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A Proof of Theorem 1

Assume a non-degenerate training set ||x; — x;|| > 0,V¢ # j. Theorem 1 in the main script is
re-written:

Theorem 1. At each gradient descent iteration t with step size 1 = O(Amin (Ko)), the MSE loss L
suffered by a properly-initialized feedforward ReLU network decays as

Lit1 < (1 =0 mAmin (K4))) Lt (D
with high probability over initialization.

We adopt the convention that all gradients are flattened in vector form and use the Euclidean norms
to represent their size. First we express training dynamics as a recursion:

Lemma 1. Feedforward DNNs with once-differentiable activation functions trained using gradient
descent on the MSE loss L with step size 1 follows the recursion:

Lir1 < (1 =1 min (Kt)) Lo 4 & + €, 2
where & = fo VLI (VL — VL, — VL)) dyand e, = %(f.gt+1 — fa,)?

Proof. This derivation is mostly from |Du et al.|(2019)), but we include the proof under our notations
for completeness. Let e; = y — fp,. A standard technique with triangular inequality gives

£t+1 < ‘Ct + ||f9t+1 - f9t||2 - 26? (f9t+1 - f‘9t> . (3)
Let h(n) = f(6; — nVL;). By the fundamental theorem of calculus,
f91+1 - et - h( ) h(O)

n
— / B (7)dy = / 0)dy +/ 1 (7) — b(0)dy
0
Since 1'(0) = =V f(0:)"VL, = —eV f§.V fp, = —€Tr (Ky), we have
n
eT(f9t+1 - f(%,) = _WBTICte + / h/(’Y) - h’(O)d’y < —1Amin (’Ct) Ly + &
0

Substituting into Eq. gives Eq. together with e; fon W(y) = K(0)dy =
JoVLT (VL = VL0 — vV L) dy. O

The above bound sheds light on training dynamics, where the first term decreases linearly with rate
determined by the Gram matrix’ eigenvalue. To establish Thm. []that states the loss descends at each
gradient step, it remains to prove that residual terms &;, €, grow (sub-)linearly with L.

An extension of smoothness and convexity is defined following (Allen-Zhu et al.,[2019):
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Definition 1 (Smoothness). A non-negative, once-differentiable function g € C*(X) is (v, 3)-smooth
if for every x,y € X,

9(y) < g(x) + V()" (y — ) + av/g(z)|ly — 2| + Blly — z|? “)

Definition 2 (Near-Convexity). A non-negative function g € C1(X) has gradients Vg that scale as
(u, M) if ,

ng(x) < [Vg(@)l|” < Mg(x), Vo € X. (5)

If a function’s gradients scale as (., M), we say the gradient scale is bounded.

First we invoke the following lemma (Thms. 3 & 4 in|Allen-Zhu et al.|(2019)) to show that the MSE
loss remains semi-smooth and nearly convex throughout training for wide ReLLU networks:

Lemma 2. For sufficiently small |0 — 0y|| and ||6 — 6’
IVLO)]* =© (L))

, the loss remains nearly convex

and semi-smooth
L)< LO)+VLWO) O —0)+0 (L0 0~ 0]) +0 (10 - 0]*)
with high probability hiding constants depending on architecture width, depth, and dataset size.

Above we use O (+) as upper and lower bounds matching up to multiplicative constants.

Next we bound the residual terms in Lemma/[T}

Lemma 3. [f the loss function L, remains smooth and near-convex as defined above,
e, & < O(°) Ly

with high probability over initialization.

Proof. The following inequality will be used for («, 8)-smooth functions.

Proposition 1. If g is («, B)-smooth,

(Vg(y) = Vg(@))(y — =) < a(v/g(@) + V9)lly — =l +26]ly — = (6)
Proof. Expanding the LHS in terms of = and y then summing their upper bounds gives the inequality.
O

Bound on &; Proposition|l|with £ at ; and 8; — vV L; can be used to bound the integrand.

(VL = VL0 =4V L)) VL < al|VEN (Vi + VEO: =7V L) ) + 28I VL|?

Using the definition of smoothness
L0 = AVL) < Lo+ (aVEVE] = VL) + B2V L :

and by near-convexity,

< (1 +v(aVM — p) + 572) L. ()
Leth = (aW—u) /2B and ¢ = 1/8 — b2.
VE 4 VB =AVED) < VE (14 VB (v+ bl + Vel ) ) = VL (VBr+ )

by the triangle inequality. Again, |[VL;||*> < M L;, and we have a bound on the integrand as

o VL (VEe+ VEG=AVE)) + 28I VL? < (aVD (VB + ) + 296M) £,

=: (a'y+ ") Ly

n
=& < Et/ ay+d'dy =0 () L.
0
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where we hide constants that depend on the architecture and dataset size.

Bound on ¢, It is sufficient that ¢, < (a772 + )\minn) L, for any a so that £, is guaranteed to decrease
for small n. This proof is quite involved and relies on analytic expressions for ReLU networks. To
this end, we follow the setting in |Allen-Zhu et al.|(2019) and WLOG fix the last layer’s weights as B,
denoting pre- and post- activations by ¢', h’ respectively and an ‘active-indicator’ matrix D! € R%*¢,

Di’k =1 {g}ﬁk > O}, and weight matrices W; € R9*4 for each layer [ € [L], where d denotes the
width of the hidden layers and L is the number of layers.

Notice that for ReLU networks, we can write the post-activations at every layer as h},, — h} =
Dy WeihiZy — DiWh™"
Proposition 2 (Distributive diagonal matrices). There exists D = (Dl, ce [)L) with D! €
[—1,1]%%4 for every | such that

Di Wigihipy — DiW{hi™" = (Di + DZ) (Weeahiin — Wihi™h)
The above proposition follows from case-by-case considerations of ReLU activations, see Proposition

11.3 in|Allen-Zhu et al.|(2019).

Proposition 3 (Linear expansion of post-activations). There exists some D' € [—1,1]"*? ar each |
such that

l
Wi — b = =S (Db DY) W Wt (D5 4+ D7) x (T £0) B

r=1

The following proposition due to |Allen-Zhu et al.[(2019) (Lemma 8.6b and Lemma 7.1, respectively)
gives bounds on the first line on the RHS and last term:

Proposition 4. For everyl € [L] and r € [l],

|(Di+ D) wi---witt (Dp + D7) || < OWD)IINEL | < of1).

Applying Cauchy-Schwartz inequality and the fact that norm of sums < sum of norms to Propositions

Pland

||f9t+1 - f9t|| = ||B (htL+1 - hf)”v S UO(LISﬁ)||VLt“
Since |VL:|| < VML,
et = [ forrs = fo | < O(LPdM)n* Ly = O(n®) Ly ®)
O

Theorem|I]is a direct consequence of Lemmas[I]and 3] and the step-size can be selected based on Ko
because KC; remains in a neighborhood of Ky throughout training (Arora et al., [2019).
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