
Figure 5: Tree labeling for the proof of Proposition 2.3

A Societal Impact Statement

Fitness estimation methods have wide potential for positive impact, including in understanding and
diagnosing disease [19] and designing novel proteins that can accelerate research or treat disease [50].
However, like most powerful technologies, fitness estimation methods also have potential for negative
impact. Improved ability to diagnose genetic disease could enable discrimination on the basis of
genetic mutations, for instance insurance companies could refuse coverage or charge high premiums
to patients with pathogenic variants. These risks can be mitigated via appropriate laws and regulations,
such as the Genetic Information Nondiscrimination Act of 2008 in the US. Synthetic biology and
molecular design are dual use technologies, and novel proteins could be designed that cause harm.
For a further discussion of dual use concerns for machine learning-based molecular design, and
recommendations for mitigation, see Urbina et al. [54].

B Evolutionary dynamics models

Application of the Sella and Hirsh [49] model (Eqn. 1) in JFPMs rests on a number of assumptions;
we briefly the most relevant here.

When applying Eqn. 1 to amino acid sequences, as is typical for fitness estimation models, we ignore
biases that come from the genetic code, which can modify the steady state probability of amino acids
(in the absence of fitness effects) away from a uniform distribution. This is justified practically by
the small effect sizes: if at steady state an amino acid has probability 1/64 instead of 1/20, the total
difference in log probability is log(1/20)� log(1/64) ⇡ 1, which is small compared to (for instance)
the log probability differences relevant for disease risk prediction with fitness models, which are
⇡ 10 ([19], Extended data Fig. 3). Moreover, this bias only contributes an overall shift in amino
acid probabilities, independent of position, and so does not change our main theoretical results. We
ignore biases caused by asymmetric mutation rates for analogous reasons (though note they are often
included in PMs in practice) [49].

The constant � depends on the effective population size, as well as the underlying population genetics
model (Moran or Wright) and organismal ploidy ([49], Table 1). Following standard practice, we
treat � as fixed for simplicity, though in reality it may vary over time and across lineages. Taking into
account these possible changes clearly would not contradict our main theoretical result, that fitness
and phylogeny are non-identifiable.

C Proofs

C.1 Proof of Proposition 2.3

N.b. this result is known in the literature (see e.g. [22], Eqn. 1) but we are unaware of a proof, so we
provide one here for completeness.

16

Proof. For notational convenience, we will work with a standardized OUT, with µ = 0 and � = 1.
The final result can be obtained by translating and scaling the distribution of leaves. The transition
distribution from point x

0 at time t
0 to point X at time t under the Ornstein-Uhlenbeck (OU) process

is
X ⇠ Normal

⇣
x

0
e
� 1

2 (t�t0)
, 1 � e

�(t�t0)
⌘

. (11)

This distribution can be reparameterized in location-scale form as
✏ ⇠ Normal(0, 1)

X = x
0
e
� 1

2 (t�t0) +
p

1 � e�(t�t0)✏.

As t ! 1 we reach the stationary distribution Normal(0, 1). Let b 2 {1, ...,B} index the branches
of the tree, let �b be the length of branch b, and let j 2 {1, ..., N} index the leaves (observed species
or sequences); see Fig. 5. We have assumed that the most recent common ancestor of the observed
sequences was sampled from p

1; this can be represented by adding a single branch length (indexed
b = 1) to the root with length �1 = 1. Let ✏b be the noise describing the OU diffusion over each
branch. Let ⇠j,b be the total time from leaf j to the nearest vertex on branch b, so long as branch b is
on the path from leaf j to the root; otherwise, set ⇠j,b = 1. For instance, in the diagram in Figure 5,
we have ⇠1,4 = 0, ⇠1,2 = �4, ⇠1,1 = �4 +�2, and ⇠1,5 = ⇠1,6 = ⇠1,7 = ⇠1,3 = 1. We can now write
the leaf position as

Xj =
X

b

e
� 1

2 ⇠j,b
p

1 � e��b✏b. (12)

Define the matrix
Mj,b = e

� 1
2 ⇠j,b

p
1 � e��b , (13)

such that Xj =
P

b Mj,b✏b. We can now describe the complete leaf distribution as

~✏ ⇠ MultivariateNormal(0, IB)

X1:N = M · ~✏,

where IB is the B-dimensional identity matrix. Thus, according to the location-scale representation
of the multivariate normal,

X1:N ⇠ MultivariateNormal(0, MM
>). (14)

We can simplify the covariance matrix ⌃ := MM
>. First

⌃j,j0 =
X

b

Mj,bMj0,b =
X

b

e
� 1

2 (⇠j,b+⇠j0,b)(1 � e
��b).

