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This document provides supplementary material to Online POMDP Planning with Anytime Determin-1

istic Guarantees [1] and should not be considered a self-contained document. Throughout this report,2

all notations and definitions are in compliance with the ones presented in the main body of the paper.3
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1 Mathematical Analysis16

We start by restating the definition of the simplified value function,17

V̄ π(b̄t) ≜ r(b̄t, πt) + Ē
[
V̄ (bt)

]
(1)

=
∑
xt

b̄(xt)r(xt, πt) +
∑
zt

P̄(zt+1 | H−
t+1)V̄ (b̄(zt+1)), (2)

1.1 Theorem 118

Theorem 1 Let bt belief state at time t, and T be the last time step of the POMDP. Let V π(bt) be19

the theoretical value function by following a policy π, and let V̄ π(bt) be the simplified value function,20

as defined in (1), by following the same policy. Then, for any policy π, the difference between the21
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theoretical and simplified value functions is bounded as follows,22

∣∣V π(bt)−V̄ π(bt)
∣∣ ≤Rmax

T∑
τ=t+1

1−∑
zt+1:τ

∑
xt:τ

b(xt)

τ∏
k=t+1

P(zk | xk)P(xk | xk−1, πk−1)

 ≜ ϵπz (bt).

(3)
23

Proof 1 For notational convenience, we derive the bounds for the value function by denoting the24

prior belief as b0,25

V π
0 (b0) = Ez1:T

[
T∑

t=0

r(bt, at)

]
(4)

applying the belief update equation,26

V π
0 (b0) =

∑
z1:T

T∏
τ=1

P
(
zτ | H−

τ

) T∑
t=0

[∑
xt

P(zt | xt)
∑

xt−1
P(xt | xt−1, πt−1)bt−1

P
(
zt | H−

t

) r(xt, at)

]
(5)

=
∑
z1:T

T∏
τ=1

P
(
zτ | H−

τ

) T∑
t=0

[∑
x0:t

∏t
k=1 P(zk | xk)P(xk | xk−1, πk−1)b(x0)∏t

τ=1 P
(
zτ | H−

τ

) r(xt, at)

]
(6)

=

T∑
t=0

∑
z1:T

∑
x0:T

t∏
k=1

P(zk | xk)P(xk | xk−1, πk−1)b(x0)r(xt, at) (7)

which applies similarly to the simplified value function,27

V̄ π
0 (b0) =

T∑
t=0

∑
z1:T

∑
x0:T

t∏
k=1

P̄(zk | xk)P(xk | xk−1, πk−1)b(x0)r(xt, at). (8)

We begin the derivation by focusing on a single time step, t, and later generalize to the complete28

value function.29

|Ez1:t [r(bt)]− Ez1:t [r(bt)]| (9)

=|
∑
z1:t

∑
x0:t

[

t∏
k=1

P(zk | xk)P(xk | xk−1, πk−1)b(x0)r(xt)−
t∏

k′=1

P(zk′ | xk′)P(xk′ | xk′−1, πk′−1)b(x0)r(xt)]|

(10)

≤
∑
z1:t

∑
x0:t

∣∣∣∣∣r(xt)

[
t∏

k=1

P(zk | xk)P(xk | xk−1, πk−1)b(x0)−
t∏

k′=1

b(x0) P(zk′ | xk′)P(xk′ | xk′−1, πk′−1)

]∣∣∣∣∣
(11)

=
∑
z1:t

∑
x0:t

|r(xt)|

[
t∏

k=1

P(zk | xk)P(xk | xk−1, πk−1)b(x0)−
t∏

k′=1

b(x0) P(zk′ | xk′) P(xk′ | xk′−1, πk′−1)

]
(12)

where the second transition is due to triangle inequality, the third transition is equality by the30

construction, i.e. using the simplified observation models imply that the difference is nonnegative. We31
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add and subtract, followed by rearranging terms,32

=
∑
z1:t

∑
x0:t

|r(xt)| (13)

