
Supplementary Material for “A General Framework for Learning456

under Corruption: Label Noise, Attribute Noise, and Beyond”457

S1 Additional discussions on related work458

Here, we detail discussions on the relations with existing paradigms as shown in Tab. 1. As a reminder,459

we review the commonly used notations. Let E : Y ⇝ X be an experiment and F : X ⇝ Y be a460

posterior kernel. The clean distribution P can be represented either in a discriminative manner as461

πX × F or in a generative manner as πY × E. However, we cannot observe samples drawn from462

the clean distribution P , but observe samples from some corrupted distribution P̃ . The corruption is463

generally represented as κZZ̃ , where the variables z = (x, y) ∈ Z are referred to as parameters and464

the differentials dz̃ = dx̃dỹ are referred to as corrupted variables. δZZ̃ denotes a kernel induced by465

the Dirac delta measure from (Z,Z) to (Z,Z).466

S1.1 Simple corruptions467

The most well-known and widely studied corruptions in the literature are the simple cases, where468

the corruption solely acts on the feature space X or the label space Y . We discuss examples of the469

simple corruptions S-X̃ and S-Ỹ , as illustrated in Fig. 1a, in the following.470

Attribute noise The problem of attribute noise concerns errors that are introduced into the observa-471

tions of attribute X, leaving the labels untouched [30, 31, 4, 19]. Widely studied examples of such472

errors include erroneous attribute values and missing attribute values. Instead of observing (X,Y), in473

the first case, one can only observe a distorted version of X, e.g. (X+ N,Y) with some independent474

noise random variable N ⊥⊥ X; in the second case, one’s observation of X contains missing values.475

Let X = (xij)1≤i≤n,1≤j≤d be the complete input matrix, with |X| = n, and M =476

(mij)1≤i≤n,1≤j≤d be the associated missingness indicator matrix such that mij = 1 if xij is observed477

and mij = 0 if xij is missing. Then the corresponding observed input matrix is Xo = X ⊙M and478

its missing counterpart is Xm = X −Xo, where ⊙ denotes Hadamard product. The missing value479

mechanisms are further categorized into three types based on their dependencies [5, 6]: 8480

• Missing completely at random (MCAR): the cause of missingness is entirely random, i.e., p(M |481

X) = p(M) does not depend on Xo or Xm. This corresponds to having a trivial Markov kernel482

acting on the clean distribution, κXX̃ ≡ µ ∈ P(X).483

• Missing not at random (MNAR): the cause of missingness depends on both observed variables and484

missing variables, i.e., p(M | X) = p(M | Xo,Xm). This case corresponds to our non-trivial κXX̃ .485

• Missing at random (MAR): the cause of missingness depends on observed variables but not on486

missing variables, i.e., p(M | X) = p(M | Xo). This case is a sub-case of the non-trivial κXX̃ ,487

which is not specifiable by our taxonomy because of the different premises it is built on.488

We underline that the conditional distributions of M described above are not an equivalent description489

of our Markov kernels. The missing data case is also known as finite Selection Bias, as discussed in490

§ S2.3, we know there exists a Markov kernel describing this corruption but the definition per se is a491

non-stochastic corruption.492

Hence, attribute noise is an example of S-X̃ corruption that can be generally formulated as the493

corrupted experiment illustrated in the transition diagram Y X X̃E κXX̃ , and the corrupted494

distribution is given by P̃ = (κXX̃δY Ỹ ) ◦ (πY × E).495

Class-conditional noise (CCN) The problem of CCN arises in situations where, instead of ob-496

serving the clean labels, one can only observe corrupted labels that have been flipped with a497

label-dependent probability, while the marginal distribution of the instance remains unchanged498

[5, 34, 7, 19]. CCN is an example of S-Ỹ corruption that can be formulated as a corrupted pos-499

terior illustrated in the transition diagram X Y ỸF κY Ỹ , and the corrupted distribution is500

given by P̃ = (δXX̃κY Ỹ ) ◦ (πX × F ). For classification tasks, Y and Ỹ are assumed to be501

finite spaces. Therefore the corruption κY Ỹ can be represented by a column-stochastic matrix502

8Assume the rows xi, mi are assigned a joint distribution. and X and M are treated as random variables.
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T = (ρij)1≤i≤|Ỹ |,1≤j≤|Y | which specifies the probability of the clean label Y = j being flipped to503

the corrupted label Ỹ = i, i.e., ∀i, j, ρij = p(Ỹ = i | Y = j). The corrupted joint distribution can be504

rewritten as P̃ =
∑

Y p(Ỹ | Y)p(Y | X)p(X). In the literature, T is known as the noise transition505

matrix with its elements ρij referred to as the noise rates, and is useful for designing loss correction506

approaches (our results in § 5 significantly generalize existing loss correction results in CCN to our507

broad class of simple, dependent and combined corruptions) [34]. Prior to the proposal of the CCN508

model, early studies primarily focused on a symmetric subcase of T in binary classification, known509

as random classification noise (RCN) [32, 33, 12]. Note that in RCN, the output of the corruption κỸ510

remains constant w.r.t. its parameters. Recently, some variants of CCN have been further developed,511

for example, in Ishida et al. [13, 14], complementary labels that can be modeled via a symmetric T512

whose diagonal elements are all equal to zero are studied.513

S1.2 Dependent corruptions514

Although simple corruptions have been well studied and understood, more complexities arise in515

dependent cases, yet they receive relatively less attention and understanding. We discuss examples of516

the dependent corruptions 1D-X̃ , 1D-Ỹ , 2D-X̃ and 2D-Ỹ , as illustrated in Fig. 1a, in the following.517

Style transfer Style transfer refers to the process of migrating the artistic style of a given image to518

the content of another image [35, 36]. The primary objective is to recreate the second image with the519

designated style of the first image. In recent developments, it has also been applied to audio signals520

[37]. If we represent the style of the first image by Y, and the second image and the reconstructed521

image as X and X̃ respectively, style transfer serves as an illustrative example of 1D-X̃ “corruption”.522

Note that the aim here is to learn how to corrupt instead of learning in the presence of corruption.523

We mention this connection because our framework can also be used also with different purposes,524

but underline that our BR results are not applicable to this case. The process of style transfer can be525

formulated as a corrupted posterior illustrated in the transition diagram X Y X̃F κY X̃ , and the526

corrupted distribution is given by P̃ = (κY X̃δY Ỹ ) ◦ (πX × F ).527

Adversarial noise In contrast to additive random attribute noise, adversarial noise is specifically528

crafted by adversaries for each instance with the intent of changing the model’s prediction of the529

correct label [38, 39, 40, 41, 42]. Such adversarial examples raise significant security concerns as530

they can be utilized to attack machine learning systems, even in scenarios where the adversary has no531

access to the underlying model. The adversarial noise is an example of 2D-X̃ corruption that can be532

formulated as a corrupted experiment illustrated in the transition diagram Y X X̃E