Before introducing the notation required to derive the general result, it’s helpful to get a sense of how
the derivation works; in the example tree (Figure 5),

⌃1,2 = e
� 1

2 (�4+�5)(1 � e
��2) + e

� 1
2 (�4+�5+2�2)(1 � e

��1)

= e
� 1

2 (�4+�5) + (�e
� 1

2 (�4+�5+2�2) + e
� 1

2 (�4+�5+2�2)) � e
� 1

2 (�4+�5+2�2�2�1)

= e
� 1

2 (�4+�5).

The sum over b telescopes, leaving only the initial term, which corresponds to the total time between
leaf node 1 and leaf node 2. To construct the general result, define b̃j,j0 as the branch whose later
node is the most recent common ancestor of leaves j and j

0. In the example in Figure 6, b̃2,4 = 4.
Let R be an ordered list of branches from b̃j,j0 to b = 1, the earliest branch. In the example in
Figure 6, R = [4, 2, 1]. Finally, let tjj0 be the length of the shortest path from leaf j to leaf j

0, the
time from the most recent common ancestor to j plus the time to j

0. In the example in Figure 6,
t2,4 = �5 + �6 + �8. We now have

⌃jj0 =
BX

b=1

e
� 1

2 (⇠j,b+⇠j0,b)(1 � e
��b)

=
X

b2R

e
� 1

2 (⇠j,b+⇠j0,b)(1 � e
��b)

= e
� 1

2 tjj0
� e

� 1
2 (tjj0+2�b̃j,j0) +

|R|X

k=2

e
� 1

2 (tjj0+2
Pk�1

k0=1
�Rk0)(1 � e

��Rk).

17

Figure 6: In red are the leaves considered in the examples in the proof of Proposition 2.3; in green is
their most recent common ancestor.

Breaking down the telescoping sum, and using the fact that the final element of R is t1 = 1,

= e
� 1

2 tjj0
� e

� 1
2 (tjj0+2

P|R|
k0=1

�Rk0) = e
� 1

2 tjj0
.

So we have the simple result that the covariance matrix depends just on the divergence times between
leaves,

⌃jj0 = e
� 1

2 tjj0
. (15)

Translating the distribution Eqn. 14 by µ and scaling by � yields the result.

C.2 Proof of Theorem 3.3

Before proving the result, we briefly clarify a definition in the statement of the theorem:
Definition C.1 (Exchangeable in leaves). Let H be a tree with countably infinite leaves and let H⇡

be a permutation of a phylogeny in its leaves, i.e. the same tree H with the leaves observed in a
different order, according to a permutation ⇡. A distribution over phylogenies is exchangeable in its
leaves if p(H) = p(H⇡) for any permutation ⇡.

Proof. Outline: First, using the results from Sarkar [48], we construct an embedding for each tree into
the hyperbolic plane, being careful that the embedding preserves exchangeability. Second, we apply
de Finetti’s Theorem to obtain the conditionally independent representation of the joint distribution
of Z1, Z2, Third, we use the distortion bound from Sarkar [48] to bound the Wasserstein distance
between p(⌫) and p(⌫̃).

First we describe the Sarkar [48] (1 + ✏) distortion embedding algorithm setup. Vertices in phyloge-
netic trees have maximum degree three, and, by assumption, the minimum edge length in a tree H is
greater than ⌘ > 0 with probability one. For any ✏

0
> 0, choose a ⇢ < ⇡/3 and a scale factor

� >

✓
1 + ✏

0

✏0

◆
2k

⌘
log tan

⇢

2
, (16)

where k is the Gaussian curvature of the hyperbolic plane H (for most hyperbolic geometry models,
and in particular the Lorentz manifold, k = �1). Then, let h1(H), h2(H), ... be the position of the
leaves in the embedding of H produced by the (1 + ✏) distortion embedding algorithm in Sarkar [48],
using edge scale factor �, and ⇢ separated cones with cone angle 2⇡/3 � 2⇢. Taking the last line of
the proof of Theorem 6 in Sarkar [48], we are guaranteed that even for a countably infinite number of
leaves,

max
i,i0

�tii0(H)

d̃(hi(H), hi0(H))
 1 + ✏

0

max
i,i0

d̃(hi(H), hi0(H))

�tii0(H)
= 1,

(17)

where i, i
0
2 N := {1, 2, . . .}, and d̃(·, ·) is the hyperbolic distance function.

