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Abstract

Differential privacy (DP) is a widely-accepted and widely-applied notion of privacy based on worst-
case analysis. Often, DP classifies most mechanisms without additive noise as non-private (Dwork
et al., 2014). Thus, additive noises are added to improve privacy (to achieve DP). However, in
many real-world applications, adding additive noise is undesirable (Bagdasaryan et al., 2019) and
sometimes prohibited (Liu et al., 2020).

In this paper, we propose a natural extension of DP following the worst average-case idea behind the
celebrated smoothed analysis (Spielman & Teng, 2004). Our notion, smoothed DP, can effectively
measure the privacy leakage of mechanisms without additive noises under realistic settings. We prove
that any discrete mechanism with sampling procedures is more private than what DP predicts, while
many continuous mechanisms with sampling procedures are still non-private under smoothed DP. In
addition, we prove several desirable properties of smoothed DP, including composition, robustness
to post-processing, and distribution reduction. Based on those properties, we propose an efficient
algorithm to calculate the privacy parameters for smoothed DP. Experimentally, we verify that,
according to smoothed DP, the discrete sampling mechanisms are private in real-world elections, and
some discrete neural networks can be private without adding any additive noise. We believe that
these results contribute to the theoretical foundation of realistic privacy measures beyond worst-case
analysis.

1 Introduction

Differential privacy (DP), a de facto measure of privacy in academia and industry, is often achieved by adding
additive noises (e.g., Gaussian noise, Laplacian noise, and the discrete noise in exponential mechanism) to published
information (Dwork et al., 2014). However, additive noises are procedurally or practically unacceptable in many
real-world applications. For example, presidential elections often require a deterministic rule to be used (Liu et al.,
2020). In such cases, though, sampling noise often exists, as shown in the following example.

Example 1 (Election with sampling noise). Due to COVID-19, many voters in the 2020 US presidential election
chose to submit their votes by mail. Unfortunately, it was estimated that the US postal service might have lost up to
300,000 mail-in ballots (0.2% of all votes) (Bogage & Ingraham, 2020). For the purpose of illustration, suppose these
votes are distributed uniformly at random, and the histogram of votes is announced after the election day.

A critical public concern about elections is: should publishing the histogram of votes be viewed as a significant threat to
privacy? Notice that with sampling noise such as in Example 1, the (sampling) histogram mechanism can be viewed as
a randomized mechanism, formally called sampling-histogram in this paper. The same question can be asked about
publishing the winner under a deterministic voting rule with sampling noise.
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The standard notion of DP (Definition 1 in Dwork et al., 2006a) measures the worst-case privacy leakage (see Section 2
for its formal definition and detailed discussions). At a high level, DP considers the worst-case input and worst-case
output of the (random) mechanisms. ϵ and δ are DP’s privacy parameters to measure the privacy leakage in the worst-
case described above. At a high level again, ϵ is a mechanism-designer-decided threshold for the “acceptable amount
of privacy leakage”, while δ measures the probability that the threshold got exceeded. Thus, smaller ϵ, δ represents
stronger privacy guarantees. The usual requirements upon a private mechanism are ϵ = O(1) and δ = o(1/n). The
requirement on δ is more strict than ϵ because δ measures the “failure probability”.

If we apply DP to answer this question, we would then conclude that publishing the histogram can poses a significant
threat to privacy, as the privacy parameter δ ≈ 1 (See Section 2 for the formal definition) in the following worst-case
scenario: all except one vote are for the Republican candidate, and there is one vote for the Democratic candidate.
Notice that δ ≈ 1 is much worse than the threshold for private mechanisms, δ = o(1/n), where n is the number of
agents (voters). Moreover, using the adversary’s utility as the measure of privacy loss (see Section 2 for the formal
definition), in this (worst) case, the privacy loss is large (≈ 1, see Section 2 for the formal definition of utility), which
means the adversary can make accurate predictions about every agent’s preferences.

However, DP does not tell us whether publishing the histogram poses a significant threat to privacy in general. In
particular, the worst-case scenario described in the previous paragraph never happened even approximately in the
modern history of US presidential elections. In fact, no candidates get more than 70% of the votes since 1920 (Leip,
2023), when the progressive party dissolved.

It turns out that the privacy loss may not be as high as measured by DP,
where the privacy loss is measured by the adversary’s utility (i.e., how
accurately the adversary can infer/predict the votes, see Justification 3
in Section 2 for its formal definition). To see this, we assume 0.2% of
the votes were randomly lost in the presidential elections of each year
since 1920 (in light of Example 1). Figure 1 presents the adversary’s
utility under this assumption. It can be seen that the adversary’s utility
is very limited (at the order of 10−32 to 10−8, always smaller than the
threshold of private mechanisms, 1/n). In other words, the adversary
cannot get much information from the published histogram of votes.
Figure 1 also plots the database-dependent privacy parameter δ(x)
(Definition 2, a DP-like δ parameter for a specific database). One can
see that δ(x) is closely related to the adversary’s utility and is also at
the order of 10−32 to 10−8. Besides, we observe an interesting decreas-
ing trend in the adversary’s utility, which implies that the elections
become more private in more recent years. This is primarily due to
the growth of the voting population, which is exponentially related to
the adversary’s utility (Theorem 3). In Appendix A.2, we further show
that the elections are still private when only 0.01% of votes got lost.
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Figure 1: The privacy loss and adversaries’
utility in US presidential elections. The smaller
δ(x) is, the more private the election is. The
smaller adversaries’ utility is, the more private
the election is.

As another example, for neural networks (NNs), even adding slight noise can lead to dramatic decreases in the
prediction accuracy, especially when predicting underrepresented classes (Bagdasaryan et al., 2019). Sampling noises
also widely exist in machine learning, for example, in the standard practice of cross-validation as well as in training
(e.g., batch-sampling when training NNs).

Note that in all the above examples, the sampling noise is an “intrinsic” part of the mechanism. In comparison, the
only purpose of adding additive noises is to improve privacy (with the cost of reducing accuracy) in most scenarios. As
shown in these examples, the worst-case privacy according to DP might be too loose to serve as a practical measure for
evaluating and comparing mechanisms with sampling noise (while without additive noise) in real-world applications.
This motivates us to ask the following question.

How can we measure privacy for mechanisms with sampling noise under realistic models?

The choice of model is critical and highly challenging. A model based on worst-case analysis (such as in DP) provides
upper bounds on privacy loss, but as we have seen in Figure 1, in some situations, such upper bounds are too loose
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to be informative in practice. This is similar to the runtime analysis of an algorithm—an algorithm with exponential
worst-case runtime, such as the simplex algorithm, can be faster than some algorithms with polynomial runtime in
practice. Average-case analysis is a natural choice of the model, but since “all models are wrong” (Box, 1979), any
privacy measure designed for a certain distribution over data may not work well for other distributions. Moreover,
ideally, the new measure should satisfy the desirable properties that played a central role behind the success of DP,
including composition and robustness to post-processing. These properties make it easier for the mechanism designers
to figure out the privacy level of mechanisms. Unfortunately, we are not aware of a measure based on average-case
analysis that has these properties.

We believe that the smoothed analysis (Spielman, 2005) provides a promising framework for addressing this question.
Smoothed analysis is an extension and combination of worst-case and average-case analyses that inherit the advantages
of both. It measures the expected performance of algorithms under slight random perturbations of worst-case inputs.
Compared with the average-case analysis, the assumptions of the smoothed analysis are much more natural. Compared
with the worst-case analysis, the smoothed analysis can better describe the real-world performance of algorithms.
For example, it successfully explained why the simplex algorithm is faster than some polynomial algorithms in
practice (Spielman & Teng, 2004).

Our Contributions. The main merit of this paper is a new notion of privacy for mechanisms with sampling noise
(and without additive noises), called smoothed differential privacy (smoothed DP for short), which applies smoothed
analysis to the privacy parameter δ(x) (Definition 2) as a function of the database x. In our model, the “ground truth”
distribution of agents is from a set of distributions Π over data points, on top of which the nature adds random noises.
Formally, the “smoothed” δ(x) is defined as

δSDP ≜ maxπ⃗

(
Ex∼π⃗ [δ(x)]

)
,

where x ∼ π⃗ = (π1, · · · , πn) ∈ Πn means that for every 1 ≤ i ≤ n, the i-th entry in the database independently
follows the distribution πi. We note that Π is a parameter for smoothed analysis, not for the mechanisms M. Table 1
compares the ϵ and δ parameters of smoothed DP and DP. The sampling histogram algorithm refers to Algorithm 2
(in Section 5.1), which samples T = ⌈η · n⌉ data without replacement and outputs the histogram of the sampled data.
Appendix A.3 shows the detailed settings of Table 1. We present a high-level comparison between smoothed DP and
other DP(-like) notions in Table 2. A more detailed comparison between DP, smoothed DP, and distributional DP can
be found in Table 3 of Section 3.2.

Notions measures without additive noise with additive noise (of level 1/ϵ)

Smoothed DP
(
ϵ, δSDP

) (
ϵ, exp

(
− Θ(n)

))
–

(this paper) main message private (under smoothed analysis) private
DP (Definition 1, (ϵ, δ)

(
0, η
) (

η · ϵ, 0
)

Dwork et al., 2006a) main message non-private (under worst-case analysis) private (if ϵ is small)

Table 1: Compare DP and smoothed DP for our motivation example (US presidential election) with a constant sampling
rate η (e.g., η = 1 − 0.2% in the example). The ϵ part in δSDP is omitted for simplicity (see Theorem 3 for detailed
discussions). The (ϵ, δSDP) for smoothed DP with additive noise is not shown in this table because it is already private
without additive noise.

Notions database x output S adjacent database x′

Smoothed DP
(Definition 3, this paper)

smoothed
analysis

worst-case analysis

worst-case analysis

DP (Definition 1, Dwork et al., 2006a)

worst-case
analysis

Gaussian DP or f -DP
(Dong et al., 2019)

Rényi DP Mironov (2017) average-case analysis
(weighted by Rényi divergence

or sub-Gaussian divergence)
Concentrated DP

(Bun & Steinke, 2016; Dwork & Rothblum, 2016)
Bayesian DP (Triastcyn & Faltings, 2020)

worst-case analysis
less informative

adversaryRandom DP (Hall et al., 2011) less informative
adversaryDistributional DP (Bassily et al., 2013) worst-case analysis

Table 2: The comparison between smoothed DP and other privacy notions.
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Theoretically, we prove that smoothed DP satisfies many desirable properties, including two properties also satisfied by
the standard DP: robustness to post-processing (Proposition 4) and composition (Proposition 5). Besides, we prove two
additional properties for smoothed DP, called pre-processing (Proposition 6) and distribution reduction (Proposition 7).
Based on pre-processing and distribution reduction, we propose an efficient algorithm (Algorithm 1) to calculate the
privacy parameters for smoothed DP. We further show that, under smoothed DP, many discrete mechanisms with small
sampling noise (and without any other noise) are significantly more private than those guaranteed by DP. For example,
the sampling-histogram mechanism in Example 1 has an exponentially small δSDP (Theorem 3), which implies that the
mechanism protects voters’ privacy in elections—and this is in accordance with the observation on US election data in
Figure 1. We also note that the sampling-histogram mechanism is widely used in machine learning (e.g., the SGD in
quantized NNs). In comparison, smoothed DP implies a similar privacy level as the standard DP in many continuous
mechanisms. We proved that smoothed DP and the standard DP have the same privacy level for the widely-used
sampling-average mechanism when the inputs are continuous (Theorem 4).

Experimentally, we numerically evaluate the privacy level of the sampling-histogram mechanism using US presidential
election data. Simulation results show an exponentially small δSDP, which is in accordance with our Theorem 3. Our
second experiment shows that a one-step stochastic gradient descent (SGD) in quantized NNs (Banner et al., 2018;
Hubara et al., 2017) also has an exponentially small δSDP. This result implies that SGD with gradient quantization can
already be private in practice without adding any extra (additive) noise. In comparison, the standard DP notion always
requires extra (additive) noise to make the network private at the cost of a significant reduction in accuracy.

Related Work and Discussions. There is a large body of literature on the theory and practice of DP and its extensions.
We believe that the smoothed DP introduced in this paper is novel. To the best of our knowledge, none of the literature
has proposed any DP-like notions for the mechanism without additive noises. A notable exception is distributional
DP (Bassily et al., 2013), which considers a less informative adversary to provide a privacy measure for deterministic
mechanisms. However, since distribution DP does not require any randomness in the mechanism, its privacy guarantee is
much weaker than other DP-like notions. Rényi DP (Mironov, 2017), Gaussian DP (Dong et al., 2019) and Concentrated
DP (Bun & Steinke, 2016; Dwork & Rothblum, 2016) target to provide tighter privacy bounds for the adaptive
mechanisms. Those three notions generalized the (ϵ, δ) measure of distance between distributions to other divergence
measures. Bayesian DP (Triastcyn & Faltings, 2020) tries to provide an “affordable” measure of privacy that requires
less additive noise than DP. With similar objectives, Bun and Steinke (Bun & Steinke, 2019) add noises according to the
average sensitivity instead of the worst-case sensitivity required by DP. However, additive noises are required in (Bun
& Steinke, 2019) and (Triastcyn & Faltings, 2020). Random DP (Hall et al., 2011) combines the high-level idea of
distributional DP and Bayesian DP, which considers randomness in both the database x and its neighboring database x′.