κXY X̃

κXY X̃ , and533

the corrupted distribution is given by P̃ = (κXY X̃δY Ỹ ) ◦ (πY × E).534

Instance-dependent noise (IDN) As a counterpart to CCN, the problem of IDN arises in situations535

where, instead of observing the clean labels, one can only observe corrupted labels that have been536

flipped with an instance-dependent (but not label-dependent) probability [18, 8]. It is a special case537

of the ILN noise model, which we will describe later. IDN is an example of 1D-Ỹ corruption that can538

be formulated as a corrupted experiment illustrated in the transition diagram Y X ỸE κXỸ ,539

and the corrupted distribution is given by P̃ = (δXX̃κXỸ ) ◦ (πY × E).540

Instance- and label-dependent noise (ILN) ILN is the most general label noise model, which541

arises in situations where, instead of observing clean labels, one can only observe corrupted labels that542

have been flipped with an instance- and label-dependent probability [8, 43, 44, 45]. ILN is an example543

of 2D-Ỹ corruption that can be formulated as a corrupted posterior illustrated in the transition diagram544

X Y ỸF

κXY Ỹ

κXY Ỹ , and the corrupted distribution is given by P̃ = (δXX̃κXY Ỹ ) ◦ (πX × F ).545

Compared to the matrix representation T of the CCN corruption κY Ỹ , the ILN corruption κXY Ỹ can546

be represented by a matrix-valued function of the instance T (x) = (ρij(x))1≤i≤|Ỹ |,1≤j≤|Y | which547

specifies the probability that the instance X = x with the clean label Y = j being flipped to the548

corrupted label Ỹ = i, i.e., ∀i, j, ρij(x) = p(Ỹ = i | Y = j,X = x). Some subcases of ILN have549
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also been studied in the literature, for example, the boundary-consistent noise, which considers a550

label flip probability based on a score function of the instance and label. The score aligns with the551

underlying class-posterior probability function, resulting in instances closer to the optimal decision552

boundary having a higher chance of its label being flipped [23].553

S1.3 Combined corruptions554

Given the simple and dependent corruptions, we can combine them to generate 2-parameter joint555

corruptions, i.e., κZZ̃ : X × Y ⇝ X̃ × Ỹ . Below, we discuss some examples of combined noise556

models illustrated in Fig. 1b.557

Combined simple noise The simplest combined corruption is the combined simple noise, where558

the observations of attribute X are subject to some errors and the observed labels Y are flipped559

with a label-dependent probability [19]. Combined simple noise is an example of (S-X̃ , S-Ỹ )560

corruption that can be formulated as a corrupted experiment illustrated in the transition diagram561

Ỹ Y X X̃
κY Ỹ E κXX̃ , and the corrupted distribution is given by P̃ = (κXX̃κY Ỹ )◦(πY ×E).562

Target shift In the literature, target shift refers to the situation where the prior probability p(Y) is563

changed while the conditional distribution p(X | Y) remains invariant across training and test domains564

[46, 47, 48, 49]. The definition is established by assuming certain invariance from a generative565

perspective of the learning problem, that is, considering it as a corruption of the experiment according566

to P = πY × E. However, when examining the learning problem from a discriminative perspective,567

the change in p(Y) may cause changes in both p(X) and p(Y | X) due to the Bayes rule. Existing568

frameworks for the categorization of target shift do not capture these implications, as they are based569

on the notion of invariance from a single perspective of the E direction. In contrast, our framework570

categorizes corruptions based on their dependencies and therefore is advantageous by offering dual571

perspectives from both the E and F directions. Specifically, target shift is an example of (1D-X̃ ,572

2D-Ỹ ) corruption and can be formulated either as a corrupted experiment illustrated in the transition573

diagram X̃ Y X Ỹ
κY X̃ E

κXY Ỹ

κXY Ỹ , or as a corrupted posterior illustrated in the transition diagram574

Ỹ X Y X̃
κXY Ỹ

κXY Ỹ

F κY X̃ . The corrupted distribution is given by P̃ = (κY X̃κXY Ỹ ) ◦ (πY ×E)575

or P̃ = (κY X̃κXY Ỹ ) ◦ (πX × F ).576

Mutually contaminated distributions (MCD) The problem of MCD arises in binary classification
situations where, instead of observing samples from the clean class-conditional distributions p(X |
Y = ±1), one can only observe samples from corrupted class-conditional distributions p̃(X | Y =
±1), with (

p̃(X | Y = +1)
p̃(X | Y = −1)

)
=

(
1− α α
β 1− β

) (
p(X | Y = +1)
p(X | Y = −1)

)
as described in [6, 50, 51]. The coefficients α and β are defined as the fraction of data points having577

a flipped label, given that the true one was respectively +1 or −1.578

In comparison, CCN corrupts the class-posterior probability p(Y | X) while MCD corrupts the579

class-conditional distribution p(X | Y); consequently, the marginal distribution of p(X) remains580

unchanged in CCN but may be changed in MCD. Therefore α and β in MCD are not the noise rates581

ρ12 and ρ21 in CCN, however, they are shown to be related by an invertible transformation [6]. In582

other words, CCN is shown to be a subcase of the MCD, but what else is included in the MCD model583

is not explored. Therefore, here we model MCD as (2D-X̃ , S-Ỹ ) corruption, which can be formulated584

as a corrupted experiment illustrated in the transition diagram Ỹ Y X X̃
κY Ỹ E

κXY X̃

κXY X̃ , and the585

corrupted distribution is given by P̃ = (κXY X̃κY Ỹ ) ◦ (πY × E).586

Covariate shift In the literature, covariate shift refers to the situation where the marginal distribution587

p(X) is changed while the class-posterior probability p(Y | X) remains invariant across training and588

test domains [3, 52, 53, 54]. Similarly to target shift, the definition is established by assuming certain589
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invariance from a discriminative perspective of the learning problem. However, when examining the590

learning problem from a generative perspective, the change in p(X) may cause changes in p(Y) and591

p(X | Y) due to the Bayes rule. Covariate shift in its general definition is an example of (2D-X̃ , 1D-Ỹ )592

corruption and can be formulated either as a corrupted posterior illustrated in the transition diagram593

Ỹ X Y X̃
κXỸ F

κXY X̃

κXY X̃ , or as a corrupted experiment illustrated in the transition diagram594

X̃ Y X Ỹ
κXY X̃

κXY X̃

E κXỸ . The corrupted distribution is given by P̃ = (κXY X̃κXỸ ) ◦ (πX × F )595

or P̃ = (κXY X̃κXỸ ) ◦ (πY × E).596

Generalized target shift In the literature, generalized target shift refers to the situation where597

the prior probability p(Y) and the conditional distribution p(X | Y) both change across training598

and test domains, however, with some invariance assumptions in the latent space [55, 56, 57].599

Generalized target shift is an example of (2D-X̃ , 2D-Ỹ ) corruption that can be formulated as a600

corrupted experiment illustrated in the transition diagram Ỹ Y X X̃
κXY Ỹ

κXY Ỹ

E

κXY X̃

κXY X̃ , and the601

corrupted distribution is given by P̃ = (κXY X̃κXY Ỹ ) ◦ (πY × E). Note that simpler scenarios can602

also result in a generalized target shift, however, it is important to avoid degenerating to the simple603