18

Next we will modify the embedding function h to ensure that the distribution of embedded leaves is
exchangeable. Let [H] be the set of phylogenetic trees that are equivalent to H up to reordering of the
vertices. For each equivalence class [H] we choose one ordering of the vertices to be the canonical tree
Ĥ([H]), and for any tree H let ⇡

c(H) be the leaf permutation such that the reordered tree H⇡c(H) =

Ĥ([H]). Now define the modified leaf embedding function h
0(H) := h⇡(H)(H⇡c(H)) where ⇡(H)

is the inverse permutation of ⇡
c(H). Since by assumption the prior p(H) on the phylogenetic tree is

exchangeable, we can rewrite p(H) using the induced distribution over equivalence classes p([H]) as

[H] ⇠ p([H])

⇡ ⇠ Permutation

H := Ĥ([H])⇡,

where Permutation is the uniform distribution over all permutations of N := {1, 2, . . .}. We now
define the distribution over leaf embeddings as

H ⇠ p(H)

Z1:1 := h
0
1:1(H),

(18)

which we can rewrite as
[H] ⇠ p([H])

⇡ ⇠ Permutation

Z1:1 := h⇡(Ĥ([H])).

The distribution p(Z1, Z2, ...) is therefore exchangeable. Applying de Finetti’s Theorem [29] we
have a.s.

G ⇠ G

Zi
iid
⇠ G for i 2 {1, 2, . . .}

(19)

where G is a random measure distributed according to a prior G. Moreover, the embedding distortion
bounds (Eqn. 17) are preserved for each H, since

1 + ✏ � max
i,i0

�tii0(Ĥ([H]))

d̃(hi(Ĥ([H])), hi0(Ĥ([H])))
= max

i,i0

�t⇡i⇡i0 (H⇡c(H))

d̃(h⇡i(H⇡c(H)), h⇡i0 (H⇡c(H)))

= max
i,i0

�tii0(H)

d̃(h0
i(H), h0

i0(H))
,

(20)

and by the same logic

1 = max
i,i0

d̃(hi(Ĥ([H])), hi0(Ĥ([H])))

�tii0(Ĥ([H]))
= max

i,i0

d̃(h0
i(H), h0

i0(H))

�tii0(H)
. (21)

We will now construct the Wasserstein bound. Define the joint distribution over ⌫ and ⌫̃,

H ⇠ p(H)

⌫ii0(H) := log(
1

2
tii0(H))

⌫̃ii0(H) := log(d(h0
i(H), h0

i0(H)))

(22)

where we have chosen d(·, ·) = 1
2� d̃(·, ·). Note that the marginal distribution of ⌫ matches its

definition in the statement of the theorem, and that, applying Eqn. 18 and Eqn. 19, the marginal
distribution of ⌫̃ also matches its definition. Using the fact that log is a monotonically increasing
function, Eqn. 20 gives

log sup
i,i0

exp(⌫ii0(H))

exp(⌫̃ii0(H))
 log(1 + ✏)

sup
i,i0

[⌫ii0(H) � ⌫̃ii0(H)]  ✏,

19

and similarly using the bound from Eqn. 21, supi,i0 [⌫̃i,i0(H) � ⌫i,i0(H)]  0. Thus, with probability
1 under p(H),

k⌫(H) � ⌫̃(H)k1 = sup
i,i0

|⌫ii0(H) � ⌫̃ii0(H)|  ✏.

Recall that the Wasserstein distance between the distribution of two random variables ⌫ and ⌫̃ can be
written as

W1(p(⌫), p(⌫̃)) = inf
�2J

E� [k⌫ � ⌫̃k1]

where J is the set of joint distributions with marginals corresponding to the distributions of ⌫ and ⌫̃

([15], Chap. 11.8). Using the joint distribution in Eqn. 22, the Wasserstein distance is bounded by

W1(p(⌫), p(⌫̃))  EH⇠p(H)[k⌫(H) � ⌫̃(H)k1]  ✏. (23)

Now consider the case where W1(p(⌫), p(⌫̃)) = 0. (N.b. in this case, we do not need to assume that
the minimum time between nodes in H is greater than ⌘ > 0.) Since the Wasserstein metric is a
metric on the space of probability distributions ([15] Lemma 11.8.3), p(⌫) = p(⌫̃) a.e.. Using the
standard properties of Gaussian processes ([58], Chap. 2), the GPLVM model (Eqn. 5) can be written
as

G ⇠ G

Zi
iid
⇠ G for i 2 N

⌫̃ii0 := log d(Zi, Zi0)

X1:1 ⇠ MultivariateNormal(µ, ⌃ii0 := �
2 exp(� exp ⌫̃ii0)),

(24)

which is equivalent to the OUT distribution,

H ⇠ p(H)

⌫ii0 := log[
1

2
tii0(H)]

X
0
1:1 ⇠ MultivariateNormal(µ, ⌃i,i0 := �

2 exp(� exp ⌫i,i0)).

(25)

So the distribution p(X1:1) produced by the GPLVM is equivalent to the distribution p(X 0
1:1)

produced by the OUT model a.e..

