concat((Bd ◦ ... ◦B1)(Xin), (Bd−1 ◦ ... ◦B1)(Xin), ..., B1(Xin)) (8)
The set {B1, ..., Bd} is a set of d different powerful layers implemented as proposed by Maron et al.306

[12]. We let the input run through different amounts of these powerful layers and concatenate their307

respective outputs to one tensor of size n× n× (d · h). These powerful layers are functions of size:308

∀Bi ∈ {B2, ..., Bd}, Bi : Rn×n×h → Rn×n×h (9)
309

B1 : Rn×n×1 → Rn×n×h. (10)
Finally, we use an MLP 2 to reduce the dimensionality of each matrix element down to 1, so that we310

can treat the output as an adjacency matrix.311

lout : Rd·h → R1, (11)

where lout is applied to each element [C(Xin)]i,j,. of the tensor C(Xin) over all its d · h channels. It312

is used to reduce the number of channels down to a single one which represents p(A0|At).313

G Training Setup314

G.1 EDP-GNN315

The model training setup and hyperparameters used for the EDP-GNN were directly taken from [8].316

We used 4 message-passing steps for each GIN, then stacked 5 EDP-GNN layers, for which the317

maximum number of channels is always set to 4 and the maximum number of node features is 16.318

We use 32 denoising steps for all datasets besides Planar-60, where we used 256. Opposed to 6 noise319

levels with 1000 sample steps per level as in the Score-based approach.320

G.2 PPGN321

The PPGN model we used for the Ego-small, Community-small, and SBM-27 datasets consists of322

6 layers {B1, ..., B6}. After each powerful layer, we apply an instance normalization. The hidden323

dimension was set to 16. For the Planar-60 dataset, we have used 8 layers and a hidden dimension of324

128. We used a batch size of 64 for all datasets and used the Adam optimizer with parameters chosen325

as follows: learning rate is 0.001, betas are (0.9, 0.999) and weight decay is 0.999.326

G.3 Model Selection327

We performed a simple model selection where the model which achieves the best training loss is328

saved and used to generate graphs for testing. We also investigated the use of a validation split and329

computation of MMD scores versus this validation split for model selection, but we did not find this330

to produce better results while adding considerable computational overhead.331
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G.4 Additional Details on Experimental Setup332

Here we provide some details concerning the experimental setup for the results in Tables 1, 2 and333

Figure 1.334

Details for MMD results in Table 1: From the original paper Niu et al. [8], we are unsure if the335

GNF, GraphRNN, and EDP-Score model selection were used or not. The SDE-Score results in the336

first section are sampled after training for 5000 epochs and no model selection was used. Due to the337

compute limitations on the PPGN model, the results for PPGN Lvb are taken after epoch 900 instead338

of 5000, as results for SDE-Score and EDP-Score have been. The results for PPGN Lsimple and EDP339

Lsimple were trained for 2500 epochs.340

Details for MMD results in Table 2: All results using the EDP-GNN model are trained until epoch341

5000 and the PPGN implementation was trained until epoch 2500.342

Details for ablation results in Figure 1: Experiments were performed on ego-small using 4343

different seeds and training one model per seed. Each model was trained for 2500 epochs and no344

model selection was used. Both implementations used the PPGN model, one based on the score345

framework and one on our discrete diffusion. For every model, we sampled 256 graphs for which346

the average of the three MMD metrics (Degree, Clustering, Orbital) is reported. The plot shows the347

mean and standard deviation of this average MMD over the four seeds.348

H Datasets349

In this appendix, we describe the 4 datasets used in our experiments.350

Ego-small: This dataset is composed of 200 graphs of 4-18 nodes from the Citeseer network (Sen351

et al. [29]). The dataset is available in the repository4 of Niu et al. [8].352

Community-small: This dataset consists of 100 graphs from 12 to 20 nodes. The graphs are353

generated in two steps. First, two communities of equal size are generated using the Erdos-Rényi354

model [11] with parameter p = 0.7. Then edges are randomly added between the nodes of the two355

communities with a probability p = 0.05. The dataset is directly taken from the repository of Niu356

et al. [8].357

SBM-27: This dataset consists of 200 graphs with 24 to 27 nodes generated using the Stochastic-358

Block-Model (SBM) with three communities. We use the implementation provided by Martinkus359

et al. [21]. The parameters used are pintra = 0.85, pinter=0.046875, where pintra stands for the360

intra-community (i.e. for a node within the same community) edge probability and pinter stands361

for the inter-community (i.e. for nodes from different communities) edge probability. The number362

of nodes for the 3 communities is randomly drawn from {7, 8, 9}. In expectation, these parameters363

generate 3 edges between each pair of communities.364

Planar-60: This dataset consists of 200 randomly generated planar graphs of 60 nodes. We use365

the implementation provided by Martinkus et al. [21]. To generate a graph, 60 points are first366

randomly uniformly sampled on the [0, 1]2 plane. Then the graph is generated by applying Delaunay367

triangulation to these points [30].368

I Visualization of Sampled Graphs369

In the following pages, we provide a visual comparison of graphs generated by the different models.370

4https://github.com/ermongroup/GraphScoreMatching

10

https://github.com/ermongroup/GraphScoreMatching


Diffusion Models for Graphs Benefit From Discrete State Spaces

Figure 2: Sample graphs from the training set
of Ego-small dataset. Figure 3: Sample graphs generated with the

model EDP-Score [8] for the Ego-small dataset.

Figure 4: Sample graphs generated with the
PPGN Lvb model for the Ego-small dataset.

Figure 5: Sample graphs generated with the
EDP Lsimple model for the Ego-small dataset.
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Figure 6: Sample graphs from the training set
of the Community dataset

Figure 7: Sample graphs generated with
the model EDP-Score [8] for the Community
dataset.

Figure 8: Sample graphs generated with the
PPGN Lvb model for the Community dataset.

Figure 9: Sample graphs generated with the
EDP Lsimple model for the Community dataset.
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Figure 10: Sample graphs from the training set of the Planar-60 dataset.

Figure 11: Sample graphs generated with the model EDP-Score [8] for the Planar-60 dataset.

Figure 12: Sample graphs generated with the PPGN Lsimple model for the Planar-60 dataset.
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Figure 13: Sample graphs from the training set of the SBM-27 dataset.

Figure 14: Sample graphs generated with the model EDP-Score [8] for the SBM-27 dataset.

Figure 15: Sample graphs generated with the PPGN Lsimple model for the SBM-27 dataset.
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