S-X̃ corruption, as it would violate the requirement of corrupting the label distribution.604

Concept drift Concept drift refers to the situation where p̃(Y | X) ̸= p(Y | X) [17]. As in the case605

of generalized target shift, this case can be associated with every corruption in our framework, so the606

most general correspondence is the (2D-X̃ , 2D-Ỹ ) joint Markov kernel.607

S2 Appendix for “A general framework for corruption”, Section 3608

S2.1 The superposition operation609

We further describe the superposition operation between kernels, also known as “parallel combination”610

[27] or Kronecker product when in finite spaces, by specifying the action of the resulting kernel on611

functions and measures.612

Definition S1. Let κ1 be a Markov kernel from (X,X ) to (Y,Y) and κ2 be a Markov kernel from613

(Z,Z) to (W,W). Hence, the superposition of the two is a kernel κ1κ2 from (X × Z,X × Z) to614

(Y ×W,Y ×W) such that:615

(κ1κ2)f(x, z) =

∫
Y×W

(κ1κ2)(x, z, dydw) f(y, w)

=

∫
Y

κ1(x, dy)

∫
W

κ2(z, dw) f(y, w) ,

for every f positive Y ×W-measurable, or equivalently616

µ(κ1κ2)(B) =

∫
B

∫
X×Z

(κ1κ2)(x, z, dydw)µ(dxdz)

=

∫
B

∫
X

κ1(x, dy)

∫
Z

κ2(z, dw)µ(dxdz) ,

for every measure µ on (X × Z,X × Z), B ∈ Y ×W .617

Both the operators are well defined, as we can rewrite them618

(κ1κ2)f(x, z) = κ1(κ2f(y, w)) = κ1f̂(y, z) ,

µ(κ1κ2)(BY ×BW ) = κ1(µκ2)(BY ×BW ) = µ̂κ1(BY ×BW ) .

Hence we are just iteratively applying the standard kernel-induced operators to a parameterized619

function or partially to a joint measure.620
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When dealing with finite spaces, Markov kernels are column-stochastic matrices. The superposition
operation is then equal to the Kronecker product, between two matrices,

κ1κ2 := κ1 ⊗ κ2 =

 (κ1)11κ2 . . . (κ1)1nκ2

...
. . .

...
(κ1)m1κ2 . . . (κ1)mnκ2


with κ1 being a |Y | × |X| matrix and κ2 a |W | × |Z| matrix.621

S2.2 The Bayesian inversion theorem622

In this section, we present some existing results coming from category theory applied to Bayesian623

learning, which allows us to define and use the inverse kernel as introduced in the main text. The624

background knowledge required for following this section is rather different from that of the other625

sections. However, even if readers choose not to delve into the specific details, they can still626

comprehend our results by only referring to the notions in Def. S4.627

In Dahlqvist et al. [26], they address the question of Markov kernel inversion through the lens of628

category theory.9 They investigate how and when the (weak) inversion is defined, both directly on the629

category of measurable spaces and indirectly by considering the associated Markov linear operator630

(Markov transition [42]). We only focus on illustrating the first result, given the focus on Markov631

kernels we had in the paper. We will use category theory terminology, and then connect it to our632

probabilistic vocabulary.633

The first step is the construction of the Krn category, similar to our notion of space of Markov kernels634

M(X,Y ) but with an equivalence relation acting on it. They start by considering Polish metric635

spaces, the category Pol with continuous mappings, a subcase of which are the closed sets X ⊆ Rd636

equipped with the usual topology. The category of measurable spaces considered for defining kernels,637

Mes, is the one induced by a functor B : Pol → Mes, i.e. all the measurable spaces with the same638

underlying set of a Polish space but equipped by the Borel σ-algebra and interpreting continuous639

mapping as measurable ones. We call these spaces standard Borel spaces, and use them as the640

building block of the Krn category.641

The category Mes is embedded by a functor F into the Kleisli category of G, a monad over Mes642

representing probability distributions over some set. The functor F acts identically on sets and643

maps measurable functions f : X → Y to Kleisli arrows F (f) = δY ◦ f . This means, in more644

familiar terms, that we build a trivial kernel δY (f−1(dy)), i.e. the image measure of the dirac delta645

through f . It further induces the category 1 ↓ F of probabilities p : 1 → GX and trivial morphisms646

f : (X, p) →δ (Y, q) as degenerate arrows F (f) s.t. q = F (f)◦Gp = G(f)(p), where ◦G corresponds647

our ◦ combination between a kernel and a distribution. In other words, F (f) induces a measure-648

preserving map, so 1 ↓ F includes all measure-preserving maps induced by degenerate arrows. When649

the arrows used are not degenerate, we obtain the supercategory 1 ↓ Kℓ, with the same objects. We650

denote arrows in this category as f : (X, p) → (Y, q). Notice that the kernels included in the category651

1 ↓ Kℓ are what we would call M(X,Y ), where X has marginal p and Y has marginal q.652

This last category includes Markov kernels as we have defined them in this paper. They are considered653

as typed kernels, i.e. their definition is tied to a fixed input and a fixed output (probabilities) instead654

of being characterized for every input probability and every reachable output. This remark is crucial655

for understanding our notion of exhaustiveness – we will later underline why.656

Markov kernels cannot be inverted as they are, because of their non-singularity. They characterize it657

with their Lemma 3, proving that for a kernel f : (X, p) → (Y, q) there are p-negligibly many points658

jumping to q-negligible sets. Once the non-singularity is understood, we can define an equivalence659

relation that, when acting on 1 ↓ Kℓ, allows a well-posed definition of the inverse kernel.660

Definition S2. For all objects (X, p), (Y, q), R(X,p),(Y,q) is the smallest equivalence relation on
Hom1↓Kℓ(X,Y ) such that

(f, f ′) ∈ R(X,p),(Y,q) ⇔ f = f ′ p− a.s.

In Lemma 4, they prove R to be a congruence relation on 1 ↓ Kℓ. This congruence relation allows us661

to define the quotient category, with the proper morphisms.662

9For a general overview, see Mac Lane [41].
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Z1

Z2 Z3

(a) Fork structure.

Z1

Z2

Z3

(b) Chain structure.

Z1

Z2 Z3

(c) Collider structure.

Figure S1: Possible non-degenerate relations among three probability spaces.

