
Under review as a conference paper at ICLR 2023

APPENDIX FOR LEVERAGING HUMAN FEATURES AT
TEST-TIME

Anonymous authors
Paper under double-blind review

1 TOY EXAMPLE

We demonstrate the entropy selection approach on a pedagogical toy example where important hu-
man features with high uncertainty can be predicted from the machine features. If the important
human features were fully predictable from the machine features, they would be unnecessary for
classification, and if they were not predictable at all, our approach would not work.

1.1 DATA GENERATION

We generate a dataset with 10 human features, 20 machine features, and 5000 instances where each
of the human features has a corresponding, unique machine feature that, when activated, corresponds
to the value of the human feature being highly uncertain. In all other cases, the human features are
highly unlikely to be activated for an instance. Exactly one of these machine features is activated
for each instance. The remaining 10 machine features are uncorrelated with the human features, and
are activated with p = 0.5. Labels are then sampled from a linear regression model with randomly
generated weights where the paired human and machine features have relatively higher weights than
the other machine features, as they are sparser.

Generating Xh We construct p(xh|xm) so the machine features tell us which human features
may be positive without giving us too much information about xh. For each dimension of xh, we
set the weights of the corresponding logistic regression model to predict p(xhd |xm) so that exactly 1
dimension, d′ randomly sampled from ∈ {1, ..., Dm}, has weight 4.5 + ε, and all other dimensions
have weight ε ∼ N(0, 0.01). We set the bias termw0

d = −4.5+ε. This has the effect that if xmd′ = 1,
p(xhd = 1 is approximately 0.5, and otherwise it is low. We construct the probability distribution for
each dimension of Xh

d in this way, sampling d′ without replacement. To generate the dataset, we
sample Xh from this distribution, after first sampling Xm as described below.

GeneratingXm We define a sampling procedure forXm so that each instance has a single human
feature that may be positive (and those should be different for different instances). We achieve this
by setting exactly 1 of the sampled d′ used in the previous step to be set to 1 for each instance. For
the remaining features not in the set of sampled d′, we sample them with p = 0.5. Since each human
feature has a distinct d′ that signals it may be positive, sampling exactly one of these guarantees that
the probability of the human features being on will only be high (around 50%) for 1 human feature.

Generating Y Finally, to generate Y from the sampled X , we generate the weights of a logistic
regression model as follows, then sample Y from the probability distribution p(Y |X) defined by
this model. We do this so the human features are important when they are positive. To achieve this,
we set each weight for the human features to either 3 + ε′, or -3 + ε′ with equal probability (this
makes it so sometimes the human features make the label more likely to be positive, and sometimes
more likely to be negative) where ε′ ∼ N(0, 0.1). We also set the weights of the machine feature
indices selected in step 1 as d′ in the same way. For the remaining dimensions of Xm, we sample
weights at either 1 + ε or −1 + ε so they still influence the prediction, but to a lesser degree. This is
to balance the fact that each instance is likely to have multiple of these dimensions that are positive
vs. a single one of the other 2 sets of dimensions, and we don’t want any one set to dominate the
prediction. We set the bias to 0. We repeat this procedure until the labels are approximately class
balanced, with mean between 0.4 and 0.6.

1



Under review as a conference paper at ICLR 2023

1.2 EXPERIMENT

Figure 1: Test f1-score as a function
of B for our propsed method, as well
as baselines and upper bound. As ex-
pected, all-features performs best with
f1-score around 0.88 and machine-only
performs worst with f1-score around
0.815. entropy-selection performs al-
most as well as the upper bound from
the first query with f1-score around
0.87, but feature-selection only begins
to approach this performance after all 5
queries, with f1-score around 0.86.

Hyperparameters We split the data, class-balancing
labels, into train/validation/test set of sizes 2

3 ,
1
6 ,

1
6 of the

instances respectively. We set the hyperparameters to
penalty: none, class weighting: none, and B = 5. Aside
from these, we use identical hyperparameter settings to
those described in the main paper.

Results: Our approach reaches near-optimal perfor-
mance quickly, while standard feature selection im-
proves much more slowly. Figure ?? shows the results,
averaged over 10 random restarts, of our method com-
pared to feature selection, the full set of features, and
the machine features with a budget of 5 queries. The er-
ror bars denote standard deviations. all-features performs
best with f1-score of 0.88, while machine-only performs
worst with f1-score around 0.815. entropy-selection per-
forms only slightly worse than all-features from the first
query, with an f1-score around 0.87. This makes sense, as
the dataset was generated so that exactly 1 human feature
is both uncertain and impactful for each instance, and as
such, is important to query. feature-selection has a worse
starting f1-score, around 0.83, and is unable to match the
performance of all-features within the 5 queries. It only
achieves f1-score of around 0.86 by the end. This sug-
gests that our proposed method works to identify features
that are both impactful for predictive performance, and
can also be only be imperfectly predicted from the ma-
chine features.

2