[

t∏
k=1

P(zk, xk | xk−1, πk−1)b(x0)−
t−1∏
k=1

b(x0)P(zk, xk | xk−1, πk−1)P(zt, xt | xt−1, πt−1)

+

t−1∏
k=1

b(x0)P(zk, xk | xk−1, πk−1)P(zt, xt | xt−1, πt−1)−
t∏

k′=1

b(x0)P(zk′ , xk′ | xk′−1, πk′−1)]

=
∑
z1:t

∑
x0:t

|r(xt)|
{

(14)

P(zt, xt | xt−1, πt−1)

[
t−1∏
k=1

P(zk, xk | xk−1, πk−1)b(x0)−
t−1∏
k=1

b(x0)P(zk, xk | xk−1, πk−1)

]

+

t−1∏
k=1

b(x0)P(zk, xk | xk−1, πk−1)[P(zt, xt | xt−1, πt−1)− P(zt, xt | xt−1, πt−1)]
}

applying Holder’s inequality,33

≤Rmax

∑
z1:t

∑
x0:t

P(zt, xt | xt−1, πt−1)

[
b(x0)

t−1∏
k=1

P(zk, xk | xk−1, πk−1)− b(x0)

t−1∏
k=1

P(zk, xk | xk−1, πk−1)

]
(15)

+Rmax

∑
z1:t

∑
x0:t

t−1∏
k=1

P(zk, xk | xk−1, πk−1)b(x0)[P(zt, xt | xt−1, πt−1)− P(zt, xt | xt−1, πt−1)]

=Rmax

∑
z1:t

∑
x0:t

P(zt, xt | xt−1, πt−1)· (16)[
b(x0)

t−1∏
k=1

P(zk, xk | xk−1, πk−1)− b(x0)

t−1∏
k=1

P(zk, xk | xk−1, πk−1)

]
+Rmaxδt

=Rmax

∑
z1:t−1

∑
x0:t−1

[
b(x0)

t−1∏
k=1

P(zk, xk | xk−1, πk−1)− b(x0)

t−1∏
k=1

P(zk, xk | xk−1, πk−1)

]
(17)

+Rmaxδt,

following similar steps recursively,34

= . . . = Rmax

t∑
τ=1

δτ . (18)

Finally, applying similar steps for every time step t ∈ [1, T ] results in,35 ∣∣V π(bt)− V̄ π(bt)
∣∣ ≤ Rmax

T∑
t=1

t∑
τ=1

δτ (19)

where,36

δτ =
∑
z1:τ

∑
x0:τ

τ−1∏
k=1

P(zk, xk | xk−1, πk−1)b(x0)[P(zτ , xτ | xτ−1, πτ−1)− P(zτ , xτ | xτ−1, πτ−1)]

=
∑

z1:τ−1

∑
x0:τ−1

τ−1∏
k=1

P(zk, xk | xk−1, πk−1)b(x0)[1−
∑
zτ

∑
xτ

P(zτ , xτ | xτ−1, πτ−1)] (20)

plugging the term in (20) to (19) and expanding the terms results in the desired bound,37 ∣∣V π(bt)− V̄ π(bt)
∣∣ ≤Rmax

T∑
τ=t+1

1−∑
zt+1:τ

∑
xt:τ

b(xt)

τ∏
k=t+1

P(zk | xk)P(xk | xk−1, πk−1)

 (21)
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which concludes our derivation.38

1.2 Lemma 139

Lemma 1 The optimal value function can be bounded as40

V π∗(bt) ≤ UDBπ(bt), (22)

where the policy π is determined according to Bellman optimality over the UDB, i.e.41

UDBπ(bt) ≜ max
at∈A

[Q̄π(bt, at) + ϵπz (bt, at)] (23)

= max
at∈A

[r(bt, at) + Ēzt+1|bt,at
[V̄ π(bt+1)] + ϵπz (bt, at)]. (24)