C.3 Proof of Theorem 4.1

We start with a more basic result that captures the intuition behind Thm. 4.1, and then prove a more
general result, from which Thm. 4.1 can be derived as a corollary. In particular, we start by examining
the special case where the model is well-specified with respect to p

1.
Proposition C.2. Assume that the model M is log-convex and well-specified with respect to the
stationary distribution, i.e. p

1
2 M. Assume q✓⇤ exists and is unique. Then, if the model is

misspecified with respect to the data distribution, i.e. p0 /2 M, we have

KL(q✓⇤kp
1) < KL(p0kq✓⇤) + KL(q✓⇤kp

1)  KL(p0kp
1). (26)

But if the model is well-specified, i.e. p0 2 M, we have

KL(q✓⇤kp
1) = KL(p0kp

1). (27)

Proof. The first inequality in Eqn. 26 follows from the fact that M is misspecified with respect to p0

and so KL(p0kq✓⇤) > 0. The second inequality follows from Thm. 1 from Csiszar and Matus [11],
who study the geometry of reverse I-projections. For Eqn. 27, note that q✓⇤ = p0 when p0 2 M.

We next extend Prop. C.2 to the case where the model may be misspecified with respect to p
1 as

well as p0.
Proposition C.3. Assume the model M is log-convex and that q✓⇤ exists and is unique. If

min
q✓2M

✓
EX⇠p0


log

p
1(X)

q✓(X)

�
+ EX⇠q✓⇤


log

q✓(X)

p1(X)

�◆
< KL(p0kq✓⇤) (28)

then KL(q✓⇤kp
1) < KL(p0kp

1).

20

Proof. Define the projected stationary distribution

p
1
⇤ = argminq✓2M

✓
EX⇠p0


log

p
1(X)

q✓(X)

�
+ EX⇠q✓⇤


log

q✓(X)

p1(X)

�◆

Now, from the definition of the KL divergence we have

KL(p0kp
1) = KL(p0kp

1
⇤) + EX⇠p0


log

p
1
⇤ (X)

p1(X)

�
.

Applying Thm.1 from Csiszar and Matus [11] to KL(p0kp
1
⇤) we have

KL(p0kp
1) � KL(p0kq✓⇤) + KL(q✓⇤kp

1
⇤) + EX⇠p0


log

p
1
⇤ (x)

p1(x)

�

= KL(p0kq✓⇤) + KL(q✓⇤kp
1) + EX⇠q✓⇤


log

p
1(x)

p1
⇤ (x)

�
+ EX⇠p0


log

p
1
⇤ (X)

p1(x)

�

Applying Eqn. 28, the result follows.

One way of satisfying Prop. C.3 is for there to exist a p
1
⇤ 2 M that is very close to p

1, in the sense
that log p

1(x)/p
1
⇤ (x) ⇡ 0 in areas of X with high probability under both p0 and q✓⇤ .

Finally we, derive the more interpretable (but also more restrictive) conditions in Thm. 4.1.
Proof of Thm. 4.1 For Eqn. 8, note that q✓⇤ = p0 when p0 2 M. To show Eqn. 7, we will show that
the conditions of Prop. C.3 are met. (N.b. we will work with sums over x since we are concerned
with discrete sequences, but the same derivation holds replacing sums with integrals.) We have

min
q✓2M

✓
EX⇠p0


log

p
1(X)

q✓(X)

�
+ EX⇠q✓⇤


log

q✓(X)

p1(X)

�◆

 min
q✓2M

X

x2X

��p0(x) � q✓⇤(x)
��
����log

p
1(x)

q✓(x)

����

 min
q✓2M

k log q✓ � log p
1

k1
X

x2X

��p0(x) � q✓⇤(x)
��.

Applying Eqn. 6 to the first term and the definition of total variation distance to the second term,

< 2 TV(q✓⇤kp0)
2

 KL(p0kq✓⇤),

where the second inequality is Pinsker’s inequality. We see that Eqn. 28 is satisfied, and the result
follows.

D Simulation Details

In both scenarios, we generated sequences of fixed length |X| = 30, with an alphabet size of
B + 1 = 4 (corresponding to nucleotides).

Scenario 1 We simulated from a Potts model

pPOTTS(x) =
1

Z
exp

X

l

X

b

hlbxlb +
X

l

X

l0>l

X

b

X

b0

ell0bb0xlbxlb0

!

where h is the sitewise energies, e is the pairwise energies, x is a one-hot sequence encoding, l indexes
sequence positions and b indexes letters. Following the simulations in Ingraham and Marks [27],
which were intended to roughly match the statistics of typical real protein Potts models, we drew
hlb ⇠ InvGamma(2, 0.8) and

All0 =

⇢
1 if l

0 = l + 1
Bernoulli(0.1) otherwise

Bll0bb0 ⇠ Normal(0, 1.2)

ell0bb0 = All0Bll0bb0 .