Definition S3. The category Krn is the quotient category (1 ↓ Kℓ)/R .663

Having defined the category, we have to build the functions that are going to constitute the weak
inversion operator, i.e. a bijection between HomKrn((X, p), (Y, q)) and HomKrn((Y, q), (X, p)). They
are two mapping between the Krn category and the space of couplings associated to (X, p), (Y, q).
The first is equivalent to our × kernel operation, applied to a kernel (i.e. conditional probability) and
a probability, and is formally written as

αX
Y : HomKrn((X, p), (Y, q)) → Γ ((X, p), (Y, q)) s.t. αX

Y (f)(BX×BY ) :=

∫
x∈BX

f(x)(BY )dp ,

with Γ ((X, p), (Y, q)) ⊂ G(X,Y ) the typed couplings associated to the marginals (X, p), (Y, q).664

The second is defined as its inverse operation, and it is decomposing a joint probability along a fixed
marginal distribution, i.e.,

DX
Y : Γ ((X, p), (Y, q)) → HomKrn((X, p), (Y, q)) s.t. DX

Y (γ) := G(πY ) ◦ π†
X ,

such that

γ(BX ×BY ) :=

∫
x∈BX

DX
Y (γ)(x)(BY )dp ,

with (·)†: adjoint operator. Being one the inverse of the other, they are both obviously bijective and665

proving the one-to-one correspondence between typed kernels and typed couplings.666

Hence, we formally define the pseudo-inverse as in the following:667

Definition S4. The inverse of a typed kernel κ from (X1, p1) to (X2, p2), given by κ† ◦ κ :=668

DY
X ◦ G(π2 × π1) ◦αX

Y (κ) with G(π2 × π1) : Γ ((X1, p1), (X2, p2)) → Γ ((X2, p2), (X1, p1)) being669

the permutation map, is defined as670

1. κ† : (X2, p2) → (X1, p1) ∈ Krn when κ is seen as element of Krn, such that κ† ◦ κ = δX1
and671

κ ◦ κ† = δX2
;672

2. κ† : X2 ⇝ X1 ∈ M(X2, X1) when κ is seen as element of M(X1, X2), such that κ† ◦κ =R δX1673

and κ ◦ κ† =R δX2
.674

S2.3 Exhaustiveness of the taxonomy675

In the previous section, we define the operations α and D for typed kernels, which are one the inverse676

of the other by construction. They are the operations representing the bijection between the space677

of Markov kernels typed for p, q and the space of couplings with marginals p, q. Hence, they are678

proving that for each couple of probability spaces, there exists a Markov kernel sending one into the679

other corresponding to a possible associated coupling.680

This means that every pairwise stochastic corruption in the supervised learning setting is described681

by our taxonomy. Other possibilities are, having more than two spaces involved in the corruption682

process and having a deterministic mapping describing the corruption process as it has been defined.683

We discuss them in the following, providing examples.684

Stochastic corruption for more than two spaces When in the presence of three probability spaces,685

we have only two possible corruption configurations. We represent them in Fig. S1, where arrows686

represent non-trivial Markov kernels. We remark that we do not consider the triangular structures687
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as in Fig. S1a and c with the spaces Z2, Z3 coupled in some way, otherwise they would just be688

considered as a single (product) probability space, i.e. a pairwise corruption.689

The most simple case is Fig. S1b, in which the spaces influence each other in a chain fashion. This is690

a clear subcase of our framework as we can integrate Z2 by considering κZ1Z3
:= κ3 ◦ κ2 ◦ κ1. We691

then obtain a pairwise corruption κZ1Z3
, but we would pay the price of losing information about the692

role of the ‘latent’ corruption process. To have a complete idea of how the chained corruption works,693

we can additionally study it as an iterative process and analyze its single components. This entire694

reasoning is true for a number of spaces Zi, i ∈ [n] with n > 3, and well models several settings for695

dynamical learning, e.g. online corrupted learning or concept drift over time [58, 61, 59].696

The second option is, they act as per the diagrams in Fig. S1a and Fig. S1c, i.e. a triangular structure.697

In particular, case (a) reflects assumptions made in settings combining data from different domains698

[29, 7, 62], where we get to observe different data distributions obtained from the same clean one.699

They can be seen, in our framework, as a pairwise dependence between Z1 × Z2 and Z3, or Z1700

and Z2 × Z3. However, this formulation assumes some coupling on Z2, Z3, more complex than701

our originally assumed corruption. For now, we do not investigate the consequences of this gap as702

changes of the corruption effect, leaving it for future investigation. A similar idea can be stated703

for n > 2 spaces in the Cartesian product space, and for combinations of fork structures with fork704

structures via superposition.705

Corruptions via deterministic mappings We now want to give examples of how corruption706

processes can be not stochastic. From the previous section, we know that even if there is no direct707

way of modeling the specific corruption process with a Markov kernel, there exists a Markov kernel708

representing some coupling between two distributions. We do not define any method to find the best709

Markov corruption corresponding to a deterministic one, since it depends on the specific task one is710

considering.711

The first relevant example is the one of Selection Bias. Even if being a widely studied, common case712

of corruption, we show here that when considered with its classical formulation we cannot directly713

find a Markov kernel corresponding to it.714

We start by introducing the Selection Bias type corruption, as done in [14]. It is characterized here as715

a distributional corruption, unlike other cases in which only the selection variable is modeled. We716

consider a target, clean distribution and a source, corrupted one from which we aim to learn. They717

are defined on the same set Z ⊆ Rd and Borel σ-algebra Z . We define it as:718

1. Support condition:719

P̃ ≪ P ⇐⇒ ∃! α =
dP̃

dP
a.s., α ∈ L1 ,

where we can equivalently say µ− a.s., µ := 0.5 ∗ (P̃ + P ), or P − a.s.;720

2. Selection condition:721

||α||∞ < +∞ .

The Support condition is equivalent to:722

P̃ (A) =

∫
A

α(z)P (dz) ∀A .

Comparing it with a Markov kernel action on the input probability P , we get the condition723 ∫
A

∫
Z

κ(z, dz̃)P (dz) =

∫
A

α(z)P (dz) ∀A .

A guess that satisfies our requirement is κ(z, dz̃) := δz(dz̃)α(z), which is a transition kernel, i.e. a724

family of positive measures parameterized by z, but not a Markov kernel unless α ≡ 1. This kernel is725

defined such that P is corrupted into P̃ , but it does not preserve mass for every probability measure.726

Is this the only possible guess?727

Assuming the existence of a transition kernel κ̂(z, dz̃) ̸= δz(dz̃)α(z), possibly Markov, implies728 ∫
A

∫
Z

κ̂(z, dz̃)P (dz) =

∫
A

P̃ (dz) =

∫
A

α(z)P (dz) ∀A .
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We then can define a measure µ̂(dz̃) :=
∫
Z
κ̂(z, dz̃)P (dz). This measure µ̂ is almost surely equal to729

P̃ by definition, w.r.t. a reference measure µ1. The same is true for P̃ and αP w.r.t. µ2. Hence µ̂(dz)730

is equal to α(z)P (dz) w.r.t. to µ, µ1 ≪ µ and µ2 ≪ µ.731

Since the same argument can be repeated for the kernel κ, the two kernels are forced to be equal732

µ-almost surely. That because, for two measures with the same value on every set, their Radon-733

Nikodym derivatives are the same almost everywhere w.r.t. a finite10 reference measure. Hence,734

Selection Bias cannot be directly represented as a Markov kernel if we impose it to be acting exactly735

as the weak derivative α.736

Another relevant example is the one of Markov kernel reconstruction R, as introduced in [7]. They737

are considered in finite space settings and are defined as the left inverse of the stochastic matrix738

representing the Markov kernel. It is underlined by the authors that the R of the Markov kernel is739

not necessarily a Markov kernel; in fact, it is not even ensured to be a matrix with positive entries.740

