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1 Challenges in MID
We want to highlight the unique challenges associated with multi-
modal intent detection (MID). The following two points correspond
to the challenges outlined in our manuscript.

❶ The issue of information redundancy in MID is signifi-
cantly pronounced. Specifically, scenarios in MID often involve
distinguishing the visual information of the speaker, especially in
situations where multiple individuals are present. However, manual
annotation for this purpose would be highly costly.Whenwe look at
datasets in the multimodal community for tasks such as sentiment
analysis and sarcasm detection, their visual content is generally
simple, featuring only one person or object. This allows models
to quickly locate and capture key information. While the noise
and redundancy in visual and audio modalities are also present
in other multimodal tasks, it is particularly pronounced in MID
and urgently needs to be addressed. ❷ The large number of in-
tent categories in MID presents another challenge. Specifically,
multimodal sentiment analysis uses metrics such as binary and
seven-category accuracy, while multimodal sarcasm detection pri-
marily involves simple binary classification accuracy. In contrast,
MID requires discrimination among 20 intent categories, and the
existing benchmarks tend to exhibit a long-tail distribution.

2 Details for Cross-task Scenario
To verify the generalizability of the proposed model, we conduct
preliminary experiments on multi-modal sentiment analysis (MSA).
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❶ For datasets, we select two publiclyMSA benchmarks:MOSI [6]
and MOSEI [7]. MOSI contains 2,198 utterance segments, and MO-
SEI contains 23,453 annotated clips from YouTube. Each sample is
manually annotated with a sentiment score ranging from -3 to +3
to indicate the sentiment polarity. ❷ For evaluation metrics, we
follow previous works to adopt MAE (mean absolute error), Corr
(Pearson correlation) and Acc-7 (seven-class classification accuracy)
ranging from -3 to 3. ❸ For comparison baselines, we select five
state-of-the-art models, including ICCN [3], MISA [2], Self-MM [5],
MMIM [1] and DBF [4]. ❹ For implementation details, we have
utilized grid search to determine the optimal values for the parame-
ters 𝛼 and 𝛽 on the validation set of MOSI and MOSEI, respectively.
The grid search is performed with a step size of 0.1 and a range
spanning from 0 to 1. The results are averages of 5 random runs.
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