42

Proof 2 In the following, we prove by induction that applying the Bellman optimality operator on43

upper bounds to the value function in finite-horizon POMDPs will result in an upper bound on the44

optimal value function. The notations are the same as the ones presented in the main body of the45

paper. We restate some of the definitions from the paper for convenience.46

The policy πt(bt) determined by applying Bellman optimality at belief bt, i.e.,47

πt(bt) = arg max
at∈A

[Q̄π(bt, at) + ϵπz (bt, at)]. (25)

As it will be needed in the following proof, we also define the value of a belief which includes in its48

history at least one observation out of the simplified set, e.g. Ht = {a0, z1, . . . , zk /∈ Z, . . . , zt} as49

being equal to zero. Explicitly,50

V
π

t (P(xt | a0, z1, . . . , zk /∈ Z, . . . , zt)) ≡ 0 ∀k ∈ [1, t]. (26)

We also use the following simple bound,51

Vt,max ≜ Rmax · (T − t− 1) (27)

Base case (t = T ) - At the final time step T , for each belief we set the value function to be equal to52

the reward value at that belief state, bT and taking the action that maximizes the immediate reward,53

UDBπ(bT ) = max
aT

{r(bT , aT ) + ϵz(bT , aT )} = argmax
aT

{r(bT , aT )} (28)

which provides an upper bound for the optimal value function for the final time step, V ⋆
T (bT ) ≤54

UDBπ(bT ).55

Induction hypothesis - Assume that for a given time step, t, for all belief states the following holds,56

V ⋆
t (bt) ≤ UDBπ(bt). (29)

Induction step - We will show that the hypothesis holds for time step t−1. By the induction hypothesis,57

V ⋆
t (bt) ≤ UDBπ(bt) ∀bt, (30)

thus,58

Q⋆(bt−1, at−1) = r(bt−1, at−1) +
∑
zt∈Z

P
(
zt | H−

t

)
V ⋆
t (b(zt)) (31)

≤ r(bt−1, at−1) +
∑
zt∈Z

P
(
zt | H−

t

)
UDBπ(b(zt)) (32)

= r(bt−1, at−1) +
∑
zt∈Z

P
(
zt | H−

t

) [
V

π

t (bt) + ϵπz (bt)
]
. (33)

For the following transition, we make use of lemma 2,59

= r(bt−1, at−1) + Ezt|bt−1,at−1

[
V

π

t (bt)
]
+ ϵπz (bt−1, at−1) (34)

≡ UDBπ(bt−1, at−1). (35)
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Therefore, under the induction hypothesis, Q⋆
t−1(bt−1, at−1) ≤ UDBπ(bt−1, at−1). Taking the60

maximum over all actions at,61

UDBπ(bt−1) = max
at−1∈A

{UDBπ(bt−1, at−1)} (36)

≥ max
at−1∈A

{
Q⋆

t−1(bt−1, at−1)
}
= V ⋆

t−1(bt−1),

which completes the induction step and the required proof.62

Lemma 2 Let bt denote a belief state and πt a policy at time t. Let P̄(zt | xt) be the simplified63

observation model which represents the likelihood of observing zt given xt. Then, the following64

terms are equivalent,65

66

Ezt

[
V

π

t (bt) + ϵπz (bt)
]
= Ezt

[
V

π

t (bt)
]
+ ϵπz (bt−1, at−1) (37)

Proof 3

Ezt

[
V

π

t (bt) + ϵπz (bt)
]
= (38)

Ezt

[
V

π

t (bt)
]
+ Ezt

Rmax

T∑
τ=t+1

1− ∑
zt+1:τ

∑
xt:τ

bt

τ∏
k=t+1

P(zk | xk)P(xk | xk−1, πk−1)


(39)

focusing on the second summand,67

∑
zt∈Z

P
(
zt | H−

t

)
Rmax

T∑
τ=t+1

1− ∑
zt+1:τ

∑
xt:τ

bt

τ∏
k=t+1

P(zk | xk)P(xk | xk−1, πk−1)

 (40)