A reconstruction R is then sending a corrupted probability P̃ into the original clean probability P741

without being a stochastic mapping.742

S3 Appendix for “Consequences of corruption in supervised learning”,743

Section 4: Proofs744

We restate for clarity all the assumptions underlying the proofs.745

A1 We assume the loss function to be bounded in order to avoid problems when applying Fubini-746

Tonelli’s theorem.747

A2 We define the set ℓ ◦ H := { (x, y) 7→ ℓ(h(x), y) |h ∈ H}.748

A3 When minimizing the risk for the corrupted distribution P̃ , we assume that f∗ ∈749

argminf EP̃ [f(X,Y )] belongs to the minimization space ℓ ◦ H.750

Theorems 3, 4 are here proved by means of two Lemmas on the dependent noise combined with751

identical simple noise.752

Lemma S5 (BR under X corruption). Let (ℓ,H, P ) be a learning problem with the input space X753

and output space Y . Let E : Y ⇝ X be an experiment, κX̃ ∈ {κXX̃ , κY XX̃} be the corruption754

on X with at most 2 parameters, then we can form the corrupted experiment as per the transition755

diagram Y X X̃E

κX̃

κX̃

and obtain756

EY∼πY
CBRℓ◦H(κX̃EY ) = EY∼πY

CBRκX̃(ℓ◦H)(EY ) .

Moreover, if κX̃ = κXX̃ , we have757

BRℓ◦H(πY × κX̃E) = BRκX̃(ℓ◦H)(πY × E) .

Proof. Assume the full corruption κ has an associated kernel758

κ(x, y, dx̃dỹ) := (κX̃δ)(x, y, dx̃dỹ) = κX̃
y (x, dx̃)δy(dỹ), (S1)

Let Ey(dx) := E(y, dx) and A ∈ X̃ × Ỹ , we have759

P̃ (A) =
∑
Y

∫
A

∫
X

κ(x, y, dx̃dỹ) P (dxdy)

=
∑
Y

∫
A

∫
X

κX̃
y (x, dx̃)δy(dỹ) Ey(dx)πy

=
∑
Y

∫
A

(κX̃E)y(dx̃) δy(dỹ)πy

=

∫
A

Ẽỹ(dx̃)πỹ,

10It is enough to ask “finite on all balls”, see [63], Theorem 5.8.8.
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then we can write760

EỸ∼πỸ
CBRℓ◦H(κX̃EỸ ) =

∑
Ỹ

πỹ inf
f∈ℓ◦H

∫
X̃

f(x̃, ỹ) Ẽỹ(dx̃)

=
∑
Y,Ỹ

δy(dỹ)πy inf
f∈ℓ◦H

∫
X̃X

f(x̃, ỹ) κX̃
y (x, dx̃)Ey(dx)

=
∑
Y

πy inf
f∈ℓ◦H

∫
X̃

δf(x̃, y)

∫
X

κX̃
y (x, dx̃)Ey(dx)

=
∑
Y

πy inf
f∈ℓ◦H

∫
X

Ey(dx) (κ
X̃
y δf)(x, y) (S2)

=
∑
Y

πy inf
f∈κX̃(ℓ◦H)

∫
X

Ey(dx) f(x, y)

= EY∼πY
CBRκX̃(ℓ◦H)(EY ). (S3)

Since the X corruption κX̃ has an identity mapping on Y , EỸ∼πỸ
[·] = EY∼πY

[·] and we obtain

EY∼πY
CBRℓ◦H(κX̃EY ) = EY∼πY

CBRκX̃(ℓ◦H)(EY ).

If κX̃ = κXX̃ , then the associated kernel (S1) takes the simple form κX̃(x, dx̃) and the above761

equations from (S2) become762

BRℓ◦H(πY × κX̃E) = inf
f∈ℓ◦H

∑
Y

πy

∫
X

Ey(dx) (κ
X̃f)(x, y)

= inf
f∈κX̃(ℓ◦H)

∑
Y

πy

∫
X

Ey(dx) f(x, y)

= BRκX̃(ℓ◦H)(πY × E).

763

Theorem (BR under (S-X̃ , S-Ỹ ), (2D-X̃ , S-Ỹ ) joint corruption, Theorem 3). Let (ℓ,H, P ) be764

a learning problem, E : Y ⇝ X an experiment and κX̃ ∈ {κXX̃ , κY XX̃} a corruption as in765

Lemma S5. Let κY Ỹ be a simple corruption on Y . Then we can form the corrupted experiment as766

per the transition diagram Ỹ Y X X̃
κY Ỹ E

κX̃

κX̃

and obtain767

EỸ∼κY Ỹ πY
CBRℓ◦H(κX̃EỸ ) = EY∼πY

CBRκX̃(κY Ỹ ℓ◦H)(EY )

Proof. We assume the full corruption κ has an associated kernel

κ(x, y, dx̃dỹ) := (κX̃κY Ỹ )(x, y, dx̃dỹ) = κX̃
y (x, dx̃)κY Ỹ

y (dỹ) .

With this corruption formulation, we can replicate the proof of Lemma S5 up to (S2) by simply768

plugging in κY Ỹ
y (dỹ) instead of δy(dỹ). Therefore, we obtain the thesis.769

Lemma S6 (BR under Y corruption). Let E : Y ⇝ X and F : X ⇝ Y be an experiment and a770

posterior on it, and κỸ ∈ {κY Ỹ , κXY Ỹ } be the corruption on Y with at most 2 parameters, then we771

can form the corrupted posterior as per the transition diagram X Y ỸF

κỸ

κỸ

and obtain772

EX∼πX
CBRℓ◦H(κỸ FX) = EX∼πX

CBRκỸ ℓ◦H(FX) .

Moreover, if κỸ = κY Ỹ , the equation simplifies as773

BRℓ◦H(πX × κỸ F ) = BRκỸ (ℓ)◦H(πX × F ) .
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Equivalently, we can form the corrupted experiment as per the transition diagram774

Y X̃ ỸE

κ

κ and obtain775

BRℓ◦H(κ(πY × E)) = BRκ(ℓ◦H)(πY × E) ,

where κ = κỸ δx, the combination of κỸ with the identity kernel on X .776

Proof. Assume the full corruption κ has an associated kernel777

κ(x, y, dx̃dỹ) := (κỸ δ)(x, y, dx̃dỹ) = κỸ
x (y, dỹ)δx(dx̃) . (S4)

Let Fx(dy) := F (x, dy) and A ∈ X̃ × Ỹ , we have778

P̃ (A) =
∑
Y

∫
A

∫
X

κ(x, y, dx̃dỹ) P (dxdy)

