Under review as a conference paper at ICLR 2025

OMNISAT: COMPACT ACTION TOKEN, FASTER AUTO
REGRESSION

Anonymous authors
Paper under double-blind review

ABSTRACT

Existing Vision-Language-Action (VLA) models can be broadly categorized into
diffusion-based and auto-regressive (AR) approaches: diffusion models capture
continuous action distributions but rely on computationally heavy iterative de-
noising. In contrast, AR models enable efficient optimization and flexible se-
quence construction, making them better suited for large-scale pretraining. To
further improve AR efficiency, particularly when action chunks induce extended
and high-dimensional sequences, prior work applies entropy-guided and token-
frequency techniques to shorten the sequence length. However, such compression
struggled with poor reconstruction or inefficient compression. Motivated by this,
we introduce an Omni Swift Action Tokenizer, which learns a compact, trans-
ferable action representation. Specifically, we first normalize value ranges and
temporal horizons to obtain a consistent representation with B-Spline encoding.
Then, we apply multi-stage residual quantization to the position, rotation, and
gripper subspaces, producing compressed discrete tokens with coarse-to-fine
granularity for each part. After pre-training on the large-scale dataset Droid, the
resulting discrete tokenization shortens the training sequence by 6.8 x, and lowers
the target entropy. To further explore the potential of OmniSAT, we develop a
cross-embodiment learning strategy that builds on the unified action-pattern space
and jointly leverages robot and human demonstrations. It enables scalable auxil-
iary supervision from heterogeneous egocentric videos. Across diverse real-robot
and simulation experiments, OmniSAT encompasses higher compression while
preserving reconstruction quality, enabling faster AR training convergence and
model performance. Our project page is available at OmniSAT.

1 INTRODUCTION

Recently, VLA models (Ji et al., 2025} Black et al.,2024;|Octo Model Team et al., 2023} Kim et al.,
2024; |0’ Neill et al., [2024) have emerged as a promising route to general-purpose embodied intelli-
gence, grounding visual-linguistic inputs into executable actions. Despite rapid advances in VLAs
and robotic learning (Chi et al.} 2023b; [Liu et al., 2025 Intelligence et al.| [2025)), real-world deploy-
ment remains challenging due to the complexity of high-dimensional, long-horizon action spaces.
Against this backdrop, current VLA methods largely fall into two categories: (i) Diffusion-based
approaches (Black et al.| [2024; |(Chi et al.} 2023a)) fit continuous action distributions via iterative de-
noising (Fig. |1 (a)). (ii) Auto-regressive (AR) approaches (Pertsch et al.l [2025} Kim et al.| [2024)
model visual-language—action relations through next-token prediction (Fig.[I|(b)). Diffusion excels
at continuous modeling but scales poorly due to costly denoising. By contrast, although AR training
operates on discrete tokens and thus cannot directly parameterize the continuous action space, it
enables efficient optimization and flexible sequence construction. These properties scale well with
heterogeneous data sources, yielding a reliable and robust VLA backbone.

Recent works (Zhao et al., 2023 |Kim et al., [2025) have proved that training on action chunks (i.e.,
multi-step action segments) equips models with stronger temporal context understanding and rea-
soning. However, the long horizons expand the token sequences that slow AR optimization. To ad-
dress this issue, common remedies either compress the trajectory via representation changes (Zhou
et al.| [2025) or shorten token streams with byte-pair encoding (Pertsch et al.,|2025). The former is
entropy-driven discretization that indeed shortens sequences but incurs severe reconstruction error
at high compression ratios. The latter is built on token co-occurrence frequency statistics, where

https://annoymoushh.github.io/

Under review as a conference paper at ICLR 2025

performance efficiency i performance efficiency performance efficiency
1 scalabilty
© ; © © ©)
. . » T B istency
fixed dimension prediction 1 P . codeword index COnS}S v
I' ________________________________ : : r—‘ ‘—‘ h ﬁ ﬁﬁ C‘fml’"‘“'"" representation
| [w OmniSAT pos ot grip
________________________________ \ |
t t
N S e S T S B S S AF T TF actionpattern
. . 1 . .
Diffusion Model 1 Auto-Regressive Model Auto-Regressive Model (Emu-3)
1
1
1 e]
! e | Prompt: : ;p Sl Prompt: 4 Prompt:
¥ | Y. _ .
N <@ .\ Pickuptheorange | 1| > L | Pick up the tube & ¥ N Pickupthecube
: g into the basket. 0 > K into the rack. into the drawer.
r - 1 3 N] ;
single dataset : single dataset heterogeneous datasets
(a) Diffusion-Based (b) AR-Based (¢) Ours: OmniSAT

Figure 1: Comparison between Existing Approaches and OmniSAT. (a) Diffusion-based policies
require iterative denoising, limiting training efficiency and scalability. (b) AR policies train effi-
ciently and support flexible sequence construction, but sacrifice fine-grained accuracy in continuous
control. (¢) OmniSAT amplifies AR efficiency through feasible high-rate compression while provid-
ing a unified token space that enables integration of heterogeneous datasets.

gains are capped by the domain gap between the training and target trajectories, leading to weak
out-of-domain generalization. In summary, to enable efficient and effective AR training, a good
action tokenizer should (i) embed high-fidelity action trajectories, preserving fine-grained execution
details; and (ii) provide sufficient compression, enabling generative models to efficiently capture the
correspondence between visual-linguistic contexts and executed actions over long horizons.

To this end, we introduce OmniSAT, an Omni Swift Action Tokenizer for high-quality compres-
sion. Specifically, OmniSAT first performs consistency encoding to normalize value ranges and
convert variable-length trajectories into fixed-length control-point representations. It then applies
multi-stage residual quantization compression separately to position, rotation, and gripper DoFs,
producing discrete compressed codebook indices (i.e., each index referencing a unified action pat-
tern). As shown in Fig.[I](c), our OmniSAT is first pretrained on the large-scale dataset Droid (Khaz-
atsky et al.| 2024)) to distill the unified set of action patterns (e.g., translation and grab). Subsequently,
continuous actions are encoded as discrete token lists with an overall ~ 6.8 x compression, while
preserving millimeter-level reconstruction fidelity. To fully exploit AR scalability and OmniSAT
transferability, we develop a cross-embodiment manipulation learning by mixing human egocentric
videos (e.g., EgoDex (Hoque et al., [2025))) with robot demonstrations, strengthening the generaliz-
ability of the learned codebook action patterns. Across real-robot scenarios and diverse simulation
benchmarks, OmniSAT achieves higher compression ratios and lower reconstruction errors than ex-
isting compression methods. When integrated into AR training, the reduced sequence length trans-
lates into faster convergence and stronger performance. To sum up, our contributions are threefold:

* We present OmniSAT, a unified two-stage tokenizer that yields a generalized action token
space for scalable AR pretraining.

* We further explore cross-embodiment manipulation learning by incorporating human
demonstrations, thereby more fully exploiting OmniSAT’s potential for AR training.

* We demonstrate consistent gains in compression efficiency and downstream VLA perfor-
mance across diverse real-robot and simulation benchmarks.

2 RELATED WORK

2.1 VISION-LANGUAGE-ACTION MODELS

The rapid progress of VLMs (Liu et al., [2024bj Dai et al., 2023} Bai et al., 2025} |Team et al., 2025
Wu et al.| 2025)) in generalization and instruction following has catalyzed their use in robotics. Build-
ing on pretrained VLM backbones, large VLA models learn manipulation as next-action prediction
from large-scale demonstrations (Ji et al.l 2025} [Kim et al.l 2024} |O’Neill et al} 2024). Despite
improved instruction following and execution accuracy, VLAs still struggle with real-world tasks
that demand long-horizon reasoning and out-of-distribution generalization. Current VLA methods

Under review as a conference paper at ICLR 2025

emphasize different trade-offs between execution fidelity and training efficiency. Diffusion-based
approaches (Black et al., [2024; Intelligence et al., 2025) generate continuous trajectories via iter-
ative denoising, delivering high precision but incurring substantial computational cost that limits
scalability. In contrast, auto-regressive approaches (Pertsch et al., 2025} |Kim et al., 2024)) discretize
actions into tokens and train with next-token prediction. While discretization may sacrifice some
fine-grained continuity, AR training is markedly more efficient and supports flexible sequence con-
struction, making it amenable to heterogeneous, large-scale datasets. Crucially, the effectiveness of
AR-based VLAs hinges on mapping those continuous actions to discrete tokens, motivating the need
for tokenizers that are both efficient and broadly compatible with diverse datasets and embodiments.