Appendix A.4 discusses the related works in the field of smoothed analysis, quantized neural networks, etc.

2 Differential Privacy and Its Interpretations

In this paper, we use n to denote the number of records (entries) in a database x ∈ X n, where X denotes all possible
values for a single entry. n also represents the number of agents when one agent (one individual) can only contribute
one record. We say that two databases x, x′ are neighboring (denoted as x ≃ x′) if one database can be gotten by
replacing no more than one record from the other database. In the motivating example (Example 1), X = {0, 1}, where
0 represents a vote to one candidate while 1 represents the vote to the other candidate. Database x represents all voters’
votes (a n-dimensional binary vector). A record represents a single dimension (e.g., the i-th dimension) of x. Two
databases are considered to be neighboring if no more than one voter’s vote is different.

Definition 1 (Differential privacy). Let M denote a randomized algorithm and S be a subset of the image space of
M. Throughout this paper, image space" represents the space for the image of the (randomized) mechanism. M is said
to be (ϵ, δ)-differentially private for some ϵ > 0, δ > 0, if for any S and any pair of neighboring database x, x′,

Pr[M(x) ∈ S] ≤ eϵ Pr[M(x′) ∈ S] + δ, (1)

Notice that the randomness comes from the mechanism M.

DP guarantees immunity to many kinds of attacks (e.g., linkage attacks (Nguyen et al., Sep. 2013) and reconstruction
attacks (Dwork et al., 2014)). Take reconstruction attacks for example, the adversary has access to a subset of the
database (such information may come from public databases, social media, etc.). In an extreme situation, an adversary
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knows all but one agent’s records. To protect the data of every single agent, DP uses δ = o(1/n) as a common
requirement of private mechanisms (Dwork et al., 2014, p. 18). To meet this requirement, a private mechanism (under
DP notion) usually1 need to include additive noises (e.g., Gaussian noise, Laplacian noise, and the noise, which usually
is discrete, in exponential mechanisms). Next, we recall two common interpretations/justifications on how DP helps
protect privacy even in the extreme situation of reconstruction attacks. After that, we formally introduce the adversaries’
utility in Figure 1 and use it to justify DP.

Justification 1: DP prevents membership inference (Wasserman & Zhou, Mar. 2010; Kairouz et al., 2015).
Assume that the adversary knows all entries except the i-th. Let x−i denote the database x with its i-th entry removed.
With the information provided by the output M(x), the adversary can infer the missing entry by testing the following
two hypotheses:

H0: The missing entry is X (or equivalently, the database is x = x−i ∪ {X}).
H1: The missing entry is X ′ (or equivalently, the database is x′ = x−i ∪ {X ′}).

Suppose that after observing the output of M, the adversary uses a rejection region rule for hypothesis testing2, where
H0 is rejected if and only if the output is in the rejection region S. For any fixed S, the decision rule can be wrong in
two possible ways, false positive (Type I error) and false negative (Type II error). Mathematically, the Type I error rate
EI(x) = Pr[M(x) ∈ S] while the Type II error rate EII(x′) = Pr[M(x′) /∈ S] = 1 − Pr[M(x′) ∈ S]. According to
the definition of DP, for any pair of neighboring databases x, x′, the adversary always has

eϵ · EI(x) + EII(x′) ≥ 1 − δ and eϵ · EII(x′) + EI(x) ≥ 1 − δ,

which implies that EI(x) and EII(x′) cannot be small at the same time. When ϵ and δ are both small, both EI and EII
becomes close to 0.5 (the error rates of random guess), which means that the adversary cannot get much information
from the output of M.

Justification 2: With high probability, M is insensitive to the change of one record (Guingona et al., 2023).
In more detail, (ϵ, δ)-DP guarantees the distribution of M’s output will not change significantly when replacing one
record. According to Property (A) of Theorem 3.2 in Guingona et al. (2023), (ϵ, δ)-DP implies3

Pra∼M(x)

[
1

2eϵ
≤ Pr[M(x) = a]

Pr[M(x′) = a] ≤ 2eϵ

]
≥ 1 − 2δ for any pair of neighboring databases x and x′. (2)

The above inequality shows that the change of one record cannot make an output significantly more likely or significantly
less likely (with at least 1 − 2δ probability). Since x and x′ only differ in one record, the above formula also guarantees
that the adversary cannot learn too much information about any single record of the database through observing the
output of M (Dwork et al., 2014, p. 25).

Justification 3: DP guarantees limited Bayesian adversary’s utilities.
We consider the same adversary as in Justification 1. Since the adversary has no information about the missing entry,
he/she may assume a uniform prior distribution about the missing entry. To simplify notations, let Xi ∈ X denote
the missing entry and let x−i denote the database x with Xi removed. For any Xi ∈ X , the adversary’s posterior
distribution (after observing output a from mechanism M) is

Pr [Xi|a, x−i] = Pr [a|Xi, x−i] · Pr[Xi|x−i]
Pr[a|x−i]

= Pr[M(x−i ∪ {Xi}) = a] · Pr[Xi]∑
X′

(
Pr[M(x−i ∪ {X ′}) = a] · Pr[X ′]

)
= Pr[M(x−i ∪ {Xi}) = a]∑

X′ Pr[M(x−i ∪ {X ′}) = a] .

A Bayesian predictor predicts the missing entry Xi through maximizing the posterior probability. For the adversary
with uniform prior, when the output is a, the 0/1 loss of the Bayesian predictor is

ℓ0-1(a, x−i) = 02 · max
i

(Pr [Xi|a, x−i]) + 12 ·
(

1 − max
i

(Pr [Xi|a, x−i])
)

= 1 − max
i

(Pr [Xi|a, x−i]) .

1Some differentially private mechanisms such as “stability-based query release” appear to not require additive noise with high probability if the
local sensitivity is 0 for the input database and for all other databases that differ by at most ln(1/δ)/ϵ data points (Thakurta & Smith, 2013). Note
that in our case (such as the motivating example), the local sensitivity is not 0. Also, the “stability-based” methods still need randomization (though
not adding noise).

2The adversary can use any decision rule, and the rejection region rule is adopted just for example.
3Theorem 3.2 in Guingona et al. (2023) shows (ϵ, δ)-DP implies

(
(ln 2)ϵ, 2δ

)
-probabilistic DP, which is equivalent to (2). The formal definition

of probabilistic DP can be found in Definition 6 in Machanavajjhala et al. (2008).
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It’s not hard to check that a always-correct prediction has zero loss and any always-incorrect prediction has loss one.
Then, we define the adjusted utility of adversary (in Bayesian prediction), which is the expectation of a normalized
version of ℓ0-1. Mathematically, for a database x, we define the adjusted utility with threshold t as follows,

u(t, x−i) = 1
1 − t

· max
Xi

(
Ea∼M(x−i∪Xi)

[
max

{
0, 1 − t − ℓ0-1(a)

}])
. (3)

In short, u(t, x−i) is the worst-case expectation of 1 − ℓ0-1 while the contribution from predictors with loss larger
than 1 − t is omitted. Especially, when the threshold t ≥ 1/|X |, an always correct predictor (ℓ0-1 = 0) has utility
1 and a random guess predictor (ℓ0-1 = 1 − 1/|X |) has utility 0. For example, we let X = {0, 1} and consider the
coin-flipping mechanism MCF with support X , which output Xi with probability p and output 1 − Xi with probability
1 − p. When p = 1, the entry Xi is non-private because the adversary can directly learn it from the output of MCF.
Correspondingly, the adjusted utility of adversary is 1 for any threshold t ∈ (0, 1). When p = 0.5, the mechanism gives
an output uniformly at random from X . In this case, the output of M cannot provide any information to the adversary.
Correspondingly, the adjusted utility of adversary is 0 for any threshold t ∈ (0.5, 1). The following lemma, which is a
direct corollary of Theorem 1 and Corollary 3, shows that the adjusted utility is upper bounded by the δ parameter of
DP. Note that Lemma 1 also matches the main message of Figure 1.

Lemma 1. Let mechanism M be (ϵ, δ)-differentially private. Then, for the above-defined adjusted utility,

u
( eϵ

eϵ + 1 , x−i

)
≤ 2δ.

In other words, when both ϵ and δ are small, the adversary cannot accurately predict the missing entry in database x.

3 Smoothed Differential Privacy

Recall that DP is based on the worst-case analysis over all possible databases. However, as shown in Example 1
and Figure 1, the worst-case nature of DP sometimes leads to an overly pessimistic measure of privacy loss, which
may bring unnecessary additive noise in the hope of improved privacy but at the cost of accuracy. For example, we
assume a database with n binary records. DP considers the worst-case of x. Here, we focus on one of the worst-cases,
x = (0, · · · , 0, 1), whose worst-case neighboring database x′ = (0, · · · , 0, 0). From the adversaries’ point of view,
he/she knows all records in the database except the last one (the first n − 1 records). Under the above worst-case,
the sampling-histogram mechanism is non-private because the adversary directly knows the missing entry if the last
entry, “1”, got sampled. However, the above worst-case might be very rare in some real-world applications (e.g.,
Example 1) and the mechanism is actually private when the database is not extremely close to the worst case (Figure 1).
Motivated by this, we propose smoothed DP, which has similar privacy guarantees as DP, but is able to measure the
privacy level of sampling-based mechanisms (instead of classifying all of them as non-private). This section formally
introduces smoothed DP, which applies the smoothed analysis to the database-dependent privacy profile δ(x) and proves
its desirable properties. Due to the space constraint, all proofs of this section can be found in Appendix C.

3.1 The database-dependent privacy profile

We first introduce the database-dependent privacy profile δϵ, M(x), which measures the privacy leakage of mechanism
M when its input is x. Here, we fix ϵ and let δ be database-dependent, which is opposite to data-dependent privacy
loss (Papernot et al., 2018; Wang, 2019) where δ is fixed and ϵ is data-dependent. Here, we call δ privacy profile since
it is a function of ϵ (Balle et al., 2020).

Definition 2 (Database-dependent privacy profile δϵ, M(x) (Dwork et al., 2006b)). Let M : X n → A denote a
randomized mechanism. Given any database x ∈ X n and any ϵ > 0, define the database-dependent privacy profile as:

δϵ, M(x) ≜ max
(

0, max
x′:x′≃x

(
dϵ,M(x, x′)

)
, max

x′:x′≃x

(
dϵ,M(x′, x)

))
,

where dϵ,M(x, x′) = maxS
(

Pr [M(x) ∈ S] − eϵ · Pr [M(x′) ∈ S]
)

and “≃” means neighboring.

In words, δϵ, M(x) is the minimum δ values, such that the (ϵ, δ)-DP requirement on M (Inequality (1)) holds for any
neighboring pairs (x, x′) and (x′, x). The definition of δϵ,M(x) guarantees the adversaries to have the same prior
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knowledge as DP. δϵ,M(x) considers the worst-case neighboring dataset x′ (technically, maxx≃x′ ), which indicates
that the adversaries know the whole database except one entry.

The next lemma reveals the connection between the adversary’s utility u (defined in Justification 3 of Section 2) and
dϵ,M(x, x′) + dϵ,M(x′, x).

Lemma 2. Given mechanism M : X n → A and any pair of neighboring databases x ≃ x′,

u
( eϵ

eϵ + 1 , x ∩ x′
)

< dϵ,M(x, x′) + dϵ,M(x′, x).

Lemma 2 shows that the adjusted utility is upper bounded by dϵ,M. Especially, when |X | = 2, we provide both upper
and lower bounds to the adjusted utility in Lemma 10 of Appendix C.1, which means that dϵ,M(x, x′) is a good measure
for the privacy level of M when |X | = 2. The following corollary shows that δϵ,M(x) upper bounds the adjusted utility
of adversary. In other words, a small δϵ,M(x) guarantees that adversary cannot accurately predict the missing record in
the database.

Corollary 3. Given mechanism M : X n → A and any pair of neighboring databases x ≃ x′,

u
( eϵ

eϵ + 1 , x ∩ x′
)

< 2 · δϵ,M(x).

DP as the worst-case analysis of δϵ, M(x). In the next theorem, we show that the privacy measure based on the
worst-case analysis of δϵ,M is equivalent to the standard DP.

Theorem 1 (DP in δϵ, M(x)). Mechanism M : X n → A is (ϵ, δ)-differentially private if and only if,

max
x∈X n

(
δϵ, M(x)

)
≤ δ.