=
∑
Y

∫
A

∫
X

κỸ
x (y, dỹ)δx(dx̃) Fx(dy)πx

=

∫
A

∫
X

(κỸ F )x(dỹ) δx(dx̃)πx

=

∫
A

F̃x̃(dỹ)πx̃,

then we can write779

EX̃∼πX̃
CBRℓ◦H(κỸ FX̃) =

∫
X̃

πx̃ inf
f∈ℓ◦H

∑
Ỹ

f(x̃, ỹ) F̃x̃(dỹ)

=

∫
X̃×X

δx(dx̃)πx inf
f∈ℓ◦H

∑
Y,Ỹ

f(x̃, ỹ)κỸ
x (y, dỹ)Fx(dy)

=

∫
X

πx inf
f∈ℓ◦H

∑
Y,Ỹ

δf(x, ỹ) κỸ
x (y, dỹ)Fx(dy)

=

∫
X

πx inf
f∈ℓ◦H

∑
Y

Fx(dy)(κ
Ỹ
x δf)(x, y) (S5)

=

∫
X

πx inf
f∈κỸ (ℓ◦H)

∑
Y

Fx(dy)f(x, y)

= EX∼πX
CBR(κỸ ℓ◦H)(FX). (S6)

Since the Y corruption κỸ has an identity mapping on X , EX̃∼πX̃
[·] = EX∼πX

[·] and we obtain

EX∼πX
CBRℓ◦H(κỸ FX) = EX∼πX

CBRκỸ (ℓ◦H)(FX).

If κỸ = κY Ỹ , then the associated kernel (S4) takes the simple form κỸ (y, dỹ) and the above780

equations from (S5) become781

BRℓ◦H(πX × κỸ F ) = inf
f∈ℓ◦H

∫
X

πx

∑
Y

Fx(dy)(κ
Ỹ f)(x, y)

= inf
f∈κỸ (ℓ◦H)

∫
X

πx

∑
Y

Fx(dy)f(x, y)

= BRκỸ (ℓ◦H)(πX × F ).

In this case, reminding that h(x, y) = (h(x), id(y)), we have

BRκỸ (ℓ◦H)(πX × F ) = BRκỸ (ℓ)◦H(πX × F ) .
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Similarly, the results can also be expressed in terms of E using the generic corruption formulation:782

BRℓ◦H(κπY × E)) = BRℓ◦H(κP ) = inf
f∈ℓ◦H

∫
X̃

∑
Ỹ

f(x̃, ỹ)κP (dx̃dỹ)

= inf
f∈ℓ◦H

∫
X̃×X

∑
Y,Ỹ

f(x̃, ỹ)κ(x, y, dx̃dỹ)P (dxdy)

= inf
f∈ℓ◦H

∫
X

∑
Y

κf(x, y)P (dxdy)

= BRκ(ℓ◦H)(πY × E) (S7)

Note that the last result in (S7), even if fitting in the comparison of experiments literature [20], does783

not give us any new insights since it is not based on the corruption decomposition formula in (S4).784

We provide (S7) here for completeness.785

Theorem (BR under (S-X̃ , S-Ỹ ), (S-X̃ , 2D-Ỹ ) joint corruption, Theorem 4). Let (ℓ,H, P ) be a786

learning problem, F : X ⇝ Y a posterior and κỸ ∈ {κY Ỹ , κXY Ỹ } a corruption as in Lemma S6.787

Let κXX̃ be a simple corruption on X . Then we can form the corrupted experiment as per the788

transition diagram X̃ X Y Ỹ
κXX̃ F

κỸ

κỸ

and obtain789

EX̃∼κXX̃πX
CBRℓ◦H(κỸ FX̃) = EX∼πX

CBRκXX̃(κỸ ℓ◦H)(FX) . (S8)

Proof. We assume the full corruption κ has an associated kernel

κ(x, y, dx̃dỹ) := (κỸ κXX̃)(x, y, dx̃dỹ) = κỸ
x (y, dỹ)κ

XX̃
x (dx̃) .

With this corruption formulation, we can replicate the proof of Lemma S6 up to (S5) by simply790

plugging in κXX̃
x (dx̃) instead of δx(dx̃). Therefore, we obtain the thesis.791

Remark S7. When using the continuous notation for Y we do so for simplicity and homogeneity.792

Notice that all its associated kernel are actually (parameterized) squared matrices, hence transposable.793

So in Theorem 4 and the associated Lemma, the operator acting on the function is actually the794

transpose of the corruption matrix.795 ∑
ỹ

Cỹy(x)ℓỹ(h(x)) =
∑
ỹ

CT
yỹ(x)ℓỹ(h(x)) = (ℓy ◦ h)∗x(x) .

Theorem (BR under (1D, 2D) joint corruption, Theorem 5). Let (ℓ,H, P ) be a learning problem,796

E : Y ⇝ X and F : X ⇝ Y be an experiment and a posterior on it.797

1. Let κY X̃ be a corruption on X and κXY Ỹ be a corruption on Y , then we can form the jointly798

corrupted experiment as per the transition diagram X̃ Y X Ỹ
κY X̃ E

κXY Ỹ

κXY Ỹ and obtain799

BRℓ◦H[κY X̃(πY × κXY Ỹ E)] = EY∼πY
CBRκY X̃(κXY Ỹ ℓ◦H)(EY ) . (S9)

2. Let κXỸ be a corruption on Y and κXY X̃ be a corruption on X , then we can form the jointly800

corrupted posterior as per the transition diagram Ỹ X Y X̃
κXỸ F

κXY X̃

κXY X̃ and obtain801

BRℓ◦H[κXỸ (πX × κXY X̃F )] = EX∼πX
CBRκXY X̃(κXỸ ℓ◦H)(FX) . (S10)

Proof. For proving point (1), assume the full corruption κ has an associated kernel802

κ(x, y, dx̃dỹ) := (κY X̃κXY Ỹ )(x, y, dx̃dỹ) = κY X̃(y, dx̃)κXY Ỹ
y (x, dỹ) .
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Let Ey(dx) := E(y, dx) and A ∈ X̃ × Ỹ , we have803

P̃ (A) =
∑
Y

∫
A

∫
X

κ(x, y, dx̃dỹ) P (dxdy)

=
∑
Y

∫
A

∫
X

κY X̃(y, dx̃)κXY Ỹ
y (x, dỹ) Ey(dx)π(dy)

=

∫
A

∑
Y

κY X̃(y, dx̃)(πY × (κXY Ỹ E))(dy, dỹ)

=

∫
A

κY X̃(πY × κXY Ỹ E)(dx̃, dỹ) ,

which is less interpretable as a corruption action if compared to the previous theorems, since the804

effect on E and πY cannot be totally distinguished. However, we can still write805

EỸ∼π̃Ỹ
CBRℓ◦H(κY X̃κXY Ỹ E) =

∑
Ỹ

inf
f∈ℓ◦H

∫
X̃

f(x̃, ỹ) P̃ (dx̃dỹ)

=
∑
Y

∫
X̃

κY X̃(y, dx̃)πy inf
f∈ℓ◦H

∑
Ỹ

∫
X

f(x̃, ỹ)κXY Ỹ
x (y, dỹ)Ey(dx)