2.2 DISCRETIZED ACTION REPRESENTATIONS

To enable AR training, prior work converts continuous control into discrete sequences so that poli-
cies can be optimized with token-level objectives (Szot et al., 2024aj |Wen et al., 2024} |Szot et al.,
2024b). A common baseline is dimension-wise binning (Kim et al., |2024; |Collaboration, 2023}
Brohan et al., 2022), which is simple but sensitive to high-frequency variability and introduces
quantization error. Structured alternatives address these limitations from complementary angles.
Behavior Transformers (Shafiullah et al., |2022) cluster actions with k-means and predict residual
offsets per head. VQ-BeT (Lee et al., 2024) encodes short chunks into a learned codebook via a
residual VQ-VAE, improving expressiveness over binning, yet it assumes uniform input dimension-
ality and thus limits cross-embodiment transfer. Signal-compression methods shorten sequences to
accelerate learning: FAST (Pertsch et al.,[2025)) applies a discrete cosine transform followed by byte-
pair encoding (Sennrich et al.,[2016), but the resulting variable-length tokens complicate batching,
decoding, and AR training. BEAST (Zhou et al., 2025) represents trajectories with B-spline con-
trol points, but its reconstruction quality becomes poor at high compression ratios. In contrast,
OmniSAT first aligns horizons by encoding entire action chunks into a fixed-length, high-fidelity
representation, then performs DoF-wise residual quantization. They collectively yield high-quality
reconstructions and a compact and transferable token space, enabling scalable AR training.

3 METHODOLOGY

3.1 PRELIMINARIES

A VLA model aims to learn a policy 7y that generates actions conditioned on visual observations o
and language instructions I. Formally, given a dataset D = {(a,l, 0)}, the AR training objective is
to minimize the negative log-likelihood of actions:

min E(q1.0)~p[—logm(all,0)], M

thus establishing a unified mapping between visual-linguistic context and action. To strengthen
perception, instruction, and control coupling, our training target is not a single step but an action
chunk a € RT*4 (Zhao et al.,2023), where T denotes the action horizon and d denotes the DoF.

T
—logmy(a | 0,1) = Z—logﬂg(at | act, 04,1), (2)

t=1
where a<; = (a1, -+ ,a;—1) denotes for the action history. Since AR backbones operate on dis-

crete sequences, we tokenize actions by discretizing continuous trajectories in each DoF s = ay.7;
with an action tokenizer 7, : ¢ = T, (s), where a € RT*? is continuous and q € {1,--- , K}* are
integer indices with length L, where K denotes the vocabulary size of action tokenﬂ

3.2 OMNISAT: OMNI SWIFT ACTION TOKENIZER

To achieve efficient and high-fidelity compression, we propose OmniSAT, which embeds continuous
action trajectories as concise compressed quantization tokens. Specifically, given a trajectory with
an arbitrary horizon, we first perform numerical and temporal normalization to obtain a fixed-length

"We use the notation ~ for discretized quantities, e.g., g for discrete action tokens.

Under review as a conference paper at ICLR 2025

| [norm. value ©) | | norm. value @
variable-length action traj. fixed-length action traj.
- . control points traj.
Timestamp ; N
Dexturous | Alignment 105 02 o
0 Dual-Arm | ———— temporal aligned traj. / Lo similarity ---' 1 TTTTTT ol
f Human Eq.(3) L L__. Action Pattern @
i o |ssleced F7 - Codebook
4 ! normalized horizon mndex |
1 1 a
1 i] }
i 1 I e T R B N T e e T
1 1 1 1 ti -1
10 20 30 000 025 050 075 1.00 ' ¢ | > i
L Consistency E di J . norm. -- quantizationerror --' ‘- selected codeword --'
g t
Control Points Matrix = Residual VQ Tokenization per DoF Compressed Discretized Tokens
> 4 27 ; ' ! B " - " B
. N . ! H Vo
- Residual ! ! H | o
VQVAE 1 Flatten [
—» sl 12, R
Eq. (4 Eq. (9

Ly 2 4s. B

basis (number of control points)

L

Quantization Compression

Figure 2: Overview of OmniSAT Tokenization Pipeline. Consistency Encoding converts
variable-length trajectories into temporally aligned, fixed-length control-point representations via
B-spline fitting. Quantization Compression splits control-point features into part groups (position,
rotation, gripper) and applies residual vector quantization to obtain layerwise codebook indices. The
selected indices are then flattened into final compact action-pattern tokens.

encoding. Then we quantize this normalized representation into discrete compressed tokens, short-
ening the target sequence and enabling efficient AR training. By coupling the two steps, OmniSAT
enables compact (short sequences), high-fidelity (accurate reconstruction) compression tokeniza-
tion. We elaborate on these steps below.

Consistency Encoding. To obtain a consistent action encoding across embodiments, we first apply
robust per-DoF normalization for each dataset so that the 1st and 99th percentiles of each action
dimension are mapped to —1 and 1. In this way, we obatin the numerical normalized trajectory
d. € RTe*4 from embodiment e with T}, steps and d DoFs (curves in Fig.[2| (D). Then, we encode
them to a fixed-length, temporally aligned consistency representations z € R7¢*9, where T, is the
alignment length. Specifically, as illustrated in step 2) (e.g., mapping the red dashed curve to the red
solid curve), we encode the variable-length action a. with the B-spline control points representation

(each control point acts as a local “handle” shaping the nearby segment). Let u, = + 111, T =
1,---,T,, be the normalized time grid for the samples. After this, the trajectories are normalized

into the same horizon representation as dashed curves in step). Then we define ® € R7-x7e
as the uniform B-spline basis matrix evaluated on {u,}. The resulting fixed-length control points
representations ¢ € R7<*? are solved via ridge regression (detailed algorithm principles and solving
process are provided in Sec. Prautzsch et al.| (2002)):

c:argmcin [®c— ac|% + Allell, 3)

where A > 0 stabilizes the normal equations. The final control-point matrix c is taken as the
consistency encoding representation output z, serving as the input to the subsequent quantization.

Quantization Compression. Based on the fixed-length representations, extracting common action
patterns across heterogeneous embodiments becomes feasible. To discretize these patterns precisely,
we adopt a Residual Vector-Quantized VAE (Lee et al.,[2024) technique. It approximates the feature
vector z through multi-layer residual quantization in a coarse-to-fine manner, which (i) reduces
distortion for a general codebook and (ii) yields higher effective compression with fewer tokens
at comparable fidelity. For clarity, we describe the single-DoF case s € R”*: At each quantization
layer [€ {1,...,L}, the residual ;_; is quantized by selecting the closest codeword from the
layer-specific codebook C! = {C! € RT}K |, where K is the codebook size. As shown in step (3) of
Fig.[2} we initialize the first layer objective ro = s and apply layer-wise recurrence:

: 112 l
=arg min ||r;_1 —C; rr=7r_1—C 4
qQ gie[L]|| -1 —Cill#, ™ 1-1— Cq,> 4)

where ¢; is the selected codeword index at layer /. Here, the residual r;_; represents the approxima-
tion error remaining from the previous layer, and subtracting Cfu iteratively refines the reconstruc-

Under review as a conference paper at ICLR 2025

Unified H | action visual text
|
Action Toke.n s rotation | (TN i b o - !
Reprensentation (A

BEAST © FAST © OmniSAT

68

~— Omni Swift Action Tokenizer

Stage 2: Quantization Compression | [SF P/ bomommoe oo 5
Stage 1: Consistency Encoding Transformer Backbone (Emu3) 7 7 2
Compression Ratio Comparison
i, it i it il i iy
4 value ;L
Dexturous B e
Dual-Arm Hand St Tokenizer vQ Tokenizer
Human
Dual-Arm
Gripper 14 -
= Pick up the cube into $ S $
. Hand 4 the drawer with d a) =
time |, (arms/ hands). 7 o N K A
different action horizons Heterogeneous = A
Datasets Language Prompt Current Observations at Future Observationat + —
Phase 1: Tokenizer Pretraining Phase 2: Cross-Embodiment Fine-Tuning

Figure 3: OmniSAT for Cross-Embodiment Manipulation Learning. The training pipeline has
two phases: (i) Tokenizer Pretraining: OmniSAT is pretrained on heterogeneous human—robot
datasets to learn a unified and compressed (x 6.8) action token space; (ii) Cross-Embodiment Fine-
Tuning: we construct mixed visual-action auto-regressive sequences over OmniSAT token space,
enabling efficient and scalable fine-tuning through shorter sequences and lower target entropy.

tion. After L layers, the quantized representation § and discrete token list g are given by:

L
§=> Ch, a=ln,q - al (5)
=1

This yields the discrete tokenization for a single DoF. Repeating the above for every DoF, we obtain
the full quantized representation. At inference time, we retrieve the codewords from each layer’s
codebook using the discrete indices g and sum them layer-wise to obtain § for each DoF. Finally,
we stack the DoF-wise reconstructions to obtain the full reconstruction representation 2.