3.2 Formal definition of smoothed DP

Armed with the database-dependent privacy profile δϵ,M(x), we now formally define smoothed DP, where the worst-
case “ground truth” distribution of every agent is allowed to be any distribution from a set of distributions Π, on top
of which Nature adds random noises to generate the database. We would like to note again that Π is a parameter for
smoothed analysis instead of the mechanisms M. The smoothed analysis only controls how the database x is generated.
The adversaries of smoothed DP will have the same prior knowledge as the adversaries of DP.

Definition 3 (Smoothed DP). Let Π be a set of distributions over X . We say M : X n → A is (ϵ, δ, Π)-smoothed
differentially private if,

maxπ⃗∈Πn

(
Ex∼π⃗ [δϵ, M(x)]

)
≤ δ,

where x ∼ π⃗ = (π1, · · · , πn) means that the i-th entry in the database follows πi for every i ∈ {1, · · · , n}.

The threat models of DP, smoothed DP, and distributional DP are shown in Table 3. Note that the adversary “is
able to choose” means that he/she can select the worst-case, and does not necessarily mean the adversary knows the
information. In short, the adversary in smoothed DP is as knowledgeable as that in DP, but with less ability to choose the
database x. Compared with distributional DP, the adversary in smoothed DP has more information (prior knowledge)
about the database. Appendix B rigidly shows that smoothed DP is a stronger notion than distributional DP.

Adversary’s Prior knowledge
Ability to choose

database x
Ability to choose

neighboring database x′
Ability to choose

output S

DP Whole database except
one entry (x ∩ x′)

Able to choose the
worst-case database x Able to choose

worst-case diff(x, x′)
Able to choose

worst-case output SSmoothed DP Able to choose
data distributions from ΠDistributional DP The distribution of x ∩ x′

Table 3: The threat model of DP, smoothed DP, and distribution DP, where diff(x, x′) represents the difference between
x and x′. Under the setting and notation of Justification 3 of DP, diff(x, x′) is Xi while x ∩ x′ is x−i.

Like DP, smoothed DP bounds privacy leakage (in an arguably more realistic setting), via the following three justifica-
tions that are similar to the two common justifications of DP in Section 2.
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Justification 1: Smoothed DP prevents membership inference. Mathematically, a (ϵ, δ, Π)-smoothed DP mechanism
M guarantees

eϵ · max
π⃗∈Πn

(
E

x∼π⃗
[EI(x)]

)
+ max

π⃗∈Πn

(
E

x∼π⃗
[EII(x′) | x′ ≃ x]

)
≥ 1 − δ

eϵ · max
π⃗∈Πn

(
E

x∼π⃗
[EII(x′) | x′ ≃ x]

)
+ max

π⃗∈Πn

(
E

x∼π⃗
[EI(x)]

)
≥ 1 − δ

The proof follows after bounding Type I and Type II errors when the input is x by δϵ,M. That is, for a fixed database x,
it is not hard to verify that

eϵ · EI(x) + EII(x′) ≥ 1 − max
x′:x′≃x

(
dϵ,M(x, x′)

)
and

eϵ · EII(x′) + EI(x) ≥ 1 − max
x′:x′≃x

(
dϵ,M(x′, x)

)
Then, by the definition δϵ,M(x), we have,

eϵ · EI(x) + EII(x′) ≥ 1 − δϵ,M(x) and eϵ · EII(x′) + EI(x) ≥ 1 − δϵ,M(x),

which means that EI and EII cannot be small at the same time when the database is x. Then, justification 1 can be gotten
by applying smoothed analysis to both sides. It follows that the smoothed DP, which is a smoothed analysis of δϵ,M,
can bound the smoothed Type I and Type II errors.

Justification 2: Smoothed DP mechanisms are insensitive to the change of one record with high probability.
Mathematically, a (ϵ, δ, Π)-smoothed DP mechanism M guarantees

max
π⃗∈Πn

(
E

x∼π⃗

[
Pr

a∼M(x)

[
1

2eϵ
≤ Pr[M(x) = a]

Pr[M(x′) = a] ≤ 2eϵ

]])
≥ 1 − 2δ

The proof is, again, done through analyzing δϵ,M(x). More precisely, given any mechanism M, any ϵ ∈ R+ and any
pair of neighboring databases x, x′, we have

Pra∼M(x)

[
1

2eϵ
≤ Pr[M(x) = a]

Pr[M(x′) = a] ≤ 2eϵ

]
≥ 1 − 2δϵ,M(x).

Then, justification 2 follows by applying smoothed analysis to both sides of the above inequality.

As smoothed DP replaces the worst-case analysis with smoothed analysis, we also view δ = o(1/n) as a requirement
for private mechanisms for smoothed DP. In addition to the two justifications above,

Justification 3: Smoothed DP guarantees limited adversaries’ utility in (Bayesian) predictions.
Following similar reasoning as Justification 1, we know that the utility under realistic settings (or the smoothed utility)
of the adversary cannot be larger than 2δ. Mathematically, an (ϵ, δ, Π)-smoothed DP mechanism M guarantees

max
π⃗∈Πn

(
Ex∼π⃗

[
u
( eϵ

eϵ + 1 , x ∩ x′
)])

< 2δ.

At a high level, a small δ parameter of smoothed DP means the adversary cannot accurately predict the missing entry of
database under realistic settings.

4 Properties of Smoothed DP

First, we present four properties of smoothed DP and discuss how they can help mechanism designers figure out the
smoothed DP parameters of mechanisms. We first present the robustness to post-processing property, which says no
function can make a mechanism less private without adding extra knowledge about the database. The post-processing
property of smoothed DP can be used to upper bound the privacy level of many mechanisms. With it, we know private
data preprocessing can guarantee the privacy of the whole mechanism. Then, the rest part of the mechanism does not
need to consider privacy issues. The proof of all four properties of the smoothed DP can be found in Appendix D.
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Proposition 4 (Post-processing). Let M : X n → A be a (ϵ, δ, Π)-smoothed DP mechanism. For any f : A → A′

(which can also be randomized), f ◦ M : X n → A′ is also (ϵ, δ, Π)-smoothed DP.

Then, we introduce the composition theorem for the smoothed DP, which bounds the smoothed DP property of databases
when two or more mechanisms publish their outputs about the same database.
Proposition 5 (Composition). Let Mi : X n → Ai be an (ϵi, δi, Π)-smoothed DP mechanism for any i ∈ [k]. Define

M[k] : X n →
∏k

i=1 Ai as M[k](x) =
(
M1(x), · · · , Mk(x)

)
. Then, M[k] is

(∑k
i=1 ϵi,

∑k
i=1 δi, Π

)
-smoothed DP.

In practice, Π might be hard to accurately characterize. The next proposition introduces the pre-processing property of
smoothed DP, which says the distribution of data (Π) can be replaced by the distribution of features (f(Π), defined as
follows) if the features are extracted using any deterministic function(s). Note that this only replaces the smoothed
analysis-related Π and the mechanism remains unchanged. For example, in deep learning, the distribution of data can
be replaced by the distribution of gradients4, which is usually much easier to estimate in real-world training processes.

More technically, the pre-processing property guarantees that any deterministic way of data preprocessing is not harmful
to privacy. To simplify notation, we let f(π) be the distribution of f(X) where X ∼ π. For any set of distributions
Π = {π1, · · · , πm}, we let f(Π) = {f(π1), · · · , f(πm)}.
Proposition 6 (Pre-processing for deterministic functions). Let f : X n → X̃ n be a deterministic function and
M : X̃ n → A be a randomized mechanism. Then, M ◦ f : X n → A is (ϵ, δ, Π)-smoothed DP if M is

(
ϵ, δ, f(Π)

)
-

smoothed DP.

The following proposition shows that any two sets of distributions with the same convex hull have the same privacy
level under smoothed DP. With this, the mechanism designers can ignore all inner points and only consider the convex
hull’s vertices when calculating the mechanisms’ privacy level. Let CH(Π) denote the convex hull of Π.
Proposition 7 (Distribution reduction). Given any ϵ, δ ∈ R+ and any Π1 and Π2 such that CH(Π1) = CH(Π2), a
mechanism M is (ϵ, δ, Π1)-smoothed DP if and only if M is (ϵ, δ, Π2)-smoothed DP.

We provide an example of how Proposition 7 helps calculate the privacy level. Assume the database has two possible
types of data (i.e., m ≜ |X | = 2). We use π = (1, 1 − p) to represent the distribution over |X | such that the first type
occurs with probability p and the second type occurs with probability 1−p. Assuming the mechanism designer considers
an infinite set of distribution Π =

{
(p, 1 − p) : p ∈ (0.2, 0.8)

}
, its easy to check that Π’s convex hull CH(Π) ={

(p, 1−p) : p ∈ [0.2, 0.8]
}

and CH(Π)’s set of vertices Π∗ =
{

(p, 1−p) : p ∈ {0.2, 0.8}
}

=
{

(0.2, 0.8), (0.8, 0.2)
}

.
Since Π∗ and Π have the same convex hull, according to Proposition 7, the mechanism designer only needs to consider
Π∗ (two distributions), instead of the infinite set Π.

Proposition 7 also provides an efficient way to calculate the (exact) δ parameter of smoothed DP for anonymous
mechanisms. Here, “anonymous” means the mechanism treat each data in the database “equally”. Formally, we say
one mechanism is anonymous if its output distribution will not change under arbitrarily permuted order of data in the
database. In other words, an anonymous mechanism’s output distribution only depends on the histogram of data. One
can see that most commonly-used algorithms in machine learning (e.g., SGD and AdaGrad) and voting (e.g., plurality,
Borda, and Copeland) are anonymous. Also note that the commonly used noisy mechanisms (e.g., Laplacian, Gaussian,
and Exponential) will keep the anonymity property of mechanisms.

Algorithm 1 efficiently calculate the pri-
vacy profile δ of smoothed DP for anony-
mous mechanisms. Again, we let Π∗

denote the set of CH(Π)’s vertices and
let ℓ∗ ≜ |Π∗| denote the cardinality of
Π∗. Q denote the set of all histograms on
Π∗ of n records. Here, we slightly abuse
notation and use “for π⃗ ∈ Q” to repre-
sent that each histogram is visited exactly
once in the corresponding for loop.

Algorithm 1: Calculate the (exact) privacy profile δ for smoothed DP

1 Inputs: An anonymous mechanism M, parameter ϵ ∈ R+, size of
database n, and a set of distribution Π

2 Initialization: Calculate Π∗ according to Π and Q according to Π∗

3 (Same as DP) Calculate δϵ, M for all histograms
4 for π⃗ ∈ Q do
5 Calculate δj ≜ Ex∼π⃗ [δϵ, M(x)]
6 end
7 Output: δSDP(ϵ) = maxj δj

4Gradient is what the mechanism designers target to privatize for deep neural networks. This is because one of the most serious privacy leakage in
deep learning is the gradient residue on cloud GPUs (its VRAM can be visible to other cloud users, see Abadi et al., 2016). We call gradients as
features here because it is calculated according to the data in the database.
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We say Step 3 in Algorithm 1 is the “same as” DP because calculating the privacy profile δ of DP for general mechanisms
requires calculating δϵ,M. We note calculating the exact privacy profile δ of DP may not require calculating δϵ,M for
some mechanisms (e.g., additive noise mechanism). We will present a similar result for smoothed DP in Theorem 3 of
Section 5.1. Theorem 2 presents the runtime of Algorithm 1 (calculate the privacy profile δ of smoothed DP for any
anonymous mechanisms), which only requires a polynomial extra time than DP in most cases.
Theorem 2 (Runtime of Algorithm 1). Using the notations above, the complexity of calculating the privacy profile δ
of smoothed DP for any anonymous mechanisms is O

(
n2m+ℓ∗−3 + ℓ log ℓ∗)+ CplDP, where ℓ denotes the number of

vertices in Π and CplDP represents the runtime of Step 3 in Algorithm 1.

As to be shown in Section 5, the application scenarios of Smoothed DP are those when m is not large. ℓ could be treated
as a constant if Π’s geometric shape is not extremely complicated. Thus, we believe the runtime of calculating the exact
privacy profile δ only requires a polynomial extra time than DP in most cases.

5 Smoothed DP as a Measure of Privacy

This section uses smoothed DP to measure the privacy of some commonly-used mechanisms, where the sampling noise
is intrinsic and unavoidable (as opposed to additive noises such as Gaussian or Laplacian noises). Our analysis focuses
on two widely-used algorithms where the intrinsic randomness comes from sampling without replacement. In addition,
we compare the privacy levels of smoothed DP with DP. All missing proofs of this section can be found in Appendix E.

5.1 Discrete mechanisms are more private than what DP predicts

In this subsection, we study the smoothed DP property of (discrete) sampling-histogram mechanism (SHM), which
is widely used as a pre-possessing step in many real-world applications like the training of NNs. As smoothed DP
satisfies post-processing (Proposition 4) and pre-processing (Proposition 5), the smoothed DP property of SHM can
upper bound the privacy level of many mechanisms (that uses SHM) in practice. Let X denote a finite set and m ≜ |X |
denotes the cardinality of X . The histogram of a database x ∈ X n (denoted as hist(x)) is an m-dimensional vector.
The j-th component of hist(x) is the number of j-th type of data in x. It’s easy to check that hist(x) ∈ {0, · · · , n}m

and ||hist(x)||1 = n.