=
∑
Y

∫
X̃

κY X̃(y, dx̃)πy inf
ℓ◦h∈ℓ◦H

∫
X

(κXY Ỹ
x ℓ)(h(x̃), y)Ey(dx)

=
∑
Y

πy inf
f∈ℓ◦H

∫
X

κY X̃ [(κXY Ỹ
x ℓ)y ◦ h](y)Ey(dx)

=
∑
Y

πy inf
f∈κY X̃(κXY Ỹ ℓ◦H)

∫
X

Ey(dx)f(x, y, h)

= EY∼πY
CBRκY X̃(κXY Ỹ ℓ◦H)(E) ,

with f(x, y, h) := κY X̃ [(κXY Ỹ
x ℓ)y ◦ h](y). In particular, notice that κXY Ỹ acts only on ℓ, while806

κY X̃ acts on both ℓ and h, which forces us to use f(x, y, h) instead of f(x, y).807

For point (2), assume the full corruption κ has an associated kernel808

κ(x, y, dx̃dỹ) := (κXỸ κXY X̃)(x, y, dx̃dỹ) = κXỸ (x, dỹ)κXY X̃
x (y, dx̃) .

Let Fx(dy) := F (x, dy) and A ∈ X̃ × Ỹ , we have809

P̃ (A) =
∑
Y

∫
A

∫
X

κ(x, y, dx̃dỹ) P (dxdy)

=
∑
Y

∫
A

∫
X

κXỸ (x, dỹ)κXY X̃
x (y, dx̃) Fx(dy)π(dx)

=

∫
A

∫
X

κXỸ (x, dỹ)(πX × κXY X̃F )(dx̃, dx)

=

∫
A

κXỸ (πX × κXY X̃F )(dx̃, dỹ) ,

Hence we can repeat a similar argument for the F case and find a minimization space of functions810

f(x, y, h) := κXY X̃ [(κXỸ ℓ)x ◦ h]y(x). Thus, we obtain the thesis.811

Corollary (BR under (1D, 1D) joint corruption, Corollary 6). Let (ℓ,H, P ) be a learning problem,812

E : Y ⇝ X and F : X ⇝ Y be an experiment and a posterior on it. Let κY X̃ be a corruption on X813

and κXỸ be a corruption on Y , then we can form the jointly corrupted experiment as per the transition814

diagram X̃ Y X Ỹ
κY X̃ E κXỸ or equivalently Ỹ X Y X̃.

κXỸ F κY X̃ We815

obtain816

BRℓ◦H[κY X̃(πY × κXỸ E)] = BRκY X̃(κXỸ ℓ◦H)(πY × E) ,

or equivalently817

BRℓ◦H[κXỸ (πX × κY X̃F )] = BRκY X̃(κXỸ ℓ◦H)(πX × F ) .
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Proof. We assume the full corruption κ has an associated kernel

κ(x, y, dx̃dỹ) := (κY X̃κXỸ )(x, y, dx̃dỹ) = κY X̃(y, dx̃)κXỸ (x, dỹ) .

With this corruption formulation, we can replicate the proof of Theorem 5 by simply plugging in818

κXỸ (x, dỹ) instead of κXY Ỹ (x, y, dỹ) in the first point, and by simply plugging in κY X̃(y, dx̃)819

instead of κXY X̃(x, y, dx̃) in the second point. We then in both cases obtain functions f(x, y, h) :=820

κY X̃ [(κXỸ ℓ)x ◦ h](y), i.e. comparing a point x with a kernel on P(X) parameterized by y.821

After getting the identities w.r.t. CBRs, we can further take the inf operator out of the outside822

expectations and obtain identities w.r.t. BRs, as the kernels κY X̃ and κXỸ are not parameterized by823

x or y anymore. Therefore, we obtain the thesis.824

Analysis of Bayes Risk under (2D-X̃ , 2D-Ỹ ) Let (ℓ,H, P ) be a learning problem, E : Y ⇝ X825

and F : X ⇝ Y be an experiment and a posterior on it. Let κXY X̃ be the corruption on X and κXY Ỹ826

be the corruption on Y . Then we can form the jointly corrupted experiment as per the transition827

diagram Ỹ Y X X̃ .
κXY Ỹ

κXY Ỹ

E

κXY X̃

κXY X̃ Hence, the full corruption κ has an associated kernel828

κ(x, y, dx̃dỹ) := (κXY X̃κXY Ỹ )(x, y, dx̃dỹ) = κX̃
y (x, dx̃)κỸ

x (y, dỹ) .

Let P̃ = κP and A ∈ X̃ × Ỹ , we have829

P̃ (A) =
∑
Y

∫
A

∫
X

κ(x, y, dx̃dỹ) P (dxdy)

=
∑
Y

∫
A

∫
X

κX̃
y (x, dx̃)κỸ

x (y, dỹ) Ey(dx)πy .

This is not further decomposable as an action on the experiment and an action on the prior, given the830

double dependence of both factors in the kernel.831

A similar observation can be done for the posterior kernel, i.e. considering the equivalent transition832

diagram X̃ X Y Ỹ .
κXY X̃

κXY X̃

F

κXY Ỹ

κXY Ỹ Then, we can only write833

BRℓ◦H(κ(πY × E)) = inf
f∈ℓ◦H

E(X̃,Ỹ )∼P̃ f(X̃, Ỹ )

= inf
f∈ℓ◦H

∑
Ỹ

π̃ỹ

∫
X̃

f(x̃, ỹ) Ẽỹ(dx̃)

= inf
f∈ℓ◦H

∑
Y,Ỹ

πy

∫
X̃×X

κỸ
x (y, dỹ)κ

X̃
y (x, dx̃)f(x̃, ỹ)Ey(dx) ,

which is, from a Bayesian Risk point of view, equivalent to the non-decomposed joint corruption834

effect.835

S4 Appendix for “Corruption-corrected learning”, Section 5836

In this section, we give the proofs of the results used in § 5.837

S4.1 Proof of Lemma 7: Factorization of the pseudo-inverse838

Lemma. The feasible factorization of a Markov transition κ is also a valid factorization for its839

pseudo-inverse κ†, both for the full transition or considering their parameterized versions.840
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Proof. Let’s consider a Markov kernel κ : X1 × Y1 → X2 × Y2 . Also assume that κ = κXκY ,841

i.e. factorizes by superposition with κ(·) : X1 × Y1 → (·)2, (·)2 ∈ {X2, Y2}.842

Supposing that κ†
Xκ†

Y is a pseudo-inverse, we can write by using the definition of pseudo-inverse843

Def. S4:844

δx′
1,y

′
1
(dx1dy1) =

∫
X2×Y2

κ(dx2dy2, x
′
1, y

′
1)κ

†(dx1dy1, x2, y2)

=

∫
X2×Y2

(κX)y′
1
(dx2, x

′
1)(κY )x′

1
(dy2, y

′
1)(κ

†
X)y′

1
(dx1, x2)(κ

†
Y )x′

1
(dy1, x

′
1, y2)

which shows that κ† =R κ†
Xκ†

Y , and proves the Lemma for the parameterized case. Being the regular845

case a subcase, we obtain the thesis.846

S4.2 Proof for Theorem 8847

In addition to the assumptions A1 − A3 stated for proving the BR theorems (§ S3), we assume here:848