To further exploit the physical structure of actions and enhance codebook utilization, we partition
the encoded representation z into three semantically meaningful groups (Fig. 2] ®): (i) Position
2Pos ¢ Ripos collecting all translational axes (e.g., end-effector x, y, z). (ii) Rotation z"ot € Ridrot
collecting all orientation parameters (e.g., roll, pitch, yaw). (iii) Gripper z97"? ¢ R%rir, collecting
the open—close states for gripper. Each group is quantized independently with its own residual
quantization process and group-specific codebook C(9), where g € {pos, rot, grip}. This part-level
grouping captures distinct motion semantics and produces discrete tokens gP°*, g"°!, and qI"'?,
which are concatenated to form the final action token sequence: ¢ = [gP°%,¢"°, @?"*"]. In this
way, part-group residual quantization achieves two objectives simultaneously: (i) embedding high-
fidelity action trajectories by decomposing the approximation task into multiple smaller steps; and
(ii) yielding sufficient compressed discrete representation, where the sequence of codebook indices
directly serves as action tokens for downstream generative models.

Training Objective. To stabilize the codebooks and prevent collapse, we adopt three loss com-
ponents. First, the reconstruction loss ensures that the quantized tokens preserve fidelity at both
the representation and trajectory levels. Specifically, it consists of two terms: (i) reconstruction of
the encoder features z from the decoded quantized representation 2, and (ii) reconstruction of the
original action trajectory a from the control-point representation z via B-spline decoding B(z):

Lrecon = ||z = 2[|% +7lla - B(2)II%, (6)

where B(-) denotes the B-spline reconstruction operator (explained in the Sec.|A.4) and v balances
the two terms. Second, the commitment loss constrains the encoder outputs to remain close to
specific codewords, while nudging the codebook vectors toward the encoder outputs:

Loom = ||z = sgl£]1F + lIsgl2] - 2II%, 7

where sg[-] denotes the stop-gradient operator. The first term updates only the encoder (codewords
are treated as constants); the second updates only the selected codewords (the encoder is treated as
constant). Third, to strengthen the expressiveness of each quantization layer, we apply a quantizer-
layer dropout. At training time, each residual layer [is independently skipped with probability

Under review as a conference paper at ICLR 2025

p=0.1. Let m; be a Bernoulli binary mask with 1 — p distribution. The residual recursion and
reconstruction processes become:

L
T =Ti—1— My C(lll’ ZAm = Zml C(ln, (8)
=1
5 112
Lirop = |z = Zml| %,)
where m = [my, ..., mz]. During training, we compute losses on the stochastically dropped re-

construction Z,,; at inference, all layers are enabled (m; = 1). Building on the three objectives, we
update with an exponential moving average for stable adaptation and obtain the overall objective:

Eomnisat = Erecon + >\1 ACcom +)\2 Edropy (10)
where A1, Ao are weight coefficients (further analysis can be found at Tab. [9a]and [9b).

3.3 CROSS-EMBODIMENT MANIPULATION LEARNING

Robotic datasets (Khazatsky et al., 2024; Bu et al., [2025; Hoque et al.l 2025) exhibit substan-
tial domain gaps, both in numerical distributions and action representations. Nonetheless, Om-
niSAT converts action trajectories from diverse datasets into discrete token representations within a
shared action-pattern space. Building upon this foundation, we design a cross-embodiment train-
ing paradigm that consolidates demonstrations from both dual-arm robots and egocentric human
demonstrations (Hoque et al., [2025) as shown in Fig. E} Specifically, for each embodiment e € &,

with instruction (¢) and observations 0(®), we obtain per-frame visual tokens ﬁt(e) via the pretrained

visual tokenizer 7, in [Wang et al.[(2024) and per-frame action tokens Q,Ee) via OmniSAT 7,:
o) = 1,(0\”), @ = ri(al). (11)
We then form the frame-level packet prompt u and AR data stream s by concatenation:
w = [0, ¢, §=[afay,). (12)

We treat multi-embodiment data as a weighted mixture and train a single AR objective across em-

bodiments. For each embodiment e € £, we compute the standard next-token loss ng) on its mixed
visual—action token stream, then aggregate with mixture weights:

18]
e 1 550 o® e
Ear = Z O[()]Eg(g)w‘§<g) 7@ Z logﬂ'g(st | S<t’ Ot R l()) ,
ec& t=1
where >, al®) = 1 and §(© denotes the dataset of interleaved visual-action token streams for

embodiment e. In this way, we tightly couple visual and action context at each step, enabling the
policy to learn more robust cross-modal associations. (We detail the computation of the visual loss
Lyis and action loss L, in Eqs.[I5]and [16])

4 EXPERIMENTS

This section evaluates the effectiveness of OmniSAT in action tokenization and end-to-end VLA
training. We study three research questions (RQ):

RQ1: Advantages over existing action tokenizers. What advantages does OmniSAT provide relative
to prior action tokenizers, e.g., higher compression ratios, better reconstruction fidelity?

RQ2: OmniSAT gains for AR training. How does OmniSAT benefit AR training, e.g., dataset
scalability and better model performance?

RQ3: Design ablations of OmniSAT. How do the design choices in OmniSAT contribute to the
imitation-learning performance, e.g., loss settings and module configurations?

Under review as a conference paper at ICLR 2025

PlaceObj ZipSeal TubeR

/

| |

o h

Hold Girpper ————— Zip the Bag

Y\ _

Place Orange ———— Place Peach Place the Tube

Figure 4: Real-World Benchmark Visualizations.

4.1 IMPLEMENTATION DETAILS

In real-world experiments, the backbone 7y is a purely autoregressive Transformer with 8.5B param-
eters, following the Emu3 configuration (Wang et al., 2024)) and world-model post-tuning (Wang
et al., [2025). Images are tokenized with a spatial compression factor of 8 x. In simulation, we use
Florence-2 Large (Xiao et al., 2024) as the backbone with 0.77B parameters. The original action
horizon is set to 30 frames. We pretrain the tokenizer for 5 epochs to update the codebooks, using
loss weights A\;=1.0 and A\2=0.2. More hyperparameter selection (e.g., codebook size, compression
chunk length, weight coefficients) can be found at Sec.

4.2 BENCHMARKS.

Real-World Benchmarks. As shown in Fig. f] we evaluate three real-world tasks that empha-
size different aspects of manipulation: PlaceObj, ZipSeal, and TubeRack (details can be found at
Sec.[A.T). PlaceObj is an instruction-grounded pick-and-place task, where the agent identifies the
specified item among distractors, and places it into the correct place. ZipSeal is a contact-rich dex-
terity task, in which the agent aligns the edges of a resealable bag and closes it. TubeRack is a
high-precision insertion task, where the agent grasps a test tube and inserts it into a rack slot.

Simulation Benchmarks. LIBERO (Liu et al.| 2024a)) comprises four task suites : spatial, object,
goal, and long-horizon compositional. Each suite contains 10 robotic manipulation tasks, with 50
demonstrations provided for each task. SimplerEnv (Li et al.l [2024b)) reflects the performance of
real-world policies by replicating physical dynamics and visual appearance, encompassing diverse
variations in lighting, textures, and viewpoints. Detailed descriptions are provided in the Sec.[A.3]

4.3 COMPARISON WITH EXISTING ACTION TOKENIZERS.

To address RQ1, we first evaluate OmniSAT against represen- Table 1: Comparisons of Com-
tative tokenizers along two axes (details in Sec.[A.3): (i) recon- pression Quality on DROID.
struction quality and (ii) compression performance. The eval-

uation is established on DROID (with 76k demonstration trajec- ;fsu;()d M:II::_(S“ Iz(;)
tories collected by Khazatsky et al.| (2024)) dataset, using a 9:1 BEAST 8002 46
train-test split. For OmniSAT, we vary the quantization depth L OmniSAT-10 8.5e-4 49
to trade off training efficiency against fidelity. Under this setup, OmniSAT-8 ~ 9.4e-4 68

we report test MAE and the compression ratio &[] paired with ~ _OmMSAT6 13¢3 81

BPE for all baselines. As summarized in Tab. [/, OmniSAT attains the strongest compression (from
x4.9 to x8.1), exceeding FAST (x3.7) and BEAST (x4.6). We select L=8 as the default choice,
which offers the best balance between reconstruction quality and compression.

(%) BEAST FAST OmniSAT

To further illustrate the advantage brought by higher com- 1o
pression, we compare end-to-end learning dynamics on the
LIBERO. We report the average performance results in Fig. [3]
and the detailed sub-tasks (i.e., Spatial, Object, Goal, and Long)
results in Fig. [0} Results indicate that OmniSAT consistently
attains higher success at equal training steps and reaches its *

plateau earlier at 2.5k steps (3.5k for FAST and 4k for BEAST), o ——————————— S-wi“f)
reflecting more efficient optimization. These results shpw that Figure 5: Training Convergence
the tokenizer-level advantages (e.g., higher compression and of Average Success on LIBERO
lower reconstruction error) can help in faster convergence in ’
imitation learning, laying the groundwork for the following AR training.

60

40

2We explain the definition of evaluation metrics in Sec.

Under review as a conference paper at ICLR 2025

Table 2: Experimental Results for the LIBERO Benchmarks. SR: Success Rate. Best results in
each column are shown in bold.