SHM first sample T = ⌈η · n⌉ data from the
database and then output the histogram of the
T samples. Formally, we define the sampling-
histogram mechanism in Algorithm 2. Note
that we require all data in the database to be
chosen from a finite set X .

Algorithm 2: Sampling-histogram mechanism MH

1 Inputs: A finite set X , sampling rate η ∈ (0, 1), and a database
x = {X1, · · · , Xn} where Xi ∈ X for all i ∈ {1, · · · , n}

2 Randomly sample T = ⌈η · n⌉ data from x without
replacement. The sampled data are denoted by Xj1 , · · · , XjT

.
3 Output: The histogram hist(Xj1 , · · · , XjT

)

Smoothed DP of mechanisms based on SHM. The smoothed DP of SHM can be used to upper bound the smoothed
DP of the following three groups of mechanisms/algorithms.

The first group consists of deterministic voting rules, as presented in the motivating example in Introduction. The
sampling procedure in SHM mimics the votes that got lost.

The second group consists of machine learning algorithms based on randomly-sampled training data, such as cross-
validation. The (random) selection of the training data corresponds to SHM. Notice that many training algorithms are
essentially based on the histogram of the training data (instead of the ordering of data points). Therefore, overall the
training procedure can be viewed as SHM plus a post-processing function (the learning algorithm). Consequently, the
smoothed DP of SHM can be used to upper bound the smoothed DP of such procedures.

The third group consists of SGD of NNs with gradient quantization (Zhu et al., 2020; Banner et al., 2018), where the
gradients are rounded to 8-bit in order to accelerate the training and/or the inference of NNs. The smoothed DP of SHM
can be used to bound the privacy leakage in each SGD step of the NN, where a batch (a subset of the training set) is
firstly sampled and the gradient is the average of the gradients of the sampled data.

DP vs. Smoothed DP for SHM. We are ready to present the main theorem of this paper, which indicates that SHM
is private under some mild assumptions. We say distribution π is f -strictly positive if there exists a positive function
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f(n, m) such that π(X) ≥ f(n, m) for any X in the support of π. A set of distributions Π is f -strictly positive if
there exists a positive function f(n, m) such that every π ∈ Π is f -strictly positive. The f -strictly positive assumption
is often considered mild in elections (Xia, 2020) and discrete machine learning (Laird & Saul, Apr. 1994) when
f(m, n) = O(1). All following discussions in this section assume m to be a constant. Note that constants are omitted
when analyzing asymptotic manner (e.g., as a multiple within O(·), Θ(·), or ω(·)).

Theorem 3 (DP vs. Smoothed DP for Sampling Histogram Mechanism MH ). For any MH , given an f -strictly
positive set of distributions Π, a finite set X , and n, T ∈ Z+, we have:

(i) (Smoothed DP) Given any ϵ ≥ ln
(

1
1−η

)
+ c where c is a constant, MH is

(
ϵ, m · exp

[
−Θ
(
f(n, m) · n

)]
, Π
)

-
smoothed DP.

(ii) (Tightness of smoothed DP bound) For any ϵ > 0, there does not exist δ = exp
(

− ω
(
[ln f(m, n)] · n

))
such

that MH is (ϵ, δ, Π)-smoothed DP.

(iii) (DP) For any ϵ > 0, there does not exist δ < η such that MH is (ϵ, δ)-DP.

This theorem says the privacy leakage is exponentially small under real-world application scenarios. In comparison,
DP cares too much about the extremely rare cases and predicts a constant privacy leakage. If f is a constant function
and m = Θ(1), Property (ii) indicates that the bound in (i) is tight. Also, note that our theorem allows T to be in
the same order as n. For example, when setting T = 95% × n and Π be f -strictly positive for a constant f , SHM
is (3, exp(−Θ(n)), Π)-smoothed DP, which is an acceptable privacy threshold in many real-world applications (Liu
et al., 2019). For example, iOS 10.12.3 requires ϵ ≤ 6 and iOS 10.1.1 requires ϵ ≤ 14 Tang et al. (2017). Appendix F
proves similar bounds for the SHM with replacement. The following remarks shows a non-asymptotic version of
Theorem 3(i), which relates ϵ and δ and provides a non-asymptotic privacy bound for SHM. To simplify notations, we
let g(η, ϵ) ≜

(
η−1(1 − e−ϵ) − 1

)2
.

Remark 8 (Privacy bound for MH ). Given an f -strictly positive set of distributions Π, a finite set X , and n, T ∈ Z+,
MH is

(
ϵ, exp

(
− 1

6 · g(η, ϵ) · f(m, n) · n
)

+ m · exp
(
− 1

8 · f(m, n) · n
)

, Π
)

-smoothed DP for any ϵ > ln
(

1
1−η

)
.

5.2 Continuous mechanisms are similar to what DP predicts

In this section, we show that the sampling
mechanisms with continuous support are still
not privacy-preserving under smoothed DP.
The “gap” between discrete and continuous
SHM comes from the fact that SHM becomes
less private when |X | increases.

Algorithm 3: Continuous sampling-average mechanism MA

1 Inputs: The number of samples T and a database
x = {X1, · · · , Xn} where Xi ∈ [0, 1] for all i ∈ {1, · · · , n}

2 Randomly sample T = ⌈η · n⌉ data from x without
replacement. The sampled data are denoted as Xj1 , · · · , XjT

.
3 Output: The average x̄ = 1

T

∑
j∈[T ] Xij

Our result indicates that the neural networks without quantized parameters are not private without additive noise (e.g.,
Gaussian or Laplacian noise). We use the sampling-average (Algorithm 3) algorithm as the standard algorithm for
continuous mechanisms. Because sampling-average can be treated as SHM plus an average step, sampling-average is
non-private also means SHM with continuous support is also non-private according to the post-processing property of
smoothed DP.

Theorem 4 (Smoothed DP for continuous sampling-average). For any continuous sampling-average mechanism
MA, given any set of strictly positive5 distribution Π over [0, 1], any T, n ∈ Z+ and any ϵ ≥ 0, there does not exist
δ < η such that MA is (ϵ, δ, Π)-smoothed DP.

Theorem 4 does not contradict Property (i) of Theorem 3 because the continuous functions has m → ∞, which makes
the upper bound of δ parameter for smoothed DP m · exp

[
−Θ
(
f(n, m) · n

)]
→ ∞.

5Distribution π is strictly positive by c if pπ(x) ≥ c for any x in the support of π, where pπ is the PDF of π.
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6 Experiments

Smoothed DP in elections. We use a similar setting as the motivating example, where 0.2% of the votes are randomly
lost. We numerically calculate the (exact) privacy profile δ of smoothed DP according to Algorithm 1. Here, the set
of distributions Π includes the distribution of all 57 congressional districts of the 2020 presidential election. Using
the distribution reduction property of smoothed DP (Proposition 7), we can remove all distributions in Π except DC
and NE-26, which are the vertices for the convex hull of Π. Figure 2 (left) shows that the smoothed δ parameter is
exponentially small in n when ϵ = 7, which matches our Theorem 3. We find that δ is also exponentially small when
ϵ = 0.5, 1 or 2, which indicates that the sampling-histogram mechanism is also more private than DP’s predictions
for small ϵ’s. Appendix G.2 shows the experiments with different settings on Π. All experiments of this paper are
implemented in MATLAB 2021a and tested on a Windows 10 Desktop with an Intel Core i7-8700 CPU and 32GB
RAM.

1 2 3 4 5
n 105

10-20

10-10

100
Elections (0.2% of votes got lost)

1/n
DP
 = 0.5
 = 1
 = 2
 = 7

100 150 200 250
n

10-4

10-3

10-2

10-1
SGD with Quantized Gradients

1/n
DP
 = 0.5
 = 1
 = 2

Figure 2: Left: DP and smoothed DP of 2020 US presidential election when 0.2% of votes got lost. Right: DP and
smoothed DP of 1-step SGD with 8-bit gradient quantization when the set of distributions is Π. In both plots, the
vertical axes are in log-scale and the pink dashed line presents the δ parameter of DP with whatever (finite) ϵ. The dot
lines are the exponential fittings of smoothed δ parameters. The left plot is an accurate calculation of δ. The shaded
area shows the 99% confidence interval of the right plot.

SGD with 8-bit gradient quantization. According to the pre-processing property of smoothed DP, the smoothed
DP of (discrete) sampling-average mechanism upper bounds the smoothed DP of SGD (for one step). In 8-bit neural
networks for computer vision tasks, the gradient usually follows Gaussian distributions (Banner et al., 2018). We thus
let the set of distributions Π = {N8-bit(0, 0.122), N8-bit(0.2, 0.122)}, where N8-bit(µ, σ2) denotes the 8-bit quantized
Gaussian distribution (See Appendix G for its formal definition). The standard variation, 0.12, is the same as the
standard variation of gradients in a ResNet-18 network trained on CIFAR-10 database (Banner et al., 2018). We use the
standard setting of batch size T =

√
n. Figure 2 (right) shows that the smoothed δ parameter is exponentially small in

n for the SGD with 8-bit gradient quantization. The probabilities are estimated through 106 independent trails. This
result implies that the neural networks trained through quantized gradients can be private without adding additive noises.
Also, see Appendix G.2 for the experiments under another three different settings on Π.

7 Conclusions and Future Work

We propose a novel notion to measure the privacy leakage of mechanisms without additive noises under realistic settings.
One promising next step is to apply our smoothed DP notion to the entire training process of quantized NNs. Is the
quantized NN private without additive noise? If not, what level of additive noises needs to be added, and how should we
add noises in an optimal way? More generally, we believe that our work has the potential of making many algorithms
private without requiring too much additive noise.

6DC refers to Washington, D.C., and NE-2 refers to Nebraska’s 2nd congressional district.
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Supplementary Material for Smoothed Differential Privacy

A Additional Discussions

A.1 Detailed setting about Figure 1

In the motivating example, the adversary’s utility represent maxx′:||x−x′||1
u(x, x′, t), where u(x, x′, t) is the adjusted

utility defined above Lemma 2. We set the threshold of accuracy t = 51% in Figure 1. In other words, the adversary
omitted the utilities coming from the predictors with no more than 51% accuracy. To compare the privacy of different
years, we assume that the US government only publish the number of votes from top-2 candidate. The δ parameter
plotted in Figure 1 follows the database-dependent privacy profile δϵ,M(x) in Definition 2, where ϵ = ln

( 0.51
0.49
)
. One

can see that the threshold t = eϵ

eϵ+1 , which matches the setting of Lemma 2. In all experiments related to our motivating
example, we directly calculated the probabilities and our numerical results does not include any randomness.

A.2 The motivating example under other settings

Figure 3 presents different settings for the privacy level of US presidential elections (the motivating example). In all
our settings, we set t = eϵ

eϵ+1 . Figure 3 shows similar information as Figure 1 under different settings (threshold of
accuracy t ∈ {0.5, 0.51, 0.6} and ratio of lost votes = 0.01% or 0.2%). In all settings of Figure 3, the US presidential
election is much more private than what DP predicts. Figure 3(d) shows that the US presidential election is also private
(δ = o(1/n) and ϵ ≈ 0.4) when there are only 0.01% of votes got lost.
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Figure 3: The privacy level of US presidential elections under different settings.
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A.3 Detailed Settings of Table 1

The set of distributions Π. We assume the set of distributions Π is strictly positive. We say distribution π is strictly
positive, if there exists a positive constant c such that π(X) ≥ c for any X in the support of π. A set of distributions
Π is strictly positive if there exists a positive constant c such that every π ∈ Π is strictly positive (by c). The strictly
positive assumption is often considered mild in elections (Xia, 2020) and discrete machine learning (Laird & Saul,
Apr. 1994). If using the notion of f -strictly positive (in Section 5.1), Π is strictly positive if and only if Π is f -strictly
positive for a positive constant function f .

The Additive Noise. The discrete noise in the exponential mechanism is the additive noise that we are referring to in
Table 1. Mathematically, We use the negative of ℓ1 difference as the utility. Formally, the probability mass function
(PMF) of histogram with additive noise ˜hist ∈ Zm

+ is defined as

Pr
[ ˜hist | hist

]
= 1

Z
· exp

(
− ϵ

4 ·
∣∣∣∣hist − ˜hist

∣∣∣∣
1

)
, (4)

where m ≜ |X | is the number of types of data and the normalization factor Z =
∑

˜hist exp
(
− ϵ

4 ·
∣∣∣∣hist − ˜hist

∣∣∣∣
1

)
.

Since its PMF exponentially decays, the exponential mechanism can be treated as a “discrete version” of adding
Laplacian noise. Formally, Algorithm 4 presents the sampling-histogram mechanism with additive noise.