21

The energies h and e were drawn once, and the same values used across independent simulations.
We sampled from the model using a Gibbs sampler with 100 steps of burn-in and 10 parallel
chains using the code from Ingraham and Marks [27] (https://github.com/debbiemarkslab/
persistent-vi). We shuffled the resulting samples to remove autocorrelation.

Scenario 2 We used a site-wise independent fitness function:

f(x) =
30X

l=1

X

b

hlbxlb,

with site-wise residue biases hl, where xl is a one-hot encoding of the letter at the l-th position of x.
To generate phylogenetically correlated sequences, we sampled phylogenetic trees from a Kingman
Coalescent ([3], Def. 2.1) with rate 1. Starting from a random sequence drawn from the steady state
distribution at the root, we evolved the sequence simulating a Wright process in a haploid population
([49], Eqn. 3) according to the tree and fitness function. In particular, for sequences x0, x that are
one mutation away, the mutation rate is

lim
⌧!0

1

⌧
P

⌧ (x, x0) = Ne↵
e
2(f(x)�f(x0)) � 1

e2Neff (f(x)�f(x0)) � 1
,

where we set the effective population size to Neff = 10000. This stochastic process has steady state

p
1(x) / exp (2(Neff � 1)f(x)) ,

([49], Eqn. 7).

SWI model We fit the SWI model with maximum likelihood estimation.

BEAR model In these simulations, we used a vanilla BEAR model with a uniform embedded AR
model (i.e. a Bayesian Markov model) for simplicity. We set the Dirichlet prior concentration to the
constant ↵ = 0.5. Based on the theoretical analysis in Amin, Weinstein and Marks [2] (Thm. 35), we
used a prior on lags of the form

p(L) / exp(�B
L) (29)

where B is the alphabet size (4 for nucleotides). We inferred the prior via empirical Bayes, marginaliz-
ing over the transition probabilities following the protocol in [2]. Conditional on lag L, sampling from
the posterior over the BEAR model is straightforward thanks to Dirichlet-Categorical conjugancy.

Evaluation We defined Sf following standard protocols for fitness estimation models. In particular,
we let Sf (p) be the Spearman correlation between p(x) and f(x) for x 2 ⇤ where ⇤ consists of all
possible single point mutations (i.e. single letter changes) of an initial (“wild-type”) sequence. The
wild-type sequence was chosen as the most likely sequence under p

1, computed exactly for Scenario
2 and estimated based on the 106 samples for Scenario 1.

To estimate model perplexity (Fig. 3C and 9B), we used N = 10, 000 independent sequences from
p0 and computed the per-residue perplexity

exp

�

1
PN

n=1 |Xn|

NX

n=1

log p(Xn)

!
, (30)

where |Xn| is the sequence length and p(Xn) is the probability of the sequence under the model.

To estimate the KL to the fitness distribution in Scenario 2 (Fig. 3D) , we sampled N = 10, 000
independent sequences from p

1, {X1, . . . , XN} and estimated

KL(p1
||p) ⇡ H(p1) �

1

N

NX

n=1

log p(Xn),

where H(p1) is the entropy of p
1, which can be computed analytically. For BEAR, we plotted the

KL to the posterior predictive, which, using Jensen’s inequality can also be seen to lower bound

E⇧BEAR(p|Xtrain)[KL(p1
||p)],

where ⇧BEAR(p|Xtrain) is the BEAR posterior learned from the training dataset.

22

https://github.com/debbiemarkslab/persistent-vi
https://github.com/debbiemarkslab/persistent-vi

A B

Figure 7: (A) Same as Fig. 3A, for four independent simulations following Scenario 1. (B) Same as
Fig. 3B, for four independent simulations following Scenario 2.

SWI fit

stationary

Figure 8: Probability of each nucleotide at each position learned by the SWI model (above) and in
the stationary distribution p

1 (below), for a simulation from Scenario 2.

Fr
ac

tio
n

of
 te

st
s

w
ith

 H

yp
ot

he
si

s
2

ac
ce

pt
ed

A B

Figure 9: (A) Fraction of independent simulations (out of 10 total), following Scenario 1 (Sec. 6), in
which Hypothesis 2 was accepted at level ↵ = 0.025. (B) Perplexity on heldout data of the BEAR and
the SWI models in Scenario 1. Thick line corresponds to the average over 10 individual simulations
(thin lines).