Model Spatial Object Goal Long Average
SR(1) Rank(}) | SR(1) Rank(l) | SR(1) Rank(}) | SR(1) Rank(}) | SR(1) Rank(})

Octo (Octo Model Team et al.|[2023} | 78.9% 6 85.7% 6 84.6% 4 51.1% 6 75.1% 6
OpenVLA (Kim et al.||2024) 84.7% 5 88.4% 5 79.2% 5 53.7% 5 76.5% 5
SpatialVLA|Qu et al. [(2025) 88.2% 4 89.9% 4 78.6% 6 55.5% 4 78.1% 4
FAST (Pertsch et al.[[2025) 96.4% 1 96.8% 3 88.6% 3 60.2% 3 85.5% 3
BEAST (Zhou et al.|[2025) 92.9% 3 97.5% 2 93.1% 2 86.4% 1 92.5% 2
OmniSAT (ours) | 94.1% 2 | 98.7% 1 94.6% 1 | 86.0% 2 | 93.4% 1

Table 3: Evaluation on SimplerEnv—WidowX across diverse manipulation tasks. Each task
comprises two stages: picking up the specified object (Grasp), and putting the grasped object at the
designated target location (Success).

Model | Put Spoon | PutCarrot | StackBlock | PutEggplant | Overall
| Grasp Success | Grasp Success | Grasp Success | Grasp Success | Success
RT-1-X|Brohan et al.|(2023) 16.7% 0.0% 20.8% 4.2% 8.3% 0.0% 0.0% 0.0% 1.1%

Octo-Base|Octo Model Team et al.|(2023) | 34.7% 12.5% | 52.8% 8.3% 31.9% 0.0% 66.7% 43.1% 16.0%
Octo-Small|Octo Model Team et al.|(2023) | 77.8% 47.2% 27.8% 9.7% 40.3% 4.2% 87.5% 56.9% 29.5%

RoboVLMs|Li et al.[(2024a) 708% 45.8% | 333% 20.8% | 54.2% 4.2% 91.7% 79.2 37.5%
BEAST (Zhou et al.[[2025) 66.7% 41.7% | 37.5% 25.0% | 50.0% 20.8% 87.5% 75.0 37.5%
Spatial VLA |Qu et al.|(2025) 20.8% 16.7% | 292% 25.0% | 62.5% 29.2% 100% 100% 42.7%
OmniSAT(ours) | 833% 583% | 792% 31.5% 833% 292% | 1000% 958% | 552%

4.4 MAIN RESULTS

To address RQ2, we assess our OmniSAT on three self-collected robot benchmarks (shown in
Fig. @) that span increasing task difficulty, and diverse simulation benchmarks.

4.4.1 REAL-WORLD EVALUATION

Beyond comparisons with baseline tokenizers (FAST and BEAST), we further introduce a hy-
brid training variant, OmniSAT-Mixed, designed to leverage the human demonstrations (from
Egodex|Hoque et al.| (2025)), which contains 300k episodes across 200 tasks) to further boost perfor-
mance. During fine-tuning, OmniSAT-M interleaves human and robot data in the same token space,
forming mixed batches at a 4:1 robot-to-human ratio. For each benchmark, we report success rates
following fine-tuning on the corresponding dataset.

As shown in Figure [0} OmniSAT delivers clear gains, (%) BPLFAST WBEAST OmmiSAT M OmniSAT-M
achieving 73%, 63%, 48% success rate, outperforming '* %

BEAST (63%, 45%, 23%) and Pi-FAST (38%, 18%, % - &

38%). Adding human videos (OmniSAT-M) lifts the suc- & - 5 s
cess rate at 80%, 66%, 58%, improving the average by w B 38

+6.7% over OmniSAT (from 61.3% to 68.0%). Pi-FAST - 2

is notably weak on PlaceObj (38%) and ZipSeal (18%), I
indicating limited instruction-following and bimanual co- o

ordination capabilities. BEAST underperforms on Tu- Placeon) Zipseat TubeRack
beRack, indicating that its control-point approximation Figure 6: Real-World Evaluation.

and reconstruction quality hinder learning precise manip-

ulation. Overall, OmniSAT tightens the relationship between visual-linguistic and action, and its
unified action token space enables heterogeneous dataset scalability, strengthening fine-grained ma-
nipulation (ZipSeal and TubeRack) and multi-modal context understanding capabilities (PlaceObj).

4.5 SIMULATION BENCHMARKS EVALUATION

We train each policy on the full benchmark suite and evaluate on each sub-task, respectively. At test
time, we run 50 and 24 rollouts per task with randomized initial states for LIBERO and SimplerEnv,
respectively. On LIBERO, OmniSAT attains the best average success rate (93.4%), ranking #1
overall (Tab. [2). It sets the state of the art on Object (98.7%) and Goal (94.6%), while remaining
competitive on Spatial (94.1%, rank 2) and Long (86.0%, rank 2). On SimplerEnv, OmniSAT

Under review as a conference paper at ICLR 2025

Table 4: Ablations of OmniSAT Components.

(a) Effects of Lcom and Larop- (b) Effects of CE and QC.

Lcom Lrop \ Spatial Object Goal Long CE QC | Spatial Object Goal Long
v X 87.8 96.4 94.9 85.1 v X 92.9 97.5 93.1 86.4
X v 51.8 38.7 79.1 26.4 X v 93.8 98.3 94.8 83.2
v v \ 94.1 98.7 94.6 86.0 v v | 94.1 98.7 94.6 86.0

Table 5: Ablations of Backbone Selection and Vision Supervision.

(a) Effect of Backbone Selection. (b) Effect of Vision Supervision in L.
Backbone \ PlaceObj ZipSeal TubeRack Vision Supervision \ PlaceObj ZipSeal TubeRack
Florence-Large 65% 50% 40% X | 60% 66% 33%
Emu3-Base 73% 57 % 48 % v 73% 57% 48 %

achieves the highest overall success (69.8%) and strong success rates across all tasks (Tab.[3). These
results have proved the effectiveness and fidelity of the OmniSAT compression application.

4.6 ABLATION STUDY

To answer RQ4, we conduct ablations on the tokenizer design and downstream training choices, and
provide detailed analyses in Sec.[A.3](including weight coefficients, codebook sizes, and training
speed, etc.). These results collectively demonstrate the effectiveness of our design choices.

Effects of Components in OmniSAT. Tab. @a| shows that removing commitment loss causes enor-
mous performance degradations, especially on Object (38.7%) and Long (26.4%), indicating the
collapse phenomenon of codebook usage without the commitment loss. Without the dropout objec-
tive, we observe a decline in all subsets, excluding Goal. We conclude that the codebooks are overly
reliant on certain codebook quantizers, resulting in poor generalization to the test set. Tab. #blhigh-
lights complementary roles of the two stages: dropping Consistency Encoding (CE) mainly hurts
Long (from 86.0 to 83.2%), indicating the normalization encoding representation helps in codeword
quantization. While dropping the Action Quantization (AQ) mainly hurts Object and Goal (from
98.7%, 94.6% to 97.5%, 93.1%), which proves the effectiveness of RVQ-VAE compression. Using
both together balances long-horizon stability with precise object and goal execution.

Effects of Backbone and Objective. In real-world tasks (Tab. , Emu3-Base outperforms
Florence-Large across all tasks, indicating that a stronger AR backbone (i.e., larger context capac-
ity and richer cross-attention) translates compression advantages into stable optimization, achieving
higher success (from 51.7% to 59.3%). As shown in Tab. [5b] augmenting Lag with visual-token
prediction (L,;s in Eq. boosts PlaceObj (from 60% to 73%) and TubeRack (from 33% to 48%),
indicating that denser visual grounding improves instruction-conditioned reasoning and precise ma-
nipulation. The modest decline on ZipSeal (from 66% to 57%) likely reflects the deformable-object
property: visual tokens emphasize appearance cues for multimodal understanding but offer weaker
control signals for contact-centric actions. Overall, the compression benefits from OmniSAT mate-
rialize most when paired with a stronger AR backbone and modest visual supervision.

5 CONCLUSION

In this work, we introduced OmniSAT, an Omni Swift Action Tokenizer that enables scalable and
efficient manipulation learning. OmniSAT factorizes trajectory modeling into two stages: (i) Nor-
malizing horizon lengths and numerical distributions for obtaining consistency encoding represen-
tations. (ii) Discretizing position, rotation, and gripper actions into compressed, discretized tokens.
The resulting compact token space unifies heterogeneous embodiments, providing a transferable
foundation for auto-regressive VLA policy learning. Extensive experiments demonstrate that Om-
niSAT consistently and efficiently improves downstream policy performance and dataset scalability.

Under review as a conference paper at ICLR 2025

Ethics Statement This work studies action tokenization and auto-regressive training for robot
manipulation using public simulators (LIBERO, SimplerEnv, RoboCasa, RoboTwin2.0) and in-lab
demonstrations on an AgileX bimanual platform (Fig. [7). Physical experiments were conducted in
controlled spaces with interlocks, emergency stops, and conservative limits on speed and torque.
No autonomous deployment in public settings was performed. We use consenting, non-identifying
egocentric data and store it on secured servers following source licenses.