Algorithm 4: Sampling-histogram mechanism with additive noise MHN

1 Inputs: A finite set X , the number of samples T ∈ Z+, noise level 1/ϵ, and a database x = {X1, · · · , Xn} where
Xi ∈ X for all i ∈ [n]

2 Randomly sample T data from x without replacement. The sampled data are denoted by Xj1 , · · · , XjT
.

3 Calculate the histogram of sampled data hist = hist(Xj1 , · · · , XjT
)

4 Output: ˜hist according to hist based on the PMF in (4)

A.4 Additional Related Works and Discussions

The smoothed analysis (Spielman & Teng, 2004) is a widely-accepted analysis tool in mathematical programming,
machine learning (Kalai et al., 2009; Manthey & Röglin, 2009; Haghtalab et al., 2020), computational social choice (Xia,
2020; Baumeister et al., 2020; Xia, 2021; Liu & Xia, 2022), and other topics (Brunsch et al., 2013; Bhaskara et al., 2014;
Blum & Dunagan, 2002). Lastly, we note that smoothed DP is very different from the smooth sensitivity framework
(Nissim et al., 2007). The latter is an algorithmic tool that smooths the changes of the noise level across neighboring
databases (and achieves the standard DP), while we use smoothing as a theoretical tool to analyze the intrinsic privacy
properties of non-randomized algorithms in practice.

Quantized neural networks (Marchesi et al., Jan. 1993; Tang & Kwan, Aug. 1993; Balzer et al., Jan. 1991; Fiesler et al.,
1990) were initially designed to make hardware implementations of NNs easier. In the recent decade, quantized neural
networks becomes a research hotspot again owing to its growing applications on mobile devises (Hubara et al., 2016;
2017; Guo, 2018). In quantized neural networks, the weights (Anwar et al., 2015; Kim & Smaragdis, 2016; Zhou et al.,
2017; Lin et al., 2016; 2017), activation functions (Vanhoucke et al., 2011; Courbariaux et al., 2015; Rastegari et al.,
2016; Mishra et al., 2018) and/or gradients (Seide et al., 2014; Banner et al., 2018; Alistarh et al., 2017; Du et al., Mar.
2020) are quantized. When the gradients are quantized, both the training and inference of NN are accelerated (Banner
et al., 2018; Zhu et al., 2020). Gradient quantization can also save communication costs when the NNs are trained on
distributed systems (Guo, 2018).

DP and DP-like notions are widely used as the de facto privacy measure for various algorithms. For example, machine
learning (Abadi et al., 2016; Ji et al., 2014; Sarwate & Chaudhuri, 2013), matrix factorization (Berlioz et al., 2015;
Shin et al., 2018), computational social choice (Li et al., 2023), just list a few. Besides privacy, DP and DP-like notions
are also applied in improving the robustness of machine learning algorithms (Lecuyer et al., 2019; Wang et al., 2021;
Hassidim et al., 2022; Liu et al., 2022a;b).
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B Relationship between Smoothed DP and Distributional DP

Let us first recall the definition of Distributional DP (Bassily et al., 2013). To simplify notation, we let x−i (or π−i)
denote the database (or distributions) such that only the i-th entry is removed.
Definition 4 (Distributional DP (Bassily et al., 2013)). A mechanism M is (ϵ, δ, Π)-distributional DP if there is a
simulator Sim such that for any π⃗ ∈ Πn, any i ∈ {1, · · · , n}, any data X and any S be a subset of the image space of
M,

Prx−i∼π⃗−i
[M(x−i ∪ {Xi}) ∈ S|Xi = X] ≤ eϵ · Prx−i∼π⃗−i

[Sim(x−i) ∈ S] + δ and

Prx−i∼π⃗−i
[Sim(x−i) ∈ S] ≤ eϵ · Prx−i∼π⃗−i

[M(x−i ∪ {Xi}) ∈ S|Xi = X] + δ.

The next proposition shows that smoothed DP is a stronger notion than distributional DP. Or equivalently, smoothed DP
always implies distributional DP.
Proposition 9 (Smoothed DP → Distributional DP). Any (ϵ, δ, Π)-Smoothed DP mechanism M is always (ϵ, δ, Π)-
distributioanl DP.

Proof. According to the definition of Smoothed DP, we have that

δ ≥ max
π⃗

(
Ex∼π⃗

[
max

S,x′:x′≃x

(
max

(
0, dM,S,ϵ(x, x′), dM,S,ϵ(x′, x)

))])
= max

(
0, δ̂1, δ̂2

)
,

where

δ̂1 ≜ max
π⃗

(
Ex∼π⃗

[
max

S,x′:x′≃x

(
Pr [M(x) ∈ S] − eϵ · Pr [M(x′) ∈ S]

)])
and

δ̂2 ≜ max
π⃗

(
Ex∼π⃗

[
max

S,x′:x′≃x

(
Pr [M(x′) ∈ S] − eϵ · Pr [M(x) ∈ S]

)])
.

Similarly, we may rewrite the DDP conditions as δ ≥ max
(

0, δ̂DDP
1 , δ̂DDP

2

)
, where

δ̂DDP
1 ≜ min

Sim

(
max

π⃗,S,i,X

(
Ex∼π⃗

[
Pr [Sim(x−i) ∈ S] − eϵ · Pr [M(x) ∈ S | Xi = X]

]))
and

δ̂DDP
2 ≜ min

Sim

(
max

π⃗,S,i,X

(
Ex∼π⃗

[
Pr [M(x) ∈ S | Xi = X] − eϵ · Pr [Sim(x−i) ∈ S]

]))
Next, we compare δ̂1 and δ̂DDP

1 .

δ̂1 = max
π⃗

(
Ex∼π⃗

[
max

S,x′:x′≃x

(
Pr [M(x) ∈ S] − eϵ · Pr [M(x′) ∈ S]

)])
= max

π⃗

(
Ex∼π⃗

[
max
S,i,X

(
Pr [M(x) ∈ S] − eϵ · Pr [M(x) ∈ S | Xi = X]

)])
≥ max

π⃗,S,i,X

(
Ex∼π⃗

[
Pr [M(x) ∈ S] − eϵ · Pr [M(x) ∈ S | Xi = X]

])
= max

π⃗,S,i,X

(
Ex∼π⃗

[
Pr [M(x−i ∪ {Xi}) ∈ S] − eϵ · Pr [M(x) ∈ S | Xi = X]

])
= max

π⃗,S,i,X

(
Ex∼π⃗

[
Pr [Simπi

(x−i) ∈ S] − eϵ · Pr [M(x−i ∪ {Xi}) ∈ S | Xi = X]
])

≥ min
Sim

(
max

π⃗,S,i,X

(
Ex∼π⃗

[
Pr [Sim(x−i) ∈ S] − eϵ · Pr [M(x) ∈ S | Xi = X]

]))
= δ̂DDP

1

where for any set of outputs S, simulator Simπi ’s distribution of outputs are defined as follows,

Pr[Simπi(x−i) ∈ S] = EXi∼πi

(
Pr[M(x−i ∪ {Xi}) ∈ S]

)
.

By symmetry, we also have δ̂2 ≥ δ̂DDP
2 and the proposition follows by the definition of distributional DP.
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C Missing Proofs for Section 3: Smoothed Differential Privacy

To simplify notations, we let dM,S,ϵ(x, x′) =
(

Pr [M(x) ∈ S] − eϵ · Pr [M(x′) ∈ S]
)
. In the next section, we tightly

bound dϵ,M.

C.1 A tight bound

Lemma 10. Given X such that |X | = 2 and mechanism M : X n → A and any pair of neighboring databases
x, x′ ∈ X n,

u
( eϵ

eϵ + 1 , x ∩ x′
)

< dϵ,M(x, x′) + dϵ,M(x′, x) ≤ 3 · u
( eϵ

eϵ + 1 , x ∩ x′
)

.

Proof. To simplify notations, for any output a, we let

p(a) = Pr [M(x) = a] and p′(a) = Pr [M(x′) = a] .

Then, we define the utility of adversary when the database is x

u(x, x′, t) = 1
1 − t

· Ea∼M(x)

[
max

{
0, 1 − t − ℓ0-1(a, x ∩ x′)

}]
.

Let Xi be the different entry between x and x′, we have,

u(t, x ∩ x′) = max
Xi

[
u(x, x′, t)

]
.

To further simplify notations we define the adjusted utility with the threshold for output a as follows.

u
(

a, x, x′,
eϵ − 1
eϵ + 1

)
= max

{
0,

|p(a) − p′(a)|
p(a) + p′(a) − eϵ − 1

eϵ + 1

}
.

Note that the threshold is for the utility (not for the accuracy). Then, it’s easy to find that

u
(

x, x′,
eϵ

eϵ + 1

)
= Ea∼M(x)

[
u
(

a, x, x′,
eϵ − 1
eϵ + 1

)]
.

Using the above notations, we have,

Ea∼M(x)

[
u
(

a, x, x′,
eϵ − 1
eϵ + 1

)]
=

∑
a:p(a)>eϵ·p′(a)

p(a) ·
(

p(a) − p′(a)
p(a) + p′(a) − eϵ − 1

eϵ + 1

)
+

∑
a:p′(a)>eϵ·p(a)

p(a) ·
(

p′(a) − p′(a)
p(a) + p′(a) − eϵ − 1

eϵ + 1

)
.

Then, we let r = p(a)
p′(a) and analyze the first term,

∑
a:p(a)>eϵ·p′(a)

p(a) ·
(

p(a) − p′(a)
p(a) + p′(a) − eϵ − 1

eϵ + 1

)

=
∑

a:p(a)>eϵ·p′(a)

p(a) ·
(

− 2 · p′(a)
p(a) + p′(a) + 2

eϵ + 1

)

=
∑

a:p(a)>eϵ·p′(a)

p(a) · 2 · (r − eϵ)
(eϵ + 1) · (r + 1)

Then, we analyze maxS dM,S,ϵ(x, x′).

max
S

dM,S,ϵ(x, x′) =
∑

a:p(a)>eϵ·p′(a)

p(a) − eϵ · p′(a) =
∑

a:p(a)>eϵ·p′(a)

p(a) · r − eϵ

r
.
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For the upper bound of utility, we have,

2
eϵ + 1 · max

S
dM,S,ϵ(x, x′) =

∑
a:p(a)<eϵ·p′(a)

p(a) · 2 · (r − eϵ)
(eϵ + 1) · r

< the first term of Ea∼M(x)

[
u
(

a, x, x′,
eϵ − 1
eϵ + 1

)]
.

By symmetry, we have,

2
eϵ + 1 · max

S
dM,S,ϵ(x′, x) < the second term of Ea∼M(x)

[
u
(

a, x, x′,
eϵ − 1
eϵ + 1

)]
.

The upper bound part of lemma follows by combining the above two bounds. For the lower bound, we have,

2
eϵ + 3 · max

S
dM,S,ϵ(x, x′) =

∑
a:p(a)>eϵ·p′(a)

p(a) · 2 · (r − eϵ)
(eϵ + 3) · r

≥ the first term of Ea∼M(x)

[
u
(

a, x, x′,
eϵ − 1
eϵ + 1

)]
.

By symmetry, we have,

2
eϵ + 3 · max

S
dM,S,ϵ(x′, x) ≥ the second term of Ea∼M(x)

[
u
(

a, x, x′,
eϵ − 1
eϵ + 1

)]
.

The lower bound part of lemma follows by combining the above two bounds.

C.2 The proof for Lemma 2

Lemma 2 Given mechanism M : X n → A and any pair of neighboring databases x, x′ ∈ X n,

u
( eϵ

eϵ + 1 , x ∩ x′
)

< dϵ,M(x, x′) + dϵ,M(x′, x).

Proof. We assume that X = {X1, · · · , Xm}. Then, using the notations in the proof of Lemma 10, we know that

u(t, x−i) = 1
1 − t

· max
Xi

(
Ea∼M(x−i∪Xi)

[
max

{
0, 1 − t − ℓ0-1(a)

}])
= 1

1 − t
· max

Xi

(
Ea∼M(x−i∪Xi)

[
max

{
0,

maxi Pr[M(x−i ∪ {Xi}) = a]∑
X′∈X Pr[M(x−i ∪ {X ′}) = a] − t

}])
≤ 1

1 − t
· max

Xi

(
Ea∼M(x−i∪Xi)

[
max

{
0,

maxi Pr[M(x−i ∪ {Xi}) = a]∑
X′∈X ∗ Pr[M(x−i ∪ {X ′}) = a] − t

}])
where X ∗ ⊆ X , |X ∗| = 2 and arg maxX′∈X Pr[M(x−i ∪ {X ′}) = a] ∈ X ∗. In words, X ∗ is a set of two missing
data while the MLE prediction is included in the database. Now, we reduced the u(t, x−i) of general X to a set of two
possible missing data. Then, Lemma 2 follows by the direct application of Lemma 10.

C.3 The proof for Lemma 1

Lemma 1 (DP in δϵ, M(x)) Mechanism M : X n → A is (ϵ, δ)-differentially private if and only if,

max
x∈X n

(
δϵ, M(x)

)
≤ δ.