= Rmax

T∑
τ=t+1

1−∑
zt

P
(
zt | H−

t

) ∑
zt+1:τ

∑
xt:τ

b(xt)

τ∏
k=t+1

P(zk | xk)P(xk | xk−1, πk−1)

 (41)

by marginalizing over xt−1,68

= Rmax

T∑
τ=t+1

[1−
∑
zt

P
(
zt | H−

t

) ∑
zt+1:τ

∑
xt−1:τ

P(zt | xt)P(xt | xt−1, πt−1)b(xt−1)

P
(
zt | H−

t

) · (42)

τ∏
k=t+1

P(zk | xk)P(xk | xk−1, πk−1)]

canceling out the denominator,69

= Rmax

T∑
τ=t+1

[1−
∑
zt:τ

∑
xt−1:τ

P(zt | xt)P(xt | xt−1, at−1)b(xt−1)· (43)

τ∏
k=t+1

P(zk | xk)P(xk | xk−1, πk−1)] ≡ ϵπz (bt−1, at−1)

it is left to show that Ezt|bt−1,at−1

[
V

π

t (bt)
]
= Ezt|bt−1,at−1

[
V

π

t (bt)
]
. By the definition of a value70

function of a belief not included in the simplified set, we have that,71
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Ezt|bt−1,at−1

[
V

π

t (bt)
]
=

∑
zt∈Z

P
(
zt | H−

t

)
V

π

t (bt) (44)

=
∑
zt∈Z

P
(
zt | H−

t

)
V

π

t (bt) +
∑

zt∈Z\Z

P
(
zt | H−

t

)
V

π

t (bt) (45)

=
∑
zt∈Z

P
(
zt | H−

t

)
· V π

t (bt) +
∑

zt∈Z\Z

P
(
zt | H−

t

)
· 0 (46)

= Ezt|bt−1,at−1

[
V

π

t (bt)
]
, (47)

which concludes the derivation.72

1.3 Corollary 1.173

We restate the definition of UDB exploration criteria,74

at = arg max
at∈A

[UDBπ(bt, at)] = arg max
at∈A

[Q̄π(bt, at) + ϵπz (bt, at)]. (48)
75

Corollary 1.1 Using Lemma 1 and the exploration criteria defined in (48) guarantees convergence76

to the optimal value function.77

Proof 4 Let us define a sequence of bounds, UDBπ
n(bt) and a corresponding difference value between78

UDBn and the simplified value function,79

UDBπ
n(bt)− V̄ π

n (bt) = ϵπn,z(bt), (49)

where n ∈ [0, |Z|] corresponds to the number of unique observation instances within the simplified80

observation set, Zn, and |Z| denotes the cardinality of the complete observation space. Additionally,81

for the clarity of the proof and notations, assume that by construction the simplified set is chosen82

such that Zn(Ht) ≡ Zn remains identical for all time steps t and history sequences, Ht given n. By83

the definition of ϵπn,z(bt),84

ϵπn,z(bt) = Rmax

T∑
τ=t+1

1− ∑
zt+1:τ∈Zn

∑
xt:τ

b(xt)

τ∏
k=t+1

P(zk | xk)P(xk | xk−1, πk−1)

 , (50)

we have that ϵπn,z(bt) → 0 as n → |Z|, since85 ∑
zt+1:τ∈Zn

∑
xt:τ

b(xt)

τ∏
k=t+1

P(zk | xk)P(xk | xk−1, πk−1) → 1 (51)

as more unique observation elements are added to the simplified observation space, Zn, eventually86

recovering the entire support of the discrete observation distribution.87

From lemma 1 we have that, for all n ∈ [0, |Z|] the following holds,88

V π∗(bt) ≤ UDBπ
n(bt) = V̄ π

n (bt) + ϵπn,z(bt). (52)
Additionally, from theorem 1 we have that,89 ∣∣V π(bt)− V̄ π

n (bt)
∣∣ ≤ ϵπn,z(bt), (53)

for any policy π and subset Zn ⊆ Z , thus,90

V̄ π
n (bt)− ϵπn,z(bt) ≤ V π(bt) ≤ V π∗(bt) ≤ V̄ π

n (bt) + ϵπn,z(bt). (54)