Reproducibility Statement We will release PyTorch code for OmniSAT, Emu3 training scripts,
configs per simulation benchmark, and pretrained tokenizer checkpoints, with a project page con-
taining logs and instructions. Experiments use LIBERO |Liu et al.|(2024a)), SimplerEnv-WidowX |Li
et al.| (2024b), RoboCasa [Nasiriany et al.| (2024), RoboTwin2.0 (Chen et al.| (2025), DROID [Khaz-
atsky et al.| (2024), and our 30 Hz real-robot datasets (400—600 frames; 90/10 split). Backbones:
Emu3-Base (8.5B, decoder-only) for real-world training and Florence-2 Large (0.77B) for simula-
tion. Tokenizer defaults: control-point length 7.=8, spline degree 4/0 (pos/rot, gripper), codebooks
KP=256, K™'=256, K&"P=64, residual depth L=8 with quantizer-layer dropout Ddrop=0.1, losses
Liccon (7v=1.0), Leom (=0.2), Larop With (A1, A2)=(1.0,0.2). Policy fine-tuning uses batch size
256, learning rate 5 x 10~°, 10 epochs with 1-epoch warmup, bf16, sequence packing, and BPE
vocab 2048. We follow official splits, fix random seeds, and report identical success metrics; runs
were executed on 8 x A800 GPUs.

REFERENCES

Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. arXiv preprint arXiv:2502.13923,
2025.

Kevin Black, Noah Brown, Danny Driess, Adnan Esmail, Michael Equi, Chelsea Finn, Niccolo
Fusai, Lachy Groom, Karol Hausman, Brian Ichter, et al. pi_0: A vision-language-action flow
model for general robot control. arXiv preprint arXiv:2410.24164, 2024.

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis, Chelsea Finn,
Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Jasmine Hsu, Julian Ibarz, Brian
Ichter, Alex Irpan, Tomas Jackson, Sally Jesmonth, Nikhil Joshi, Ryan Julian, Dmitry Kalash-
nikov, Yuheng Kuang, Isabel Leal, Kuang-Huei Lee, Sergey Levine, Yao Lu, Utsav Malla, Deek-
sha Manjunath, Igor Mordatch, Ofir Nachum, Carolina Parada, Jodilyn Peralta, Emily Perez,
Karl Pertsch, Jornell Quiambao, Kanishka Rao, Michael Ryoo, Grecia Salazar, Pannag Sanketi,
Kevin Sayed, Jaspiar Singh, Sumedh Sontakke, Austin Stone, Clayton Tan, Huong Tran, Vincent
Vanhoucke, Steve Vega, Quan Vuong, Fei Xia, Ted Xiao, Peng Xu, Sichun Xu, Tianhe Yu, and
Brianna Zitkovich. Rt-1: Robotics transformer for real-world control at scale. In arXiv preprint
arXiv:2212.06817, 2022.

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Xi Chen, Krzysztof Choroman-
ski, Tianli Ding, Danny Driess, Avinava Dubey, Chelsea Finn, et al. Rt-2: Vision-language-action
models transfer web knowledge to robotic control. arXiv preprint arXiv:2307.15818, 2023.

Qingwen Bu, Jisong Cai, Li Chen, Xiuqgi Cui, Yan Ding, Siyuan Feng, Shenyuan Gao, Xindong
He, Xu Huang, Shu Jiang, et al. Agibot world colosseo: A large-scale manipulation platform for
scalable and intelligent embodied systems. arXiv preprint arXiv:2503.06669, 2025.

Tianxing Chen, Zanxin Chen, Baijun Chen, Zijian Cai, Yibin Liu, Qiwei Liang, Zixuan Li, Xi-
anliang Lin, Yiheng Ge, Zhenyu Gu, et al. Robotwin 2.0: A scalable data generator and bench-
mark with strong domain randomization for robust bimanual robotic manipulation. arXiv preprint
arXiv:2506.18088, 2025.

Cheng Chi, Siyuan Feng, Yilun Du, Zhenjia Xu, Eric Cousineau, Benjamin Burchfiel, and Shuran
Song. Diffusion Policy: Visuomotor policy learning via action diffusion. In Kostas E. Bekris,
Kris Hauser, Sylvia L. Herbert, and Jingjin Yu (eds.), Robotics: Science and Systems XIX, Daegu,
Republic of Korea, July 10-14, 2023, 2023a.

10

Under review as a conference paper at ICLR 2025

Cheng Chi, Siyuan Feng, Yilun Du, Zhenjia Xu, Eric Cousineau, Benjamin Burchfiel, and Shuran
Song. Diffusion policy: Visuomotor policy learning via action diffusion. In Proceedings of
Robotics: Science and Systems (RSS), 2023b.

Open X-Embodiment Collaboration. Open X-Embodiment: Robotic learning datasets and RT-X
models. https://arxiv.org/abs/2310.08864,2023.

Wenliang Dai, Junnan Li, Dongxu Li, Anthony Meng Huat Tiong, Junqi Zhao, Weisheng Wang,
Boyang Li, Pascale Fung, and Steven C. H. Hoi. Instructblip: Towards general-purpose vision-
language models with instruction tuning. In Advances in Neural Information Processing Systems,
2023.

Ryan Hoque, Peide Huang, David J. Yoon, Mouli Sivapurapu, and Jian Zhang. Egodex: Learning
dexterous manipulation from large-scale egocentric video, 2025. URL|https://arxiv.org/
abs/2505.117009.

Physical Intelligence, Kevin Black, Noah Brown, James Darpinian, Karan Dhabalia, Danny Driess,
Adnan Esmail, Michael Equi, Chelsea Finn, Niccolo Fusai, Manuel Y. Galliker, Dibya Ghosh,
Lachy Groom, Karol Hausman, Brian Ichter, Szymon Jakubczak, Tim Jones, Liyiming Ke, Devin
LeBlanc, Sergey Levine, Adrian Li-Bell, Mohith Mothukuri, Suraj Nair, Karl Pertsch, Allen Z.
Ren, Lucy Xiaoyang Shi, Laura Smith, Jost Tobias Springenberg, Kyle Stachowicz, James Tanner,
Quan Vuong, Homer Walke, Anna Walling, Haohuan Wang, Lili Yu, and Ury Zhilinsky. 7 5: a
vision-language-action model with open-world generalization, 2025. URL https://arxiv.
org/abs/2504.16054.

Yuheng Ji, Huajie Tan, Jiayu Shi, Xiaoshuai Hao, Yuan Zhang, Hengyuan Zhang, Pengwei Wang,
Mengdi Zhao, Yao Mu, Pengju An, Xinda Xue, Qinghang Su, Huaihai Lyu, Xiaolong Zheng,
Jiaming Liu, Zhongyuan Wang, and Shanghang Zhang. Robobrain: A unified brain model for
robotic manipulation from abstract to concrete. In Proceedings of the Computer Vision and Pat-
tern Recognition Conference, pp. 1724—-1734, June 2025.

Alexander Khazatsky, Karl Pertsch, Suraj Nair, Ashwin Balakrishna, Sudeep Dasari, Siddharth
Karamcheti, Soroush Nasiriany, Mohan Kumar Srirama, Lawrence Yunliang Chen, Kirsty El-
lis, et al. Droid: A large-scale in-the-wild robot manipulation dataset. arXiv preprint
arXiv:2403.12945, 2024.

Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted Xiao, Ashwin Balakrishna, Suraj Nair,
Rafael Rafailov, Ethan Foster, Grace Lam, Pannag Sanketi, Quan Vuong, Thomas Kollar, Ben-
jamin Burchfiel, Russ Tedrake, Dorsa Sadigh, Sergey Levine, Percy Liang, and Chelsea Finn.
Openvla: An open-source vision—language—action model. In Proceedings of the Conference on
Robot Learning. PMLR, 2024.

Moo Jin Kim, Chelsea Finn, and Percy Liang. Fine-tuning vision-language-action models: Opti-
mizing speed and success. arXiv preprint arXiv:2502.19645, 2025.

Seungjae Lee, Yibin Wang, Haritheja Etukuru, H Jin Kim, Nur Muhammad Mahi Shafiullah, and
Lerrel Pinto. Behavior generation with latent actions. In International Conference on Machine
Learning, pp. 26991-27008. PMLR, 2024.

Xinghang Li, Peiyan Li, Minghuan Liu, Dong Wang, Jirong Liu, Bingyi Kang, Xiao Ma, Tao Kong,
Hanbo Zhang, and Huaping Liu. Towards generalist robot policies: What matters in building
vision-language-action models. arXiv preprint arXiv:2412.14058, 2024a.

Xuanlin Li, Kyle Hsu, Jiayuan Gu, Karl Pertsch, Oier Mees, Homer Rich Walke, Chuyuan Fu,
Ishikaa Lunawat, Isabel Sieh, Sean Kirmani, Sergey Levine, Jiajun Wu, Chelsea Finn, Hao Su,
Quan Vuong, and Ted Xiao. Evaluating real-world robot manipulation policies in simulation.
arXiv preprint arXiv:2405.05941, 2024b.