Proof. The “if direction”: By the definition of δϵ,M(x), we know that,

δϵ, M(x) ≥ max
S,x′:x′≃x

(
dM,S,ϵ(x, x′)

)
.
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Thus, for all x ∈ X n, we have δ ≥ δϵ, M(x) ≥ maxS,x′:x′≃x

(
dM,S,ϵ(x, x′)

)
, which is equivalent with

For all x, max
S,x:||x−x′||1≤1

(
Pr [M(x) ∈ S] − eϵ · Pr [M(x′) ∈ S]

)
≤ δ

⇔ For all S, x, x′ such that ||x − x′||1 ≤ 1, Pr [M(x) ∈ S] ≤ eϵ · Pr [M(x′) ∈ S] + δ.

One can see that the above statement is the same as the requirement of DP in Definition 1.

The “only if direction”: In the definition of DP, we note database x and x′ are interchangeable. Thus,

For all S, x, x′ such that ||x − x′||1 ≤ 1, Pr [M(x) ∈ S] ≤ eϵ · Pr [M(x′) ∈ S] + δ

⇔ For all x, max
S,x:||x−x′||1≤1

(
Pr [M(x′) ∈ S] − eϵ · Pr [M(x) ∈ S]

)
≤ δ

⇔ For all x, max
S,x:||x−x′||1≤1

(
dM,S,ϵ(x′, x)

)
≤ δ

Then, we combine the bounds for dM,S,ϵ(x′, x) and dM,S,ϵ(x, x′). Then, for all x ∈ X n,

δϵ, M(x) = max
(

0, max
S,x′:x′≃x

(
dM,S,ϵ(x, x′)

)
, max

S,x′:x′≃x

(
dM,S,ϵ(x′, x)

))
≤ max

(
0, δ, δ

)
= δ.

By now, we proved both directions of Theorem 1.

D Missing proofs for Section 4: The properties of smoothed DP

To simplify notations, we let dM,S,ϵ(x, x′) =
(

Pr [M(x) ∈ S] − eϵ · Pr [M(x′) ∈ S]
)

in all proofs of this section.

D.1 The proof for Proposition 4

Proposition 4 (post-processing). Let M : X n → A be a (ϵ, δ, Π)-smoothed DP mechanism. Given f : A → A′ be
any arbitrary function (either deterministic or randomized), we know f ◦ M : X n → A′ is also (ϵ, δ, Π)-smoothed DP.

Proof. For any fixed database x, any database x′ such that ||x − x′||1 ≤ 1 and any set of output S ⊆ A′, we let
T = {y ∈ A : f(y) ∈ A′}. Then, we have,

Pr
[
f
(
M(x)

)
∈ S

]
= Pr [M(x) ∈ T ]
≤ eϵ · Pr [M(x′) ∈ T ] + δϵ,M(x)
= eϵ · Pr

[
f
(
M(x′)

)
∈ S

]
+ δϵ,M(x).

Considering that the above inequality holds for any pair of neighboring x, x′ and any S, we have,

∀x, δϵ,M(x) ≥ max
S,x′:x′≃x

(
df◦M,S,ϵ(x, x′)

)
,

where, df◦M,S,ϵ(x, x′) =
(

Pr
[
f
(
M(x)

)
∈ S

]
− eϵ · Pr

[
f
(
M(x′)

)
∈ S

] )
. Using the same procedure, we have,

∀x, δϵ,M(x) ≥ max
S,x′:x′≃x

(
df◦M,S,ϵ(x′, x)

)
,

Combining the above two inequalities, we have,

∀x, δϵ,M(x) ≥ δϵ,f◦M(x).

Then, for any π⃗,
Ex∼π⃗ [δϵ,M(x)] ≥ Ex∼π⃗ [δϵ,f◦M(x)] .

Thus,
max

π⃗
(Ex∼π⃗ [δϵ,M(x)]) ≥ max

π⃗
(Ex∼π⃗ [δϵ,f◦M(x)]) .

Then, Proposition 4 follows by the definition of smoothed DP.
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D.2 The proof for Proposition 5

Proposition 5 (Composition). Let Mi : X n → Ai be an (ϵi, δi, Π)-smoothed DP mechanism for any i ∈ [k]. Define

M[k] : X n →
∏k

i=1 Ai as M[k](x) =
(
M1(x), · · · , Mk(x)

)
. Then, M[k] is

(∑k
i=1 ϵi,

∑k
i=1 δi, Π

)
-smoothed DP.

Proof. We first prove the k = 2 case of Proposition 5.

By the definition of dM,S,ϵ(x, x′), for any S1 ∈ A1 and any x′ such that ||x − x′||1 ≤ 1,

dM1,S1,ϵ1(x, x′) = Pr [M1(x) ∈ S1] − eϵ1 · Pr [M(x′) ∈ S1]

⇔ Pr [M1(x) ∈ S1] − dM1,S1,ϵ1(x, x′)
Pr [M1(x′) ∈ S1] = eϵ1 .

Similarly, for for any S2 ∈ A2 and any x′ such that ||x − x′||1 ≤ 1, we have,

Pr [M2(x) ∈ S2] − dM2,S2,ϵ2(x, x′)
Pr [M2(x′) ∈ S2] = eϵ2 .

Combining the above two equations, we have,

eϵ1+ϵ2 = Pr [M1(x) ∈ S1] − dM1,S1,ϵ1(x, x′)
Pr [M1(x′) ∈ S1] · Pr [M2(x) ∈ S2] − dM2,S2,ϵ2(x, x′)

Pr [M2(x′) ∈ S2]

≤
Pr [M1(x) ∈ S1] · Pr [M2(x) ∈ S2] −

(
dM1,S1,ϵ1(x, x′) + dM2,S2,ϵ2(x, x′)

)
Pr [M1(x′) ∈ S1] · Pr [M2(x′) ∈ S2] ,

which is equivalent with,

dM1,S1,ϵ1(x, x′) + dM2,S2,ϵ2(x, x′)
≤ Pr [M1(x) ∈ S1] · Pr [M2(x) ∈ S2] − eϵ1+ϵ2 ·

(
Pr [M1(x′) ∈ S1] · Pr [M2(x′) ∈ S2]

)
.

(5)

Note that in the k = 2 case, M[k](x) =
(
M1(x), M2(x)

)
. Thus, for any x ∈ X , we have Pr

[
M[k](x) ∈ S1 × S2

]
=

Pr [M1(x) ∈ S1]·Pr [M2(x) ∈ S2]. Combining with (5), for any S ∈ A1 ×A2 and any x, x′ such that ||x − x′||1 ≤ 1,

dM[k],S,ϵ1+ϵ2(x, x′) = Pr
[
M[k](x) ∈ S

]
− eϵ1+ϵ2 · Pr

[
M[k](x′) ∈ S

]
≥ dM1,S1,ϵ1(x, x′) + dM2,S2,ϵ2(x, x′).

By symmetry, for any S ∈ A1 × A2 and any x, x′ such that ||x − x′||1 ≤ 1, we have,

dM[k],S,ϵ1+ϵ2(x′, x) ≥ dM1,S1,ϵ1(x′, x) + dM2,S2,ϵ2(x′, x).

Then, we the definition of δϵ, M(x),

δϵ1+ϵ2, M[k](x)

= max
(

0, max
S,x′:x′≃x

(
dM[k],S,ϵ1+ϵ2(x′, x)

)
, max

S,x′:x′≃x

(
dM[k],S,ϵ1+ϵ2(x, x′)

))
≥ δϵ1, M1(x) + δϵ2, M2(x).

By the definition of the smoothed DP, we proved the k = 2 case of Proposition 5. We prove the k > 2 cases by
induction. Here, M[k] is treated as

(
M[k−1], Mk

)
. Then, M[k] will reduce to M[k−1] by applying the conclusion in

k = 2 case.

D.3 The proof for Proposition 6

Proposition 6 (Pre-processing for deterministic functions). Let f : X n → X̃ n be a deterministic function and
M : X̃ n → A be a randomized mechanism. Then, M ◦ f : X n → A is (ϵ, δ, Π)-smoothed DP if M is

(
ϵ, δ, f(Π)

)
-

smoothed DP.
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Proof. According to the definition of smoothed DP, for any fixed database x ∈ X n, we have that

δϵ, M◦f (x) ≜ max
(

0, max
S,x′:x′≃x

(
dM◦f,S,ϵ(x, x′)

)
, max

S,x′:x′≃x

(
dM◦f,S,ϵ(x′, x)

))
,

where dM◦f,S,ϵ(x, x′) =
(

Pr
[
M
(
f(x)

)
∈ S

]
− eϵ · Pr

[
M
(
f(x′)

)
∈ S

] )
.

Similarly, for mechanism M and any fixed database a ∈ X̃ n, we have,

δϵ, M(a) ≜ max
(

0, max
S,a′:||a−a′||1≤1

(
dM,S,ϵ(a, a′)

)
, max

S,a′:||a−a′||1≤1

(
dM,S,ϵ(a′, a)

))
,

where dM,S,ϵ(a, a′) =
(

Pr [M(a) ∈ S] − eϵ · Pr [M(a′) ∈ S]
)
. For any fixed database x, we let a = f(x) and have,

max
S,x′:x′≃x

(
dM◦f,S,ϵ(x, x′)

)
= max

S,x′:x′≃x

(
Pr
[
M
(
f(x)

)
∈ S

]
− eϵ · Pr

[
M
(
f(x′)

)
∈ S

] )
= max

S,x′:x′≃x

(
Pr [M(a) ∈ S] − eϵ · Pr

[
M
(
f(x′)

)
∈ S

] )
Note that f is an deterministic function. Thus, for any database x and x′ such that different on no more than one entry,
we know that f(x) and f(x′) will not have more than one different entries. Then, we have,

max
S,x′:x′≃x

(
dM◦f,S,ϵ(x, x′)

)
≤ max

S,a′:||a−a′||1≤1

(
Pr [M(a) ∈ S] − eϵ · Pr [M(a) ∈ S]

)
= max

S,a′:||a−a′||1≤1

(
dM,S,ϵ(a, a′)

)
.

By symmetry, we have,

max
S,x′:x′≃x

(
dM◦f,S,ϵ(x′, x)

)
≤ max

S,a′:||a−a′||1≤1

(
dM,S,ϵ(a′, a)

)
.

Combining the above two inequalities with definition of smoothed DP, for any fixed x and a = f(x), we have

δϵ, M◦f (x) ≤ δϵ, M(a).

When x ∼ π⃗, we know that a ∼ f(π⃗). Then,

δM = max
π⃗a∈fn(Π)

(
Ea∼π⃗a

[δϵ, M(a)]
)

= max
π⃗x∈Πn

(
Ex∼π⃗x

[δϵ, M(f(x))]
)

≥ max
π⃗x∈Πn

(
Ex∼π⃗x

[δϵ, M◦f (x)]
)

= δM◦f ,

where δM (or δM◦f ) is the smoothed DP parameter for M (or M ◦ f ).

D.4 Proof of proposition 7

Proposition 7 (Distribution reduction). Given any ϵ, δ ∈ R+ and any Π1 and Π2 such that CH(Π1) = CH(Π2), a
mechanism M is (ϵ, δ, Π1)-smoothed DP if and only if M is (ϵ, δ, Π2)-smoothed DP.

Proof. We let Π∗ = {π∗
1 , · · · , π∗

p} denote the vertices of CH(Π1) or CH(Π2). Then, for any distribution π ∈ Π1,
π =

∑p
j=1 αj · π∗

j , where
∑p

j=1 αj = 1 and αj ∈ [0, 1] for any j ∈ [p]. Let π⃗−i to denote the distribution of the agents
other than the i-th agent. Then, we know

Pr[x|π⃗] = Pr[x−i ∪ {Xi}|π⃗] = Pr[x−i|π⃗−i] · Pr[Xi|πi] = Pr[x−i|π⃗−i] ·

 p∑
j=1

αj,i · Pr[Xi|π∗
j ]

 ,
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where
∑p

j=1 αj,i = 1 and αj,i ∈ [0, 1] for any j ∈ [p]. Considering that the above decomposition works for any
database, by induction, we have,

Pr[x|π⃗] =
n∏

i=1

p∑
j=1

(
αj,i · Pr[Xi|π∗

j ]
)

=
n∏

i=1

p∑
j=1

(
αj,i · Pr[x|π∗

j ]
)

=
∑

j1,··· ,jn∈[p]

[(
n∏

i=1
αji,i

)
· Pr[x|(π∗

j1
, · · · , π∗

jn
)]
]

.

The above inequality shows that any for π⃗ ∈ Π1,

Ex∼π⃗[δϵ,M(x)] =
∑

j1,··· ,jn∈[p]

[(
n∏

i=1
αji,i

)
· Ex∼(π∗

j1
,··· ,π∗

jn
)[δϵ,M(x)]

]

≤ max
j1,··· ,jn∈[p]

(
Ex∼(π∗

j1
,··· ,π∗

jn
)[δϵ,M(x)]

)
= max

π⃗∈(Π∗)n

(
Ex∼π⃗ [δϵ, M(x)]

)
.