23

E Empirical Results Details

E.1 Data

Prediction task #1 (functional effect) Following standard practice, we report the absolute value of
the Spearman correlation as Sf (p), since in some assays a negative change in the measured quantity
corresponds to larger fitness (note that in all cases the predicted directionality of the effect under each
model was correct). We focused on single amino acid substitutions, taking only those for which EVE
was able to make a prediction (EVE is limited by its reliance on a multiple sequence alignment). We
used the same data as in Shin et al. [50], Table 1, taking the 37 experiments performed on the following
32 proteins: UBC9_HUMAN, UBE4B_MOUSE, P84126_THETH, HIS7_YEAST, BLAT_ECOLX,
IF1_ECOLI, PTEN_HUMAN, B3VI55_LIPST, GAL4_YEAST, POLG_HCVJF, PABP_YEAST,
CALM1_HUMAN, AMIE_PSEAE, TRPC_THEMA, RASH_HUMAN, YAP1_HUMAN,
TRPC_SULSO, DLG4_RAT, BG_STRSQ, KKA2_KLEPN, HSP82_YEAST, B3VI55_LIPST
(stabilized), MK01_HUMAN, HIV BF520 env, SUMO1_HUMAN, RL401_YEAST, PA_FLU,
HG_FLU, TPMT_HUMAN, HIV BG505 env, TPK1_HUMAN, and MTH3_HAEAE (stabilized).
The sequence data and assay data are publicly available for research use.

Prediction task #2 (pathogenicity) We used the pathogenicity labels of single amino acid substitu-
tions curated from ClinVar [31] in Frazer et al. [19]. Note ClinVar data is freely available for public
use, and labels only depend indirectly on patient data; there is no per-person label, and no way of
identifying individual patients [31]. We considered labels for 87 human proteins less than 250 amino
acids in length: AICDA, AQP2, ATPF2, B9D2, CAH5A, CAV3, CD40L, CF410, CHC10, CIA30,
CLD16, CLN8, COQ4, CRBB2, CRGD, CTRC, CXB1, CXB2, CXB3, CXB4, CXB6, CY24A,
DERM, DGUOK, DHDDS, EDAD, EFTS, ELNE, ETFB, ETHE1, EXOS3, FGF10, FGF23, FOXE3,
FRDA, GP1BB, HBB, HEM4, HSPB1, HSPB8, IFM5, IFT27, JAGN1, KAD2, KCNE1, KCNE2,
KITM, LITAF, MMAB, MMAC, MPU1, MYPR, NDP, NDUS8, NFU1, NKX25, NMNA1, OPA3,
PAHX, PDYN, PMM2, PMP22, PNPH, PNPO, PROP1, PSPC, PTPS, RASH, RNH2A, S5A2, SAP3,
SBDS, SCO1, SDHB, SDHF2, SIX1, SIX3, SOMA, TMM70, TNNT2, TPK1, TPM2, TR13B,
TWST1, VHL, XLRS1, ZC4H2.

Training data All models were trained on datasets of protein sequences gathered as described in
[50] for pathogenicity effect prediction tasks and as described in [19] for functional effect prediction
tasks. SWI and EVE were trained on the multiple sequence alignment, while Wavenet and BEAR
were trained on the raw sequences as described in [50]. All datasets were uniformly subsampled to
produce a 75%/25% train/test split.

E.2 Models and code

The SWI model was trained via maximum likelihood.

The Wavenet model was trained via maximum likelihood with the default architecture, hyper-
parameters and training protocol described in [50], for 100,000 steps. Code is from https:
//github.com/debbiemarkslab/SeqDesign published under the MIT licence. We did not apply
the Wavenet model to the second prediction task, as it has only previously been developed for the
first task.

The EVE model was trained via variational inference, using the same architecture, hyperparameters,
and training protocol described in [19]. Code is from https://github.com/debbiemarkslab/
EVE published under the MIT licence. To match the protocol of the original paper, EVE was – unlike
SWI, Wavenet and BEAR – (a) trained on the full dataset rather than the training set alone, and (b)
used a sequence reweighting heuristic.

The BEAR model used an embedded convolutional neural network (the same architecture as used in
[2], with layer 1 width of 16, filter width of 5 and 30 filters total) and a uniform prior over lags 2, 3, 5,
7, and 9. Code is from https://github.com/debbiemarkslab/BEAR published under the MIT
licence. The model was trained using empirical Bayes, as described in [2], for 500 steps with a batch
size of 500000 kmers. Two Nvidia TeslaV100s GPUs were used, on an internal cluster; training took
up to 8 hours. To construct posterior credible intervals, we used 41 samples from the posterior for
prediction task #1, and 1000 samples for prediction task #2.

24

https://github.com/debbiemarkslab/SeqDesign
https://github.com/debbiemarkslab/SeqDesign
https://github.com/debbiemarkslab/EVE
https://github.com/debbiemarkslab/EVE
https://github.com/debbiemarkslab/BEAR

Figure 10: Ratio of the per residue perplexity on heldout data of the Wavenet model and of the
BEAR model posterior predictive, across the 37 assays used for the first prediction task. Note lower
perplexity corresponds to better density estimation performance.Supplementary consitency figure

A B C

D E

Figure 11: Same as Fig. 4CD, for 5 additional assay examples. A-C are each distinct �-lactamase
assays; D is from GAL4 (DNA-binding domain); E is from UBE4B (U-box domain).