Bo Liu, Yifeng Zhu, Chongkai Gao, Yihao Feng, Qiang Liu, Yuke Zhu, and Peter Stone. Libero:
Benchmarking knowledge transfer for lifelong robot learning. Advances in Neural Information
Processing Systems, 36, 2024a.

11

https://arxiv.org/abs/2310.08864
https://arxiv.org/abs/2505.11709
https://arxiv.org/abs/2505.11709
https://arxiv.org/abs/2504.16054
https://arxiv.org/abs/2504.16054

Under review as a conference paper at ICLR 2025

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
tuning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, pp. 2629626306, 2024b.

Songming Liu, Lingxuan Wu, Bangguo Li, Hengkai Tan, Huayu Chen, Zhengyi Wang, Ke Xu,
Hang Su, and Jun Zhu. RDT-1B: a diffusion foundation model for bimanual manipulation. In The
Thirteenth International Conference on Learning Representations, ICLR 2025, Singapore, April
24-28, 2025, 2025.

Soroush Nasiriany, Abhiram Maddukuri, Lance Zhang, Adeet Parikh, Aaron Lo, Abhishek Joshi,
Ajay Mandlekar, and Yuke Zhu. Robocasa: Large-scale simulation of everyday tasks for gener-
alist robots. In Robotics: Science and Systems, 2024.

Octo Model Team, Dibya Ghosh, Homer Walke, Karl Pertsch, Kevin Black, Oier Mees, Sudeep
Dasari, Joey Hejna, Charles Xu, Jianlan Luo, Tobias Kreiman, You Liang Tan, Dorsa Sadigh,
Chelsea Finn, and Sergey Levine. Octo: An open-source generalist robot policy. https://
octo—models.github.io, 2023.

Abby O’Neill, Abdul Rehman, Abhiram Maddukuri, Abhishek Gupta, Abhishek Padalkar, Abra-
ham Lee, et al. Open X-Embodiment: Robotic learning datasets and RT-X models : Open x-
embodiment collaboration. In 2024 IEEE International Conference on Robotics and Automation
(ICRA), pp. 6892-6903, 2024.

Karl Pertsch, Kyle Stachowicz, Brian Ichter, Danny Driess, Suraj Nair, Quan Vuong, Oier Mees,
Chelsea Finn, and Sergey Levine. Fast: Efficient action tokenization for vision-language-action
models. arXiv preprint arXiv:2501.09747, 2025.

Hartmut Prautzsch, Wolfgang Boehm, and Marco Paluszny. Bézier and B-spline techniques.
Springer Science & Business Media, 2002.

Delin Qu, Haoming Song, Qizhi Chen, Yuanqi Yao, Xinyi Ye, Yan Ding, Zhigang Wang, JiaYuan
Gu, Bin Zhao, Dong Wang, et al. Spatialvla: Exploring spatial representations for visual-
language-action model. arXiv preprint arXiv:2501.15830, 2025.

Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of rare words with
subword units. In Katrin Erk and Noah A. Smith (eds.), Proceedings of the 54th Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers), pp. 17151725, Berlin,
Germany, August 2016. Association for Computational Linguistics. doi: 10.18653/v1/P16-1162.
URLhttps://aclanthology.org/P16-1162/.

Nur Muhammad Shafiullah, Zichen Cui, Ariuntuya Arty Altanzaya, and Lerrel Pinto. Behavior
transformers: Cloning k£ modes with one stone. Advances in neural information processing sys-
tems, 35:22955-22968, 2022.

Andrew Szot, Bogdan Mazoure, Harsh Agrawal, R Devon Hjelm, Zsolt Kira, and Alexander To-
shev. Grounding multimodal large language models in actions. Advances in Neural Information
Processing Systems, 37:20198-20224, 2024a.

Andrew Szot, Bogdan Mazoure, Omar Attia, Aleksei Timofeev, Harsh Agrawal, Devon Hjelm, Zhe
Gan, Zsolt Kira, and Alexander Toshev. From multimodal llms to generalist embodied agents:
Methods and lessons. arXiv preprint arXiv:2412.08442, 2024b.

BAAI RoboBrain Team, Mingyu Cao, Huajie Tan, Yuheng Ji, Xiansheng Chen, Minglan Lin, Zhiyu
Li, Zhou Cao, Pengwei Wang, Enshen Zhou, Yi Han, Yingbo Tang, Xiangqi Xu, Wei Guo,
Yaoxu Lyu, Yijie Xu, Jiayu Shi, Mengfei Du, Cheng Chi, Mengdi Zhao, Xiaoshuai Hao, Junkai
Zhao, Xiaojie Zhang, Shanyu Rong, Huaihai Lyu, Zhengliang Cai, Yankai Fu, Ning Chen, Bolun
Zhang, Lingfeng Zhang, Shuyi Zhang, Dong Liu, Xi Feng, Songjing Wang, Xiaodan Liu, Yance
Jiao, Mengsi Lyu, Zhuo Chen, Chenrui He, Yulong Ao, Xue Sun, Zheqi He, Jingshu Zheng,
Xi Yang, Donghai Shi, Kunchang Xie, Bochao Zhang, Shaokai Nie, Chunlei Men, Yonghua Lin,
Zhongyuan Wang, Tiejun Huang, and Shanghang Zhang. Robobrain 2.0 technical report, 2025.
URL https://arxiv.org/abs/2507.020209.

12

https://octo-models.github.io
https://octo-models.github.io
https://aclanthology.org/P16-1162/
https://arxiv.org/abs/2507.02029

Under review as a conference paper at ICLR 2025

Xinlong Wang, Xiaosong Zhang, Zhengxiong Luo, Quan Sun, Yufeng Cui, Jinsheng Wang, Fan
Zhang, Yueze Wang, Zhen Li, Qiying Yu, et al. Emu3: Next-token prediction is all you need.
arXiv preprint arXiv:2409.18869, 2024.

Yuqi Wang, Xinghang Li, Wenxuan Wang, Junbo Zhang, Yingyan Li, Yuntao Chen, Xinlong Wang,
and Zhaoxiang Zhang. Unified vision-language-action model. arXiv preprint arXiv:2506.19850,
2025.

Junjie Wen, Yichen Zhu, Jinming Li, Minjie Zhu, Kun Wu, Zhiyuan Xu, Ning Liu, Ran Cheng,
Chaomin Shen, Yaxin Peng, et al. Tinyvla: Towards fast, data-efficient vision-language-action
models for robotic manipulation. arXiv preprint arXiv:2409.12514, 2024.

Yujie Wu, Huaihai Lyu, Yingbo Tang, Lingfeng Zhang, Zhihui Zhang, Wei Zhou, and Siqi
Hao. Evaluating gpt-40’s embodied intelligence: A comprehensive empirical study. Authorea
Preprints, 2025.

Bin Xiao, Haiping Wu, Weijian Xu, Xiyang Dai, Houdong Hu, Yumao Lu, Michael Zeng, Ce Liu,
and Lu Yuan. Florence-2: Advancing a unified representation for a variety of vision tasks. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4818—
4829, 2024.

Tony Z Zhao, Vikash Kumar, Sergey Levine, and Chelsea Finn. Learning fine-grained bimanual
manipulation with low-cost hardware. arXiv preprint arXiv:2304.13705, 2023.

Hongyi Zhou, Weiran Liao, Xi Huang, Yucheng Tang, Fabian Otto, Xiaogang Jia, Xinkai Jiang,
Simon Hilber, Ge Li, Qian Wang, Omer Erding Yagmurlu, Nils Blank, Moritz Reuss, and Rudolf
Lioutikov. Beast: Efficient tokenization of b-splines encoded action sequences for imitation learn-
ing, 2025. URL https://arxiv.org/abs/2506.06072.

13

https://arxiv.org/abs/2506.06072

Under review as a conference paper at ICLR 2025

A APPENDIX

Use of Large Language Models. During manuscript preparation, we used a large language model
(ChatGPT 5 Thinking) solely for language editing: polishing phrasing, improving logical flow be-
tween sentences, and checking typos. The technical ideas, algorithms, experiments, analyses, fig-
ures, and tables were conceived, implemented, and verified by the authors. We did not rely on the
LLM for data generation, mathematical derivations, or empirical claims. All model-assisted edits
were reviewed by the authors for factual accuracy and clarity before inclusion.

This supplementary material provides additional details on the proposed method and experimental
results that could not be included in the main manuscript due to space constraints. Specifically, this
appendix is organized as follows:

¢ Sec.[Ad]describes the dataset and benchmark details.

* Sec.[A2]provides additional details on model architectures and training hyperparameters.
* Sec.[A3|presents supplementary experimental results and analysis.

* Sec.[A4]introduces the B-spline algorithm used in Action Normalization.

* Sec.[A3]illustrates the metrics used to evaluate performance

A.1 BENCHMARKS
A.1.1 REAL-WORLD BENCHMARKS.