Considering that the above inequality holds for any π⃗ ∈ CH(Π1), then,

max
π⃗∈Πn

1

(
Ex∼π⃗ [δϵ, M(x)]

)
≤ max

π⃗∈(Π∗)n

(
Ex∼π⃗ [δϵ, M(x)]

)
.

Also note that Π∗ ⊆ Π1, we have,

max
π⃗∈Πn

1

(
Ex∼π⃗ [δϵ, M(x)]

)
≥ max

π⃗∈(Π∗)n

(
Ex∼π⃗ [δϵ, M(x)]

)
.

Then, by symmetry, we have,

max
π⃗∈Πn

1

(
Ex∼π⃗ [δϵ, M(x)]

)
= max

π⃗∈(Π∗)n

(
Ex∼π⃗ [δϵ, M(x)]

)
= max

π⃗∈Πn
2

(
Ex∼π⃗ [δϵ, M(x)]

)
,

which proves Proposition 7.

D.5 Proof of Theorem 2

Theorem 2 (Runtime of Algorithm 1). Using the notations above, the complexity of calculating δ of smoothed DP
for any anonymous mechanisms is O

(
nm+ℓ∗−1 + ℓ log ℓ∗)+ CplDP, where ℓ denotes the number of vertices in Π and

CplDP represents the runtime of Step 3 in Algorithm 1.

Proof of Theorem 2. We calculate the runtime of Algorithm 1 step by step.

Initialization. According to Kirkpatrick & Seidel (1986), the runtime to compute Π∗ is O(ℓ log ℓ∗). Since Q includes
all histograms of Π∗, the complexity of calculate Q is O(nℓ∗−1). Then, the total runtime of the initialization step is
O(nℓ∗−1 + ℓ log ℓ∗).

Calculate δj’s. We split the calculation of one δj into three sub-steps.

Step 1. Calculate the PMF of multinomial distributions. To simplify notations, we let m ≜ |X | and let ni denote the
number of users following distribution πi ∈ Π∗. We consider a database xi with ni records and each record follows
distribution πi. Then, we know hist(xi) follows an m- dimensional multinomial distribution, whose PMF can be
calculated within O(nm−1

i ) runtime. Then, calculate the PMFs of all xi’s. requires O
(∑ℓ∗

i=1 nm−1
i

)
runtime.

Step 2. Calculate PMF of hist(x). We note that hist(x) =
∑

i hist(xi). Since the distribution of two random
variables’ summation is the convolution of their PMFs, we only need to take the runtime of the convolution operations.
According to Smith (1997), calculating the convolution of two integer-valued m-dimensional random variables requires
O
(
[(a + b) · (min{a, b})]m

)
runtime, where each dimension of the two vectors ranges in {1, · · · , a} and {1, · · · , b}
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respectively. W.l.o.g., we assume that n1 > n2 > · · · > nℓ∗ . Then, the total complexity of calculating the distribution
of hist(x) is

O

 ℓ∗∑
i=2

ni ·
ℓ∗−1∑
j=1

nj

m−1
 = O

(
ℓ∗∑

i=2
(ni · n)m−1

)
= O

(
nm−1 ·

ℓ∗∑
i=1

nm−1
i

)
.

Step 3. Calculate δj . This step follows by directly calculating the expectation, which requires O(nm) complexity.

Summing over the runtime of Steps 1-3, we know the runtime of calculating a δj is

O

(
ℓ∗∑

i=1
nm−1

i

)
+ O(nm) + O

(
nm−1 ·

ℓ∗∑
i=1

nm−1
i

)
= O(n2m−2).

Then, Theorem 2 follows the observation that we need to compute δj of O(nℓ∗−1) times.

E Missing proofs in Section 5: The mechanisms of smoothed DP

E.1 The missing proof for Theorem 3

We present a non-asymptotic version of Theorem 3 in this section. To simplify notations, we let g(η, ϵ) ≜
(
η−1(1 −

e−ϵ) − 1
)2

, which is Θ(1) if there exists a constant c such that ϵ ≥ ln
(

1
1−η

)
+ c.

Theorem 3 (DP vs. Smoothed DP for Sampling Histogram Mechanism MH ). For any MH , given an f -strictly
positive set of distribution Π, any finite set X , and any n, T ∈ Z+, we have:
(i) (Smoothed DP) MH is

(
ϵ, exp

(
− 1

6 · g(η, ϵ) · f(m, n) · n
)

+ m · exp
(
− 1

8 · f(m, n) · n
)

, Π
)

-smoothed DP for

any ϵ > ln
(

1
1−η

)
.

(ii) (Tightness of smoothed DP bound) For any ϵ > 0, there does not exist δ = exp
(

− ω
(
[ln f(m, n)] · n

))
such

that MH is (ϵ, δ, Π)-smoothed DP.

(iii) (DP) For any ϵ > 0, there does not exist δ < T
n such that MH is (ϵ, δ)-DP.

Proof. We present our proof of (i) in the following three steps.

Step 0. Notations and Preparation.

Let H⃗ ≜ hist(X1, · · · , Xn) (and h⃗ ≜ hist(Xj1 , · · · , XjT
)) denote the histogram of the whole database (and the T

samples). Hi (and hi) denote the i-th component of vector H⃗ (and h⃗). Let m = |X | be the size of the finite set X . Note
the sampling process in MH is without replacement. Then,

Pr
[⃗
h|H⃗

]
= 1(

n
T

) ·
m∏

i=1

(
Hi

hi

)
.

Then, we recall privacy loss when the output is h⃗. This loss, δMH ,⃗h,ϵ(H⃗, H⃗ ′), is mathematically defined as

δMH ,⃗h,ϵ(H⃗, H⃗ ′) ≜ Pr
[⃗
h|H⃗

]
− eϵ · Pr

[⃗
h|H⃗ ′] = Pr

[⃗
h|H⃗

](
1 − eϵ ·

Pr
[⃗
h|H⃗ ′]

Pr
[⃗
h|H⃗

] ) ,

where H⃗ and H⃗ ′ is different on at most one data. We sometimes write δMH ,⃗h,ϵ(H⃗, H⃗ ′) as δh⃗(H⃗, H⃗ ′) when the context

is clear. Also note that S can be any subset of the image space of MH . Then, for any neighboring H⃗ and H⃗ ′, we have,

max
S

δS(H⃗, H⃗ ′) =
∑

h⃗: δ
h⃗

(H⃗,H⃗′)>0

δh⃗(H⃗, H⃗ ′).
(6)
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Step 1. Bound δ(H⃗) and maxS δS(H⃗, H⃗ ′).
If H ′ replaces one data in H , we assume that H⃗ ′ has one more data of the i1-th type while has one fewer data of the
i2-th type W.l.o.g. Then,

Pr
[⃗
h|H⃗ ′]

Pr
[⃗
h|H⃗

] =
m∏

i=1

(
H′

i
hi

)(
Hi

hi

) =

(Hi1 −1
hi1

)
·
(Hi2 +1

hi2

)(Hi1
hi1

)
·
(Hi2

hi2

) =
(

1 − hi1

Hi1

)
·
(

1 + hi2

Hi2 + 1 − hi2

)
≥ 1 − hi1

Hi1

.

If H ′ adds one data to H . we assume that H⃗ ′ has one more data of the i1-th type W.l.o.g. Then,

Pr
[⃗
h|H⃗ ′]

Pr
[⃗
h|H⃗

] =
m∏

i=1

(
H′

i
hi

)(
Hi

hi

) =

(Hi1
hi1

)
·
(Hi2 +1

hi2

)(Hi1
hi1

)
·
(Hi2

hi2

) = 1 + hi2

Hi2 + 1 − hi2

> 1 − hi1

Hi1

.

If H ′ remove one data from H . we assume that H⃗ ′ has one less data of the i2-th type W.l.o.g. Then,

Pr
[⃗
h|H⃗ ′]

Pr
[⃗
h|H⃗

] =
m∏

i=1

(
H′

i
hi

)(
Hi

hi

) =

(Hi1 −1
hi1

)
·
(Hi2

hi2

)(Hi1
hi1

)
·
(Hi2

hi2

) = 1 − hi1

Hi1

.

Combining the three cases above, we have,

Pr
[⃗
h|H⃗ ′]

Pr
[⃗
h|H⃗

] ≥ 1 − hi1

Hi1

.

By the definition of δh⃗(H⃗, H⃗ ′), we have,

δh⃗(H⃗, H⃗ ′) = Pr
[⃗
h|H⃗

](
1 − eϵ ·

Pr
[⃗
h|H⃗ ′]

Pr
[⃗
h|H⃗

] ) ≤ Pr
[⃗
h|H⃗

](
1 − eϵ ·

(
1 − hi1

Hi1

))
.

Thus, when hi1
Hi1

≥ 1 − e−ϵ, we always have δh⃗(H⃗, H⃗ ′) ≤ 0. We also note that δh⃗(H⃗, H⃗ ′) ≤ Pr
[⃗
h|H⃗

]
for any h⃗.

Then, we combine the above results with (6) and we have,

max
S

δS(H⃗, H⃗ ′) =
∑

h⃗: δ
h⃗

(H⃗,H⃗′)>0

δh⃗(H⃗, H⃗ ′) ≤
∑

h⃗: hi1 >(1−e−ϵ)Hi1

Pr
[⃗
h|H⃗

]
= Pr

[
hi1 > (1 − e−ϵ)Hi1 |H⃗

]
.

Note that E[hi1 ] = T
n · Hi1 . We apply Chernoff bound and have,

max
S

δS(H⃗, H⃗ ′) ≤ min

1, exp

−1
3 ·

(
1 − e−ϵ − T

n
T
n

)2

· Hi1

 .

Letting c = ϵ − ln
(

n
n−T

)
, we have,

max
S

δS(H⃗, H⃗ ′) ≤ min
(

1, exp
(

− (1 − e−c)2

3 ·
(

n − T

T

)2
· Hi1

))
.

Using the same procedure, we have,

max
S

δS(H⃗ ′, H⃗) ≤ min
(

1, exp
(

− (1 − e−c)2

3 ·
(

n − T

T

)2
· Hi2

))
.

By the definition of smoothed DP, we have,

δ(H⃗) = max
(

0, max
S,H⃗′: ||H⃗−H⃗′||1

≤1
δS(H⃗ ′, H⃗), max

S,H⃗′: ||H⃗−H⃗′||1
≤1

δS(H⃗, H⃗ ′)
)

≤ min
(

1, exp
(

− (1 − e−c)2

3 ·
(

n − T

T

)2 (
min

i
Hi

)))
.

(7)

27



Published in Transactions on Machine Learning Research (12/2023)

Step 2. The smoothed analysis to δ(H⃗).
We note that Π is f -strictly positive, which means any distribution π ∈ Π’s PMF is no less than f . Here, f can be a
function of m or n. f -strictly positive will reduce to the standard definition of strictly positive when f is a constant
function. Given the f -strictly positive condition, by the definition of smoothed DP and for any constant c2 ∈ (0, 1), we
have,

δ = EH⃗

[
δ(H⃗)

]
≤ Pr

[
min

i
Hi ≥ (1 − c2) · f(m, n) · n

]
· E
[
δ(H⃗)| min

i
Hi ≥ (1 − c2) · f(m, n) · n

]
+ Pr

[
min

i
Hi < (1 − c2) · f(m, n) · n

]
· E
[
δ(H⃗)| min

i
Hi < (1 − c2) · f(m, n) · n

]
≤ E

[
δ(H⃗)| min

i
Hi ≥ (1 − c2) · f(m, n) · n

]
+ Pr

[
min

i
Hi < (1 − c2) · f(m, n) · n

]
.

Then, we apply Chernoff bound and union bound on the second term.

Pr
[
min

i
Hi < (1 − c2) · f(m, n) · n

]
≤
∑

i

Pr [Hi < (1 − c2) · f(m, n) · n]

≤ m · exp
(

− (c2)2

2 · f(m, n) · n

)
= exp

(
− (c2)2

2 · f(m, n) · n + ln m

)
.

For the first term, we directly apply inequality (7) and have,

E
[
δ(H⃗)| min

i
Hi ≥ (1 − c2) · f(m, n) · n

]
≤ min

(
1, exp

(
− (1 − e−c)2

3 ·
(

n − T

T

)2
· (1 − c2) · f(m, n) · n

))
.

Combining the above bounds, we have

δ ≤ exp
(

− (1 − e−c)2

3 ·
(

n − T

T

)2
· (1 − c2) · f(m, n) · n

)
+ exp

(
− (c2)2

2 · f(m, n) · n + ln m

)
.

Recalling c = ϵ − ln
(

n
n−T

)
and letting c2 = 0.5,

δ ≤ exp
(

−1
6 · g(η, ϵ) · f(m, n) · n

)
+ m · exp

(
−1

8 · f(m, n) · n

)
.

Then, the (i) part of Theorem 3 follows.

