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1 DERIVATION OF EQUATION 8

The result provided in Equation 8 is derived from the following classical result: Given x ∈ R3\{0},

ρ
x

||x||
= argmax

||δ||2≤ρ

δ⊤x

This can be obtained using the equality case of Cauchy–Schwarz inequality applied to the scalar
product δ⊤x for δ in the a closed ball of radius ρ and center 0. Then, given the perturbation δ̂

is defined as: δ̂ = argmax||δ||2≤ρ L(θ, q + δ), we can approximate δ̂ using a first order taylor
expansion of the loss (Equation 6 in the paper) as:

δ̂ ≈ argmax
||δ||2≤ρ

δ⊤∇qL(θ, q)

Consequently, the final expression follows as an application of the above result.

2 IMPLEMENTATION DETAILS

For sparse inputs, we experimented with point clouds of size Np = 1024. While our main focus
here is learning SDFs from sparse, noisy and unoriented point clouds, we found that addressing all
these challenges under extremely sparse inputs (e.g. 300) leads in many cases to reconstructions that
are not very meaningful or useful, and which are also hard to assess properly with standard metrics.
Our MLP (fθ) follows the architecture in NP (Ma et al. (2021)). We train for Nit = 40000 iterations
using the Adam optimizer. We use batches of size Nb = 5000. Following NP, we set K = 51 for
estimating local standard deviations σp. We train on a NVIDIA RTX A6000 GPU. Our method takes
8 minutes in average to converge for a 1024 sized input point cloud. In the interest of practicality
and fairness in our comparisons, we decide the evaluation epoch for all the methods for which we
generated results (including our main baseline) in the same way: we chose the best epoch for all
methods alike in terms of chamfer distance between the reconstruction and the input point cloud.

METRICS

Following the definitions from Boulch & Marlet (2022) and Williams et al. (2019), we present here
the formal definitions for the metrics that we use for evaluation in the main submission. We denote
by S and Ŝ the ground truth and predicted mesh respectively. All metrics are approximated with
100k samples from S and Ŝ.

,

Chamfer Distance (CD1) The L1 Chamfer distance is based on the two-ways nearest neighbor
distance:

CD1 =
1

2|S|
∑
v∈S

min
v̂∈Ŝ

∥v − v̂∥2 +
1

2|Ŝ|

∑
v̂∈Ŝ

min
v∈S

∥v̂ − v∥2.
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Chamfer Distance (CD2) The L2 Chamfer distance is based on the two-ways nearest neighbor
squared distance:

CD2 =
1

2|S|
∑
v∈S

min
v̂∈Ŝ

∥v − v̂∥22 +
1

2|Ŝ|

∑
v̂∈Ŝ

min
v∈S

∥v̂ − v∥22.

F-Score (FS) For a given threshold τ , the F-score between the meshes S and Ŝ is defined as:

FS
(
τ,S, Ŝ

)
=

2 Recall · Precision
Recall + Precision

,

where
Recall

(
τ,S, Ŝ

)
=|

{
v ∈ S, s.t. minv̂∈Ŝ ∥v − v̂∥2⟨ τ

}
|,

Precision
(
τ,S, Ŝ

)
=|

{
v̂ ∈ Ŝ, s.t. minv∈S ∥v − v̂∥2⟨ τ

}
| .

Following Mescheder et al. (2019) and Peng et al. (2020), we set τ to 0.01.

Normal consistency (NC) We denote here by nv the normal at a point v in S. The normal consis-
tency between two meshes S and Ŝ is defined as:

NC =
1

2|S|
∑
v∈S

nv · nclosest(v,Ŝ) +
1

2|Ŝ|

∑
v̂∈Ŝ

nv̂ · nclosest(v̂,S),

where
closest(v, Ŝ) = argminv̂∈Ŝ ∥v − v̂∥2.

Hausdorff distance (dH ) This metric is defined as follows:

dH = max

(
max
v∈S

min
v̂∈Ŝ

∥v − v̂∥2,max
v̂∈Ŝ

min
v∈S

∥v − v̂∥2
)

3 SRB BENCHMARK VISUAL COMPARAISION IN

Figure 1: SRB (Williams et al. (2019)) reconstructions from unoriented sparse and dense inputs.

4 ADDITIONAL ABLATION

Increasing the number of input points we compare our method with 1024 input points to NP
baseline with varying number of input points by adding 1/3 of the initial input size ( 1024) at each
run.
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CD1
NP + (N =1024) 1.10
NP + 33% (N = 1365) 0.92
NP + 66% (N = 1707) 0.54
NP + 100% (N = 2048) 0.46
Ours (N = 1024) 0.49

Table 1: NP Baseline performance with varying number of input points on the SRB benchmark.
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