DROID (Khazatsky et al., [2024) is a large, in-the-wild manipulation corpus with 76k episodes
(350h) collected across 564 scenes in 52 buildings from 13 institutions, spanning 86 tasks/verbs.
Each episode includes three synchronized RGB camera streams, depth, and calibration metadata
(intrinsics/extrinsics), and natural-language instructions. Scenes cover kitchens, bathrooms, offices,
bedrooms, labs, and more, with varied lighting, clutter, and viewpoints. We adopt the official splits
and use DROID both to pretrain our tokenizer and to evaluate compression/fidelity (Tab. [/|under
a fixed action horizon of 30 frames.

Agilex
Cobot Magic

Figure 7: Dual-arm data-collection platform. We use an AgileX Cobot Magic base with two
collaborative arms. RGB(-D) videos are captured from an overhead Intel RealSense D455 and
wrist-mounted Intel RealSense D4351 cameras; all streams are time-synchronized with joint-space
commands at 30 Hz.

Real-World Benchmarks. We gather egocentric, goal-conditioned demonstrations on a dual-arm
platform at 30Hz (Fig. [7). Each trajectory logs joint-space commands for both arms and time-
synchronized RGB(-D) video from (i) an overhead Intel RealSense D455 and (ii) wrist-mounted
Intel RealSense D435i cameras. Typical clips contain 400-600 frames and paired language instruc-
tions. We summarize the benchmark objective and challenges in Table. [§and present the visualiza-
tion in Fig.[8

A.1.2 SIMULATION BENCHMARKS.

LIBERO (Liu et al.l|2024a)) comprises four benchmark suites: LIBERO-Spatial, LIBERO-Object,
LIBERO-Goal, and LIBERO-Long. Each suite consists of ten distinct tasks, designed to evaluate

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Table 6: Task objectives centered with multirow; challenges split across three rows.

Task Objective Challenge

Instruction grounding under distractors
PlaceObj Place the named object into the basket. Reliable table-top grasping
Precise placement into a confined receptacle

Contact-rich, deformable-object control
ZipSeal Align the bag edges and close the zipper. Coordinated bimanual hold—pull
Sustained force/pose control along the seal track

High spatial precision and tight tolerances
TubeRack Pick up a test tube and insert it into a rack slot. ~ Stable transport without slip
Axial alignment and collision avoidance

PlaceOby: “Place object on the table into the basket.” (Stepl) Grasp the object on the table surface. (Step2) Lift it up
above the basket. (Step3) Release the object. (# Var) Task varies on the object category.

ZipSeal: “seal a plastic bag with zipper placed on the table.” (Stepl) Grasp one side of the bag. (Step2) Grasp the
zipper tab with the other gripper. (Step3) Pulling the zipper along the sealing track. (Step4) Release the plastic bag.

N Lo e B

TubeRack: “Insert the tube on the table surface into an empty slot of the rack.” (Stepl) Pick up the tube. (Step2) Reorient
the tube and pass it to the other gripper. (Step3) Insert the tube into the rack. (Step4) Release the tube.

Figure 8: Real-world tasks and step-wise rollouts. PlaceObj: grasp the instructed object, lift, and
place it into the basket. ZipSeal: align both sides of a resealable bag, grasp the zipper tab, and close
along the track. TubeRack: pick up a test tube, reorient, and insert it into the rack slot.

generalization along different axes—spatial layout, object identity, goal specification, and temporal
composition. The tasks are implemented on a Franka Emika robot equipped with both a wrist-
mounted camera and a third-person camera for visual observations. Each task is paired with natural-
language instructions and 50 successful execution trajectories serving as demonstrations. We adopt
the official evaluation protocol and report the average success rate across the tasks within each suite.

SimplerEnv-WidowX 2024b) is a simulated benchmark for evaluating how well robot
manipulation policies transfer under controlled but significant domain shifts. Scenes vary in lighting,
textures, color distributions, and camera pose; action and observation spaces match the WidowX
platform. Its core design aims are to minimize visual and control gaps, ensuring realism, and making
evaluation predictive of real-world behavior. We adopt the benchmark’s “Put Spoon”, “Put Carrot”,
“Stack Block”, and “Put Eggplant” tasks and use the standard train/test splits and success criteria.

15

Under review as a conference paper at ICLR 2025

A.2 MODEL ARCHITECTURE AND TRAINING HYPERPARAMETERS

Backbones. We use two decoder-only Transformer backbones in different settings. (1) Florence-
2 Large Xiao et al.| (2024) (simulation): a 0.77B-parameter AR model that consumes interleaved
visual-action packets. The visual front end is DaViT, i.e., Florence-2’s dense vision transformer
encoder, which produces per-frame visual embeddings fed directly to the AR stack alongside action
tokens (no VQ tokenization). (2) Emu3-Base Wang et al.| (2024) (real-world): an 8.5B-parameter
decoder-only Transformer used for hybrid training. Images are tokenized by Emu3’s VQ tokenizer
(spatial compression 8x) into discrete visual tokens that are interleaved with action tokens. Un-
less otherwise noted, the context length is [ctx_len], the hidden size [d_model], [n_layers] layers,
[n_heads] attention heads, positional encoding [fype], and dropout [p_drop]. Mixed precision (bf16)
and sequence packing are enabled.

Input packing. For each embodiment e € £ with system prompt s(¢), instruction 1(¢), observa-

tions og % , and actions ag %ﬂ , we obtain per-frame tokens using the pretrained VQ visual tokenizer

T, from |Wang et al.|(2024) and our action tokenizer Ta:

’l_)]ge) = Tv<0§e)), qt(e) = Ta<a§e)). (13)
We concatenate visual and action tokens at each step to form a frame-level packet and then build an
AR stream under a causal mask:

a” = [0/ ¢, 59 =[s919 al . &) (14)
Causal masks and AR objective. Let 59 = [2{”, ... 2{7)] be the flattened token sequence
(prompt, instruction, then packets). Define binary target masks for visual and action tokens:
vis,(e))1, if x§e) is a visual token mict(e) _ 1, if :c(°) is an action token
J 0, otherwise ’ J 0, otherwise.

The model 7y is a decoder-only AR Transformer Wang et al.| (2024) trained with a standard next-
token loss under a causal attention mask. We compute per-type cross-entropy losses by selecting
targets with the masks:

e 1 1 e e e
E\(,is) =—=—w0e Z vis, () log 71'9() ! (<J)) (15)
2. m; j=1
€ 1 e €
L§c3 = _ RO Z mam (€) log 71'9(‘ 1:(<])) (16)

Zj m; j=1

The hybrid visual-action objective averages across embodiments with weights Ayig, Aaer > 0:
1 e €
o 5 (ol 1)
ecé

This implements a single AR objective in which the causal mask enforces left-to-right conditioning,
while the target masks decide whether a given position contributes to the visual or action loss.

OmniSAT configuration. OmniSAT comprises two stages: Action Normalization and Action
Quantization. We provide the hyperparameters in each stage, respectively.

* Action Normalization (B-spline encoding). We apply per-channel robust normalization
(1st/99th percentiles) and fit B-splines to each DoF. Degrees: 3 for position/rotation, 0 for
gripper. The aligned control-point length (per DoF) is set to 7, = 30 (default), chosen
for millimeter-level reconstruction. Ridge coefficient A = le-3. The resulting fixed-length
control-point matrix z € RTe* is forwarded to the quantizer.

* Action Quantization (part-group residual VQ-VAE). We quantize z in three part groups
with independent codebooks: position KP°* of size 256, rotation K™ of size 256, gripper
K& of size 64. Residual levels L =8 per group; codeword dimensionality d. = 30
(consistent to the aligned control-point length). Codebooks use EMA updates with decay
« = 0.99. Losses: reconstruction L.con With coefficients o« = 0.2, commitment L.y, and
dropout regularization Lgp; total

Evae = Acrecon +)\1 l:com +)\2 Edmpa ()‘13 /\2) = (10, 02)

16

Under review as a conference paper at ICLR 2025

Token budgets and compression. Original action horizon is 30 Hz. Real-robot streams are com-
pressed to L=8 action tokens per second (3.75x). During AR training, we apply BPE to the inter-
leaved stream (vocab 2048), yielding an additional ~ 1.8 reduction (overall ~ 6.75x).

Training hyperparameters. Tokenizer pretraining runs for 5 epochs with AdamW (betas
(0.9,0.95), weight decay 0.1), batch size 8192, and learning rate 2e-4. Hybrid policy fine-tuning
uses AdamW with learning rate 7 = 5e — 5, batch size 256 on 8 x A800, cosine decay with 1 warmup
epoch and total 10 epochs. Visual loss weighting wyis = 0.3 (when enabled).

A.3 ADDITIONAL EXPERIMENTS

This section expands on OmniSAT with hyperparameter sweeps, efficiency measurements, and sim-
ulation results.

Chunk length L. We ablate the aligned control-point length T,,=L € {4, 6, 8,10, 12} on DROID.
Shorter L increases compression but can underfit fast motions; larger L improves fidelity but length-
ens token streams. As summarized in Tab. |/} L=8 offers the best trade-off: millimeter-level MAE
with a strong end-to-end compression ratio, and it is therefore our default in all main results.