(ii). The DP lower bound.
We consider a pair of neighboring databases that x contains n data of the same type and x′ contains n − 1 of the same
type while the rest data is in a different type. We use Xi to denote the different data in the two databases. Then, we have

δ ≥ δ(x, x′) ≥ Pr[Xi is sampled] = T

n
.

Then, the (ii) part of Theorem 3 follows.

(iii). The tightness of (i).
In smoothed-DP, δ ≥ Pr[x] · δ(x). For the database x in the proof (ii), we have that

Pr[x] ≤ fn(n, m) = exp
(

− [ln f(m, n)] · n
)
.

Then, we have,

δ ≥ Pr[x] · δ(x) ≥ T

n
· exp

(
− [ln f(m, n)] · n

)
≥ 1

n
· exp

(
− [ln f(m, n)] · n

)
= exp

(
− Θ

(
[ln f(m, n)] · n

))
.

Then, the (iii) part of Theorem 3 follows.
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E.2 The proof for Theorem 4

Theorem 4 (The smoothed DP for continuous sampling-average). Using the notations above, given any set of
strictly positive distribution over [0, 1], any T, n ∈ Z+ and any ϵ ≥ 0, there does not exist any δ < T

n such that MA is
(ϵ, δ, Π)-smoothed DP.

Proof. Using the same notations as Algorithm 3, we let database x = {X1, · · · , Xn}. W.l.o.g., we assume the different
data in x′ is Xn and let x′ = {X1, · · · , Xn−1, X ′

n}. To simplify notations, we let xS = {Xj1 , · · · , XjT
} (or x′

S) as
the sampled T data from x (or x′). To approach the “worst-case” of privacy loss, we set X ′

n in the form that for all
{i1, · · · , iT } ⊆ [n] and {i′

1, · · · , i′
T −1} ⊆ [n − 1],

X ′
n ̸=

∑
j∈[T ]

Xij

−

 ∑
j∈[T −1]

Xi′
j

 .

In other words, we let X ′
n in the way that all subset containing X ′

n will have a different average with any subset without
X ′

n. Because X ′
n has a continuous support while T is a finite number, we can always find an X ′

n to meet the above
requirement. Then, we set

S =
{

x̄ : x̄ = X ′
n +

∑
j∈[T −1]

Xi′
j
, where {i′

1, · · · , i′
T −1} ⊆ [n − 1]

}
.

Then, for any database x and any ϵ ≥ 0, we have,

dMA,S,ϵ(x′, x) = Pr [M(x′) ∈ S] − eϵ · Pr [M(x) ∈ S]

= Pr [M(x′) ∈ S] = Pr[X ′
n is sampled] = T

n

We note that T
n is a common bound for all x. Then, the theorem follows by the definition of smoothed DP.

F Smoothed DP and DP for sampling with replacement

Theorem 5 (DP and smoothed DP for SHM with replacement). Using the notations in algorithm 2, given any strictly
positive set of distribution Π and any T, n ∈ Z+ such that T = o(n), the counting algorithm MC with replacement
is
(
1 + 2T

n , exp
(

− Θ(n)
)
, Π
)
-smoothed DP. However, given any ϵ ≥ 0, there does not exist any δ ≤ T

n+1 such that
MC is (ϵ, δ)-differentially private.

Proof. For any counting algorithm MC , the order between balls does not change the value δx,ϵ,C . Thus, δx,ϵ,C only
depends on the total number of ball M . To simplify notations, we let δM to denote the tolerance probability when
ϵ = 1 + 2T

n and the database x contains M balls. Mathematically,

δM ≜ δ1+ 2T
n , MC

(x) when there are M balls in x.

We first prove the standard DP property of MC by analysing δ1. By Theorem 1, we have,

δ ≥ δ1 ≥ Pr
[
MC(M = 1) ∈ ⟨T ⟩ \ {0}

]
− eϵ · Pr

[
MC(M = 0) ∈ ⟨T ⟩ \ {0}

]
= Pr

[
MC(M = 1) ∈ ⟨T ⟩ \ {0}

]
= 1 − Pr

[
MC(M = 1) = 0

]
= 1 −

(
1 − 1

n

)T

≥ T

n + 1 .

By now, we proved the standard DP part of theorem. In the next two steps, we will prove the smoothed DP part.

Step 1. Tight bound for δM .
To simplify notations, we define PM,k ≜ Pr (K = k) when there are n bins, M balls and T samples. When the
sampling algorithm is with replacement,

PM,k ≜ Pr (K = k) =
(

T

k

)(
M

n

)k (
n − M

n

)T −k

.
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By the definition of δM , we have,

δM = max
(

0, max
S,M ′∈{M−1,M+1}

(
Pr [MC(M) ∈ S] − eϵ · Pr [MC(M ′) ∈ S]

))

= max

0, max
S⊆⟨T ⟩,M ′∈{M−1,M+1}

∑
k
T ∈S

(
PM,k − eϵ · PM ′,k

)
= max

0, max
S⊆⟨T ⟩,M ′∈{M−1,M+1}

∑
k
T ∈S

PM,k

(
1 − eϵ · PM ′,k

PM,k

) .

(8)

Step 1.1. Tight bound for PM′,k

PM,k
.

Using the above notation, we have

PM,k

PM−1,k
=
(

M

M − 1

)k (
n − M

n − M + 1

)T −k

=
(

1 + 1
M − 1

)(M−1)· k
M−1

·
(

1 − 1
n − M + 1

)(n−M+1)· T −k
n−M+1

≤ exp
(

k

M − 1 − T − k

n − M + 1

)
.

(9)

Similarly, we have,

PM−1,k

PM,k
=
(

M − 1
M

)k (
n − M + 1

n − M

)T −k

=
(

1 − 1
M

)M · k
M

·
(

1 + 1
n − M

)(n−M)· T −k
n−M

≤ exp
(

T − k

n − M
− k

M

)
.

(10)

Combining (9) and (10), we have

exp
(

T − k

n − M + 1 − k

M − 1

)
≤ PM−1,k

PM,k
≤ exp

(
T − k

n − M
− k

M

)
and

exp
(

k

M
− T − k

n − M

)
≤ PM+1,k

PM,k
≤ exp

(
k

M + 1 − T − k

n − M − 1

)
.

(11)

Step 1.2. Upper bound for PM,k when M < min{k, n/2}.

PM,k =
(

T

k

)(
M

n

)k (
n − M

n

)T −k

≤
(

T

k

)(
M

n

)k

<

(
e · k

k · T

)k (
M

n

)k

≤
(

e · k

n

)k

≤
(

e · T

n

)k

= O

(
T k

nk

)
.

Step 1.3. Bound δM .
By symmetry, we know that δM = δn−M . Thus, in all discussion of this step, we assume that M ≤ ⌊n/2⌋. We note
again that we assume T = o(n). Thus, in (11), for any k and M , we have T −k

n−M−1 = o(1). Then, we discuss the value
of PM,k − eϵ · PM ′,k by the two cases of M ′. In all following proofs, we set ϵ = 2T

n = o(1).
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When M ′ = M + 1, for any M and k, using the results in (8) and (11), we have,

max
S

(
Pr [MC(M) ∈ S] − eϵ · Pr [MC(M + 1) ∈ S]

)
= max

S⊆⟨T ⟩

∑
k
T ∈S

PM,k

(
1 − eϵ · PM+1,k

PM,k

) (using (8))

≤ max
S⊆⟨T ⟩

∑
k
T ∈S

PM,k

(
1 − exp

(
1 + 2T

n

)
· exp

(
k

M
− T − k

n − M

)) (using (11)).

Note again that M ≤ n/2 and we have,

max
S

(
Pr [MC(M) ∈ S] − eϵ · Pr [MC(M + 1) ∈ S]

)
≤ max

S⊆⟨T ⟩

∑
k
T ∈S

PM,k (1 − exp (0))

 = 0.

When M ′ = M − 1, Following exactly the same procedure as the M ′ = M − 1 case, we know that for any k ≤ M − 1
(or k < M ),

PM,k − eϵ · PM−1,k ≤ 0.

When k ≥ M , from step 1.2, we have,

PM,k − eϵ · PM−1,k ≤ PM,k ≤
(

e · T

n

)k

.

Combining the above two inequalities, we have,

max
S

(
Pr [MC(M) ∈ S] − eϵ · Pr [MC(M − 1) ∈ S]

)
= max

S⊆⟨T ⟩

∑
k
T ∈S

PM,k

(
1 − eϵ · PM+1,k

PM,k

) (using (8))

≤
∑

k≥M

(
e · T

n

)k

(using the above two inequalities)

≤
(

e·T
n

)M

1 − e·T
n

= O

(
T M

nM

)
.

Combining the above two cases with the analysis for standard DP, for any M ≤ ⌊n/2⌋, we have,

δM =


O
(

T M

nM

)
if M ≥ 2

Θ
(

T
n

)
if M = 1

0 otherwise

Step 2. The smoothed analysis for δM .
By the definition of strictly positive distributions, we know that there must exist constant c such that any events happens
with probability at least c. Then, by Chernoff bound, we have,

Pr
[
M ≤ c · n

2

]
≤ exp

(
−c · n

8

)
and Pr

[
M ≥ 1 − c · n

2

]
≤ exp

(
−c · n

8

)
.

By the definition of smoothed DP, we have,

δ = max
π⃗

(
Ex∼π⃗ [δM ]

)
≤ Pr [M ∈ (0, cn/2) ∪ (1 − cn/2, 1)] · δ1 + Pr[M ∈ (cn/2, 1 − cn/2)] · δcn/2

≤ exp
(

− Θ(n)
)

+ 1·

Then, theorem 5 follows by combining the above two bounds.
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G The Detailed Settings of Experiments and Extra Experimental Results

G.1 The Detailed Settings of Experiments

The election experiment. Similar with the motivating example, we only consider the top-2 candidates in each
congressional district. The top-2 candidates are Trump and Bidden in any congressional districts. In the discussion of
our main text, DC refers to Washington, D.C. and NE-2 refers to Nebraska’s 2nd congressional district. The distribution
of each congressional district is calculated using the election results of the 2020 US presidential election. For example,
in DC, each agent votes Bidden with 94.46% probability while votes Trump with 5.54% probability.

The SGD experiment. We formally define the 8-bit quantized Gaussian distribution N8-bit, which is used in the set of
distributions Π of our SGD experiment. To simplify notations, for any interval I = (i1, i2], we define pI,µ,σ as the
probability of Gaussian distribution N (µ, σ2) on I . Formally,

pµ,σ(I) =
∫ i2

i1

1
σ ·

√
2π

· exp
(

−1
2 ·
(x − µ

σ

)2
)

dx.

Then, we formally define the 8-bit quantized Gaussian distribution as follows,

Definition 5 (8-bit quantized Gaussian distribution). Using the notations above, Given any µ and σ, the probability
mass function of N8-bit(µ, σ2) is

PMF(x) =
{

p,µ,σ

((
i−128

256 , i−127
256

])/
Zµ,σ if x = i−128

256 where i = {0, · · · , 255}
0 otherwise

,

where the normalization factor Zµ,σ = p,µ,σ

(
(−0.5, 0.5]

)
.

By replacing the Gaussian distribution with Laplacian distribution, we defined 8-bit quantized Laplacian distribution
L8-bit(µ, σ2), which will be used in our extra experiments for the SGD with quantized gradients.

G.2 Extra experimental results

Smoothed DP in elections. Figure 4 presents the numerical results for election under different settings. The
congressional districts (CD) setting is the same setting of Π as Figure 2 (left), which is the distributions of all 57
congressional districts in 2020 presidential election. In the history setting, the set of distributions Π includes the
distribution of all historical elections since 1920. All results in Figure 4 shows similar trend as Figure 2 (left). No
matter what is the set of distributions Π and no matter what is the ratio of votes got lost, the δ parameter of smoothed
DP is always exponentially small in the number of agent n.

SGD with 8-bit gradient quantization. Figure 5 presents the SGD with 8-bit gradient quantization experiment under
different settings. All four settings in Figure 5 shares the same setting as Figure 2 (right), except the set of distributions
Π. The detailed settings of Π are as follows.

• Setting 1: Π = {N8-bit(0, 0.152), N8-bit(0.2, 0.152)},

• Setting 2: Π = {N8-bit(0, 0.12), N8-bit(0.2, 0.12)},

• Setting 3: Π = {N8-bit(0, 0.122), L8-bit(0, 0.122)},

• Setting 4: Π = {L8-bit(0, 0.122), L8-bit(0.2, 0.122)},

where L8-bit(µ, σ2) is the 8-bit quantized Laplacian distribution defined in Appendix G.1. All results in Figure 5 shows
similar information as 2 (right). It says that the δ of smoothed DP is exponentially small in the number of agents n. As
the number of iterations in Figure 5 is just ∼ 10% of the number of iteration of Figure 2 (right), we observe some
random fluctuations in Figure 5.
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Figure 4: Smoothed DP and DP for elections under congressional districts (CD) setting and history setting.
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Figure 5: Smoothed DP and DP for SGD with 8-bit gradient quantization under different settings. The shaded region
shows the 99% confidence interval of δ’s.
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