To train and predict using BEAR one needs to transform sequences into de-Bruijn graphs. To
do so for amino acid sequences, we used code from https://github.com/jdisset/kmap. We
communicated with the author of this code to obtain permission for its use.

We computed the heldout perplexity (Eqn. 30) for the BEAR posterior predictive and for Wavenet to
produce Fig. 10.

E.3 Convergence experiments

To plot the convergence of the posterior over p0 as a function of N (Fig. 4CD, 11 and 12), we
used a vanilla BEAR model, a nonparametric Bayesian Markov model. Note that here we fixed the
embedded AR model, rather than refitting with larger N , so that we could analyze the the convergence
behavior with reference to the asymptotic results of Thm. 35 in [2], which does not take into account
empirical Bayes. We set the Dirichlet concentration to 10 and used a prior over lags as in Eqn. 29.

E.4 Interpolation experiments

We fit a BEAR model using the architecture and training protocol described in Sec. E.2, optimizing
both the parameters of the AR model and h via empirical Bayes. We then varied h from its optimized

25

https://github.com/jdisset/kmap

A B C D

E F G H

Figure 12: Convergence of the BEAR posterior over AUCs with N (green distributions), compared
to the AUC of SWI (blue line) and EVE (yellow line), for the second prediction task. (A) is for the
CXB1 gene, (B) CXB6, (C) EXOS3, (D) FGF23, (E) OPA3, (F) PAHX, (G) PROP1, (H) S5A2.Supplementary h scan figure

A
1e6 1e7 1e7

B C D

1e6 1e6 1e6
E F G H

1e6

1e6

Figure 13: Same as Fig. 4EF, for 8 additional assay examples. (A) Aliphatic amidase, (B) levoglucosan
kinase (stabilized), (C) HIV env protein (BF520), (D) �-glucosidase, (E) UBE4B (U-box domain)
(F) TIM barrel, (G) thiopurine S-methyltransferase, (H) thiamin pyrophosphokinase 1.

value, and recalculated the total marginal likelihood and the posterior distribution over Sf (p) (Fig. 4EF
and 13). We also computed the value of Sf (q✓̂) for the fit BEAR model in the h ! 0 limit (Fig. 14).

F Supplementary code

The supplementary code provides a Jupyter notebook (example.ipynb) illustrating the application
of our BEAR diagnostic test on simulated data. It is available under an MIT License.

G Discussion of Protein Language Models

In this section we discuss the relevance and relationship of our results to large-scale “protein language
models” such as ESM-1v [36], MSA Transformer [43], UniRep [1], Tranception [41], ProGen [33],
ProGen2 [40] and others. Note the term “protein language model” is something of a misnomer;
these methods are far from unique in applying and extending ideas from natural language processing
(NLP) to build generative protein sequence models (Wavenet [50] and BEAR [2] being just two other
examples). Rather, inspired by the recent success of large-scale “foundation models” in NLP, protein
language models have two key distinguishing properties: (1) they use neural network architectures
with very large numbers of parameters and (2) they are trained on very large and very diverse datasets,
not just sequences from a single family [4].

26

functional effect prediction tasks (assays)

pathogenicity prediction tasks (genes)

A

B

Figure 14: Same as Fig. 4AB, with the addition of the AR model in the h ! 0 limit (purple). In
prediction task 1 (A), Hypothesis 2 is accepted in 28/37 assays (75%) while Hypothesis 1 is accepted
in 6/37 (16%) for the AR model. In prediction task 2 (B), Hypothesis 2 is accepted in 16/97 genes
(16%) and Hypothesis 1 is accepted in 17/97 genes (18%) for the AR model.

Our results suggest that better density estimation for sequence distributions does not necessarily
imply better fitness estimation, and that a carefully chosen misspecified model can systematically
outperform well-specified models. We believe our results complicate but do not contradict lessons
learned on the importance of scale in natural and protein language models.
Big and Diverse Data Protein language models are trained on datasets that are bigger than those used
for single family models, not only in the sense of containing more sequences but also in the sense of
being more diverse. In other words, they differ not only in N but in the data generating distribution
p0. The idea that using such big and diverse datasets may lead to better fitness estimation is entirely in
line with our theory. First, given a particular model class M and p0, we expect datasets with larger N