Table 7: Comparisons of Compression and Quality on DROID.

Method MAE({) R
FAST <le-5 3.7
BEAST 8.0e-2 4.6

OmniSAT-12 7.0e-4 38
OmniSAT-10 8.5¢-4 49
OmniSAT-8 9.4e-4 6.8
OmniSAT-6 1.3e-3 8.1
OmniSAT-4 3.1e-2 11.2

Codebook size. We vary the per part-group vocabulary sizes KP°, K™, K& on DROID. Increas-
ing codebook size reduces MAE up to a saturation point, after which gains are marginal while AR
sequences grow longer due to weaker BPE reuse. The default (256, 256, 64) balances fidelity and
throughput.

Table 8: Effects of Part-Group Codebook Size.

pos ot Kgrip ‘ MAE (\L)

512 512 128 9.1e-4
512 512 64 9.1e-4
256 256 64 9.4e-4
256 256 32 9.6e-4
128 128 32 1.1e-3

Training efficiency. With the same backbone and batch size (256), OmniSAT trains faster than
both baselines: 12.56k ms/batch versus 13.73k ms/batch for FAST and 14.47k ms/batch for BEAST.
This corresponds to 8% and 13% lower step time, respectively. The gain stems from emitting fewer
action tokens per second with fixed-length packets, which reduces sequence length and improves
compute utilization during AR training.

Effects of weight coefficients \; and X\, Table [0aand Table [9b] report the results of varying the
two weight coefficients A\; and Ay in our loss function. For \;, we observe that increasing the
weight from 0.0 to 1.0 gradually reduces the reconstruction error, achieving the lowest MAE at
A1 = 1.0 (9.4 x 10~%). Further enlarging \; beyond 1.0 leads to a slight degradation, suggesting
that excessively emphasizing this term harms the balance of optimization. A similar trend is found
for Ao, where the error decreases as Ay increases from 0.0 to 0.2, reaching the optimal MAE at
Ao = 0.2 (9.4 x 10~%). However, larger values (e.g., 0.4 and 0.5) cause substantial performance
drops, indicating over-regularization. These results highlight that both coefficients require careful
tuning, and moderate values yield the best trade-off between stability and accuracy.

17

Under review as a conference paper at ICLR 2025

Table 9: Effects of weight coefficients \; and)\-.

(a) Effect of Aq. (b) Effect of As.
\ 0.0 0.6 0.8 1.0 1.2 1.4 \ 0.0 0.1 0.2 0.3 0.4 0.5
MAE \ 1.8e-3 1.2e-3 1.1e-3 9.4e-4 1.0e-3 1.3e-3 MAE \ 1.7e-3 1.0e-3 9.4e-4 9.6e-4 7.2e-3 3.5e-2

LIBERO per-suite results. Across LIBERO’s four suites (Spatial, Object, Goal, Long), Om-
niSAT delivers state-of-the-art average performance. It matches or surpasses the strongest
prior in Object and Goal, remains competitive on Long, and shows consistently faster conver-
gence—reaching its performance plateau with fewer training steps than BEAST and FAST. Per-suite
learning curves are shown in Fig. 0] which also highlights OmniSAT’s early gains and stable end
performance.

100 (%) BEAST FAST OmniSAT 100 (%) BEAST FAST OmniSAT
9% : 90
80 80
70 70
steps (k steps (k
60 T T T g (,) 60 T T B (.)
1 2 3 4 5 1 2 3 4 5
(a) LIBERO-Spatial (b) LIBERO-Object

100 (%) BEAST FAST OmniSAT 100 (%) BEAST FAST OmniSAT

90
90

80
80 i : 70

60
70

50

steps (k steps (k
60 T T . T i (.) 40 ¢ T T T . i (.)
1 2 3 4 5 1 2 3 4 5
(c) LIBERO-Goal (d) LIBERO-Long

Figure 9: Training Convergence on LIBERO Benchmarks.

A.4 B-SPLINE ALGORITHM THEORY

B-spline basis. A univariate B-spline of degree p is defined over a nondecreasing knot vector U =

{ug, ..., up} with M = N + p for N control points. The p-degree basis functions { N; ,,(u)}¥ 5
are given by the Cox—de Boor recursion:
1, u; <u<ujg
Ni —) A 1+1, 18
’O(U) {O, otherwise, (18)
U — U; Uj4p+1 — U
Ni = Nl — — N1 — 9 19
»(w) L 1(u) + Uyt — s it 1(w) (19)

with the convention 0/0 := 0. We employ uniform clamped knots (first and last knots repeated p+1
times), which ensure interpolation at the endpoints and stable evaluation.

Trajectory model. A B-spline trajectory of degree p, parameterized over v € [0, 1] and defined

by control points ¢ = [cg, . ..,cn_1] ', is given by
N-1
y(u) = Z ¢ Nip(u), u e [0,1]. (20)
i=0
Given a normalized action sequence a1.7 = [a1, .. ., ar| with length T, the objective is to construct

a B-spline trajectory y(u) that approximates the action sequence. A linear transformation maps the
action timestep to the parametric space of the spline trajectory, where the sampled grid is defined as

-1
uT:T T=1,...

T. 2y

18

Under review as a conference paper at ICLR 2025

Design matrix and least squares. To make the B-spline trajectory on the sampled grid y(u)1.7
closely matches the action sequence aj.7, the control points are obtained by minimizing the
least-squares error

ct = argmcin ||y(u)1;T — a1:T||§. (22)

We further formalize the precomputed B-spline basis functions of y(u) into the B-spline design
matrix ® € RT*N where

®.; = Niplu,), 7t=1,....T, i=0,....N—1. (23)

Under this formulation, estimating the B-spline trajectory parameters reduces to a standard least-
squares optimization problem:

c¢* = arg min ||<I>c — G1:TH§7 (unweighted) (24)
¢* = argmin ||W1/2(<I>c — al:T)Hz (weighted), (25)
Cc
where W >~ 0 can emphasize specific timestamps (e.g., contacts).

Ridge regularization. To improve numerical stability and avoid overfitting when the number of
control points IV is large or the samples are noisy, we introduce an ¢» penalty, parameterized by a
regularization coefficient A (A > 0):

¢* = argmin [@c—arr|;+Alcl3 = (@T@ + A @ ayr. (26)

In practice we precompute ® from equation 23] and solve equation [26] via a Cholesky factorization
of (@7 ® + \I). This batched procedure incurs only a minor computational overhead, typically on
the order of a few milliseconds.

From 1-DoF to multi-DoF. For a D-DoF action sequence a;.7 € RT*P we fit each DoF inde-
pendently using the same time grid u1.7 and design matrix ®:

¢, = (®@T®+A)'®Td\Y, d=1,...,D. 27)
Stacking {c5}Z_, yields the control-point matrix
(e)”
C = : |eRPN, (28)
(ep)’

which serves as the fixed-length representation. Reconstruction at any u follows from equation [20]
using the corresponding row of ®.

Choice of degree, knots, and control points. We use clamped uniform knot sequences, with
spline degree set to p=4 for the smooth, high-fidelity representation of position and rotation tra-
jectories, and p=0 for the near piecewise-constant representation of gripper signals. The number
of control points N balances reconstruction accuracy against representation compactness. In prac-
tice, we choose N < T to align variable horizons into a common fixed length while retaining
millimeter-level reconstruction.

A.5 METRICS.

Reconstruction MAE. Given a test trajectory a1.p € RT*4 and its reconstruction @;.7 obtained
by decoding tokens (RVQ — control points — B-spline), we compute

TRAN
MAE = 7TXdZZ|at,k*dt,k7

t=1 k=1

after denormalizing to the original units per DoF. When reporting a single number, we average MAE
over all test trajectories and DoFs.

19

Under review as a conference paper at ICLR 2025

Compression ratio (). We measure end-to-end sequence compression relevant for AR training.
Let T" be the original action horizon (continuous timesteps) and L be the number of action tokens
produced by OmniSAT (concatenating part group indices). After applying BPE, the effective token
length becomes Lppg. The compression ratio is

_r
E[Lgpr]’

i.e., average timesteps per (BPE merged) token over the test set. We compute R identically from
their token streams with the same BPE vocabulary (2048).

R:

20

	Introduction
	Related Work
	Vision-Language-Action Models
	Discretized Action Representations

	Methodology
	Preliminaries
	OmniSAT: Omni Swift Action Tokenizer
	Cross-Embodiment Manipulation Learning

	Experiments
	Implementation Details
	Benchmarks.
	Comparison with existing action tokenizers.
	Main Results
	Real-World Evaluation

	Simulation Benchmarks Evaluation
	Ablation Study

	Conclusion
	Appendix
	Benchmarks
	Real-World Benchmarks.
	Simulation benchmarks.

	Model Architecture and Training Hyperparameters
	Additional Experiments
	B-Spline Algorithm Theory
	Metrics.