A4 We will assume the existence of an invertible function h̃∗ ∈ H;849

A5 We ask the corrupted optimum to satisfy the equality κ†(ℓ ◦ h̃∗) = ℓ̃ ◦ h̃∗.850

Theorem. Let (ℓ,H, P ) be a clean learning problem and (κ†(ℓ ◦ H), κP ) its associated corrupted851

one, not necessarily with a ◦-factorized structure. Let κ† be the joint cleaning kernel reversing κ,852

such that assumptions A4 and A5 hold for the said problems. The factorization of κ† is assumed to be853

feasible and to have an equality result of the form Eq. (5). We write κ†(dz, z̃) = κX(dx, ·)κY (dy, ·),854

with (·) some feasible parameters. Hence, we can prove the following points:855

1. When κ† is either (idX , S-Y ) or (idX , 2D-Y ), we can write the corrected loss as856

ℓ̃(h(x̃), ỹ) = (κY ℓ) (h(x̃), ỹ) ∀ (x̃, ỹ) ∈ X̃ × Ỹ ,

with κY ℓ = κY
x̃ ℓ for the second case.857

2. When κ† is (S-X , S-Y ), (2D-X , S-Y ) or (S-X , 2D-Y ), we have858

ℓ̃(x̃, ỹ, h) = Eu∼κXh(x̃)[κ
Y ℓ (u, ỹ)] ∀ (x̃, ỹ) ∈ X̃ × Ỹ ,

with κX
x̃ h(x̃)(A) := κX(h−1(A), x̃) , A ⊂ P(Y ) being the push-forward probability measure of859

κX(·, x̃) through h, h seen as a function. For the cases that involve a 2D corruption, we have860

κY ℓ = κY
x̃ ℓ for the former κ† factorization, κXh(x̃) = κX

ỹ h(x̃) for the latter.861

3. When κ† is a (1D-X , 1D-Y ) corruption, we can write the corrected loss as862

ℓ̃(x̃, ỹ, h) = Eu∼κXh(ỹ)[κ
Y ℓ (u, x̃)] ∀ (x̃, ỹ) ∈ X̃ × Ỹ ,

with κX
x̃ h(ỹ)(B) := κX(h−1(B), ỹ) , B ⊂ P(X).863

4. When κ† is a (2D, 1D) corruption, we can write the corrected loss as864

ℓ̃(x̃, ỹ, h) = Eu∼κXh(ỹ)[κx̃
Y ℓ (u, ỹ)] , ℓ̃(x̃, ỹ, h) = Eu∼κX

ỹ h(x̃)[κ
Y ℓ (u, x̃)] ∀ (x̃, ỹ) ∈ X̃×Ỹ .

for the (1D-X , 2D-Y ), (2D-X , 1D-Y ) respectively.865

Proof. Given the assumptions A4, A5, we can write:

ℓ̃(h̃∗(x̃), ỹ) =
∑
Y

∫
X

ℓ(h̃∗(x), y)κ†(dxdy, x̃, ỹ) .

We now look at all the feasible corruption combinations in Fig. 1b; given Lemma S4.1, are sure that866

there factorizations on κ are also valid for κ†. Hence, we can consider the single point of the theorem867

being sure that they cover every possible κ case having an Bayes Risk equality result.868
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Consider the κ† from point (1), i.e. κ† is either (idX , S-Y ) or (idX , 2D-Y ). They act on ℓ ◦ h as869

ℓ̃(h̃∗(x̃), ỹ) =
∑
Y

∫
X

ℓ(h̃∗(x), y) δ(dx, x̃)κY (dy, x̃, ỹ)

=

∫
X

(κY ℓ)x̃(h(x), ỹ) δ(dx, x̃)

= (κY ℓ)x̃(h(x̃), y) .

Hence, the case κY (dy, x̃, ỹ) = κY
x̃ (dy, x̃, ỹ) and its subcase κY (dy, ỹ) combined with an identity870

kernel on X do not change the hypothesis function.871

For the more complex cases in point (2), κX(dx, x̃) ̸= δx(dx), we have:872

ℓ̃(h̃∗(x̃), ỹ) =
∑
Y

∫
X

ℓ(h̃∗(x), y)κX(dx, x̃)κY (dy, x̃, ỹ)

=
∑
Y

∫
h̃∗(X)

ℓ(u, y)κX((h̃∗)−1(du), x̃)κY (dy, x̃, ỹ)

=

∫
h̃∗(X)

(κY ℓ)x̃(u, ỹ)κ
X((h̃∗)−1(du), x̃) , (S11)

where u = u(dy) ∈ P(Y ). The following equality for the expectation of u, the image measure of κ†

through h̃∗, and the kernel chain composition holds:

EκX((h̃∗)−1(·),x̃)[u] =

∫
h̃∗(X)

uκX((h̃∗)−1(du), x̃) = κX ◦ h̃∗(x̃) ∈ P(Y ) ,

that can be verified easily by recalling the alternative definition of H as a subset of M(X,Y ) and873

using the definition of κ† ◦ h̃∗. We remark that κX((h̃∗)−1(du), x̃) is then a probability in P(P(Y )).874

Hence we can rewrite Eq. (S11) as875

ℓ̃(h̃∗(x̃), ỹ) =

∫
P(Y )

(κY ℓ)x̃(u, ỹ)κ
X((h̃∗)−1(du), x̃)

= EκX(h̃∗)−1(·),x̃)[(κ
Y ℓ)x̃(u, ỹ)] ,

with κX having support included in h̃∗(X).876

As for more dependent corruptions of X , i.e. κX(dx, x̃, ỹ), the action on the hypothesis will be
dependent from ỹ, so

ℓ̃(h̃∗(x̃), ỹ) = EκX
ỹ ((h̃∗)−1(·),x̃)[(κ

Y ℓ)x̃(u, ỹ)] .

where only the simple Y noise can be considered, given the missing result for the BR equality in the877

(D2, D2) joint corruption case.878

As for the cases involving the 1D with 1D or 2D, i.e. points (3) and (4), we follow the same procedure879

by using the action formula of dependent corruptions as described in the proof of Theorem 5, and880

obtain the thesis.881
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S5 Table: Actions and consequences of corruption882
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-Ỹ

P̃
=

(κ
Y
Ỹ
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Ỹ
ℓ̃
◦
H̃
),
P
) ≡

B
R

( ℓ̃
◦
H̃
,κ

X
Ỹ
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ỹ
,x

)π
X
(d
x
)
∑ Y

κ
(d
x̃
,x

,y
)F

(d
y
,x

)
Ỹ
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Ỹ
ℓ̃
◦
H̃
),
P
) ≡

B
R

( ℓ̃
◦
H̃
,κ

X
Ỹ
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Ỹ

κ
X

Y
X̃

κ
X

Y
X̃

F

κ
X

Y
Ỹ
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