to be better, as it brings our estimated distribution q✓̂ away from the prior and closer to the projected
distribution q✓⇤ . Second, while increasing the diversity of p0 does not remove the non-identifiability
problem, it can enable practical strategies for reducing the effects of phylogeny. Misspecified models
fit to many different protein families may be more robust to the “noise” introduced by phylogeny, as
they must be accurate across families with very different phylogenetic structure. Moreover, protein
language models are often trained on datasets that have been thinned, with very similar sequences
removed (e.g. UniRef90 [36] rather than UniRef100 [44]); this shifts the target distribution p0, and
can potentially ameliorate the effects of phylogeny.
Downstream Tasks The problem of fitness estimation using generative sequence models can be
thought of as solving a downstream task of predicting an external label by learning an unsupervised
one-dimensional representation for each sequence (namely, its log likelihood under the model).3 In
general, for problems that involve using unsupervised representations for downstream tasks, progress
often comes from directly optimizing the hyperparameters of the unsupervised model to improve
downstream task performance, without regard to whether such hyperparameter changes increase
or decrease density estimation performance of the unsupervised model. Our results suggest that
focusing on optimizing hyperparameters and architectures for downstream performance instead of
density estimation, perhaps by using meta-learning, may also be a successful way forward for fitness

3N.b. since the representation is one-dimensional, and the downstream predictor is assumed to be a monoton-
ically increasing function, success can be evaluated in a “zero-shot” setting using Spearman correlation or AUC,
instead of training a supervised predictor on a small amount of labelled data.

27

Figure 15: Ratio of the per residue perplexity on heldout data of the UniRep and Wavenet model and
of the BEAR model posterior predictive, across the 37 assays used for the first prediction task. Note
lower perplexity corresponds to better density estimation performance.

estimation [37].
Architecture Choices Our results are most directly in tension with recommendations from NLP for
model size: we show theoretically and empirically that in the large N limit, misspecified models
can be more accurate fitness estimators than well-specified models, which can conflict with the
standard recommendation in large-scale natural and protein language models to give models as many
parameters as possible. Our prediction is born out in the recent results of Nijkamp et al. [40], which
demonstrate that a protein language model with more parameters and better density estimation can be
worse at fitness estimation.

Still, a systematic understanding of model size and its tradeoffs in protein language models is lacking.
For example, it may be advantageous to use misspecified models which have a very large numbers of
parameters, as high-parameter models can possess other desirable properties beyond expressiveness,
such as smoothness [7]. Indeed, many modern neural architectures (including attention layers in
transformers) enforce invariance to certain symmetries (such as permutation or translation), ensuring
that they are not universal approximators even when they have very large numbers of parameters [5].
Regularization and early stopping can also effectively restrict the model class M.4 Broadly, our
results fit with the idea that neural architecture and hyperparameter choice can substantially impact
downstream tasks even in an age of massive models and data.

The question of whether protein language models can systematically outperform the true data
distribution p0 at fitness estimation remains an open problem for future work. Here we describe
some of the difficulties in addressing the problem and present preliminary results. The first challenge
is scaling the diagnostic test to massive datasets. It is crucial, in particular, to work with datasets
with large enough N that the test has power to reject the null hypothesis; convergence of the BEAR
diagnostic is expected to be slower with (roughly speaking) high diversity p0 (Thm. 35, [2]).
Computationally, scaling the test to massive datasets will require the use of large scale amino acid
kmer counters, which are currently less performant than nucleotide kmer counters [30]. A second
challenge is evaluating the density estimation performance of protein language models. Models
trained using masked language modeling objectives (such as ESM-1v [36] and MSA Transformer [43])
do not specify a probability distribution over full sequences, i.e. they do not estimate a well-defined
density [20]. Moreover, in some cases ultra-large scale models and/or training procedures are kept
private or semi-private, making it difficult to understand what exactly was in the training and test
sets [33, 6].

Nevertheless, we can rule out the idea that protein language models all achieve excellent fitness
estimation and excellent density estimation on single family datasets. We studied UniRep, an
LSTM-based protein language model trained on a diverse evolutionary dataset (UniRef50), since
UniRep provides a well-defined density over sequences (unlike ESM-1v and MSA Transformer)
and is publicly available (unlike ProGen) [1]. We evaluated UniRep on the experimental assay
prediction task, comparing to the BEAR posterior predictive distribution and to Wavenet, both of
which were inferred from single family datasets (as described in Sec. 7). If UniRep were to show
similar or better perplexity to the BEAR posterior predictive, and similar or better fitness estimation

4In particular, this can occur if the amount of regularization or the point of early stopping change with
increasing amounts of data N , say because these values are chosen based on performance on a downstream task.
In this case, regularization and early stopping will not act like a standard parametric prior, and their effects will
not necessarily be asymptotically washed out in the large N limit.

28

performance to Wavenet, it could potentially represent a counterexample to our theory on the benefits
of misspecification. Instead, we find that UniRep has substantially worse perplexity as compared
to the BEAR posterior predictive (Fig. 15) and similar fitness estimation performance to the BEAR
posterior predictive (median Spearman of 0.174 for UniRep, 0.169 for BEAR and 0.443 for Wavenet).
We therefore see no evidence that protein language models contradict our findings on single family
models, though much further work remains to be done.

29