Since ϵπn,z(bt) → 0 as n → |Z|, and |Z| is finite, it is guaranteed that UDBπ
n(bt)

n→|Z|−−−−→ V π∗(bt)91

which completes our proof.92

Moreover, depending on the algorithm implementation, the number of iterations can be finite (e.g. by93

directly choosing actions and observations to minimize the bound). A stopping criteria can also be94

verified by calculating the difference between the upper and lower bounds. The optimal solution is95

obtained once the upper bound equals the lower bound.96
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2 Experiments97

2.1 POMDP scenarios98

We begin with a brief description of the Partially Observable Markov Decision Process (POMDP)99

scenarios implemented for the experiments. each scenario was bounded by a finite number of time100

steps used for every episode, where each action taken by the agent led to a decrement in the number101

of time steps left. After the allowable time steps ended, the simulation was reset to its initial state.102

2.1.1 Tiger POMDP103

The Tiger is a classic POMDP problem [2], involves an agent making decisions between two doors,104

one concealing a tiger and the other a reward. The agent needs to choose among three actions,105

either open each one of the doors or listen to receive an observation about the tiger position. In106

our experiments, the POMDP was limited horizon of 5 steps. The problem consists of 3 actions, 2107

observations and 2 states.108

2.1.2 Discrete Light Dark109

Is an adaptation from [4]. In this setting the agent needs to travel on a 1D grid to reach a target110

location. The grid is divided into a dark region, which offers noisy observations, and a light region,111

which offers accurate localization observations. The agent receives a penalty for every step and a112

reward for reaching the target location. The key challenge is to balance between information gathering113

by traveling towards the light area, and moving towards the goal region.114

2.1.3 Laser Tag POMDP115

In the Laser Tag problem, [3], an agent has to navigate through a grid world, shoot and tag opponents116

by using a laser gun. The main goal is to tag as many opponents as possible within a given time frame.117

The grid is segmented into various sections that have varying visibility, characterized by obstacles118

that block the line of sight, and open areas. There are five possible actions, moving in four cardinal119

directions (North, South, East, West) and shooting the laser. The observation space cardinality is120

|Z| ≈ 1.5 × 106, which is described as a discretized normal distribution and reflect the distance121

measured by the laser. The states reflect the agent’s current position and the opponents’ positions.122

The agent receives a reward for tagging an opponent and a penalty for every movement, encouraging123

the agent to make strategic moves and shots.124

2.1.4 Baby POMDP125

The Baby POMDP is a classic problem that represents the scenario of a baby and a caregiver. The126

agent, playing the role of the caregiver, needs to infer the baby’s needs based on its state, which can be127

either crying or quiet. The states in this problem represent the baby’s needs, which could be hunger,128

discomfort or no need. The agent has three actions to choose from: feeding, changing the diaper, or129

doing nothing. The observations are binary, either the baby is crying or not. The crying observation130

does not uniquely identify the baby’s state, as the baby may cry due to hunger or discomfort, which131

makes this a partially observable problem. The agent receives a reward when it correctly addresses132

the baby’s needs and a penalty when the wrong action is taken.133

2.2 Hyperparameters134

The hyperparameters for both DB-DESPOT and AR-DESPOT algorithms were selected through a135

grid search. We explored an array of parameters for AR-DESPOT, choosing the highest-performing136

configuration. Specifically, the hyperparameter K was varied across {10, 50, 500, 5000}, while λ137

was evaluated at {0, 0.01, 0.1}.138

For upper and lower bounds used both by DB-DESPOT (which results in deterministic bounds) and139

AR-DESPOT (which result in probabilistic bounds); we used the maximal reward, multiplied by the140

remaining time steps of the episode, Rmax · (T − t− 1).141

Finally, we provide our algorithm implementation in [will be provided upon official publication of142

the paper].143
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