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ABSTRACT

Diffusion probabilistic models have achieved mainstream success in many gen-
erative modeling tasks, from image generation to inverse problem solving. A
distinct feature of these models is that they correspond to deep hierarchical latent
variable models optimizing a variational evidence lower bound (ELBO) on the
data likelihood. Drawing on a basic connection between likelihood modeling and
compression, we explore the potential of diffusion models for progressive coding,
resulting in a sequence of bits that can be incrementally transmitted and decoded
with progressively improving reconstruction quality. Unlike prior work based on
Gaussian diffusion or conditional diffusion models, we propose a new form of
diffusion model with uniform noise in the forward process, whose negative ELBO
corresponds to the end-to-end compression cost using universal quantization. We
obtain promising first results on image compression, achieving competitive rate-
distortion and rate-realism results on a wide range of bit-rates with a single model,
bringing neural codecs a step closer to practical deployment. Our code can be
found at https://github.com/mandt-lab/uqdm.

1 INTRODUCTION

A diffusion probabilistic model can be equivalently viewed as a deep latent-variable model (Sohl-
Dickstein et al., 2015; Ho et al., 2020; Kingma et al., 2021), a cascade of denoising autoencoders that
perform score matching at different noise levels (Vincent, 2011; Song & Ermon, 2019), or a neural
SDE (Song et al., 2021b). Here we take the latent-variable model view and explore the potential of
diffusion models for communicating information. Given the strong performance of these models on
likelihood estimation (Kingma et al., 2021; Nichol & Dhariwal, 2021), it is natural to ask whether
they also excel in the closely related task of data compression (MacKay, 2003; Yang et al., 2023).

Ho et al. (2020); Theis et al. (2022) first suggested a progressive compression method based on an
unconditional diffusion model and demonstrated its strong potential for data compression. Such a
progressive codec is desirable as it allows us to decode data reconstructions from partial bit-streams,
starting from lossy reconstructions at low bit-rates to perfect (lossless) reconstructions at high bit-
rates, all with a single model. The ability to decode intermediate reconstructions without having
to wait for all bits to be received is a highly useful feature present in many traditional codecs, such
as JPEG. The use of diffusion models has the additional advantage that we can, in theory, obtain
perfectly realistic reconstructions (Theis et al., 2022), even at ultra-low bit-rates. Unfortunately, the
proposed method requires the communication of Gaussian samples across many steps, which remains
intractable because the exponential runtime complexity of channel simulation (Goc & Flamich, 2024).

In this work, we take first steps towards a diffusion-based progressive codec that is computationally
tractable. The key idea is to replace Gaussian distributions in the forward process with suitable
uniform distributions and adjust the reverse process distributions accordingly. These modifications
allow the application of universal quantization (Zamir & Feder, 1992) for simulating uniform noise
channels, avoiding the intractability of Gaussian channel simulation in (Theis et al., 2022).

Specifically, our contributions are as follows:
∗Equal contribution
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Figure 1: Example reconstructions from several traditional and neural codecs, chosen at roughly
similar bitrates. At high bitrates, our UQDM method preserves details (e.g. shape and color pattern
of the spider, or sharpness of the calligraphy) better than other neural codecs. Note that among the
methods considered here, only ours and CTC (Jeon et al., 2023) implement progressive coding.

1. We introduce a new form of diffusion model, Universally Quantized Diffusion Model
(UQDM), that is suitable for end-to-end learned progressive data compression. Unlike in the
closely-related Gaussian diffusion model (Kingma et al., 2021), compression with UQDM
is performed efficiently with universal quantization, avoiding the generally exponential
runtime of relative entropy coding (Agustsson & Theis, 2020; Goc & Flamich, 2024).

2. We investigate design choices of UQDM, specifying its forward and reverse processes
largely by matching the moments of those in Gaussian diffusion, and obtain the best results
when we learn the reverse-process variance as inspired by Nichol & Dhariwal (2021).

3. We provide theoretical insight into UQDM in relation to VDM, and derive the continuous-
time limit of its forward process approaching that of the Gaussian diffusion. These results
may inspire future research in improving the modeling formalism and training efficiency.

4. We apply UQDM to image compression, and obtain competitive rate-distortion and rate-
realism results which exceed existing progressive codecs at a wide range of bit-rates (up to
lossless compression), all with a single model. Our results demonstrate, for the first time,
the high potential of an unconditional diffusion model as a practical progressive codec.

2 BACKGROUND

Diffusion models Diffusion probabilistic models learn to model data by inverting a Gaussian
noising process. Following the discrete-time setup of VDM (Kingma et al., 2021), the forward
noising process begins with a data observation x and defines a sequence of increasingly noisy latent
variables zt with a conditional Gaussian distribution,

q(zt|x) = N (αtx, σ
2
t I), t = 0, 1, ..., T.

Here αt and σ2
t are positive scalar-valued functions of time, with a strictly monotonically increasing

signal-to-noise-ratio SNR(t) := α2
t /σ

2
t . The variance-preserving process of DDPM (Ho et al.,

2020) corresponds to the choice α2
t = 1 − σ2

t . The reverse-time generative model is defined by a
collection of conditional distributions p(zt−1|zt), a prior p(zT ) = N (0, I), and likelihood model
p(x|z0). The conditional distributions p(zt−1|zt) := q(zt−1|zt,x = x̂θ(zt, t)) are chosen to have
the same distributional form as the “forward posterior” distribution q(zt−1|zt,x), with x estimated
from its noisy version zt through the learned denoising model x̂θ. Further details on the forward and
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backward processes can be found in Appendix A and B. Throughout the paper the logarithms use
base 2. The model is trained by minimizing the negative ELBO (Evidence Lower BOund),

L(x) = KL(q(zT |x) ∥ p(zT ))︸ ︷︷ ︸
:=LT

+E [− log p(x|z0)]︸ ︷︷ ︸
:=Lx|z0

+

T∑
t=1

E [KL(q(zt−1|zt,x) ∥ p(zt−1|zt))]︸ ︷︷ ︸
:=Lt−1

, (1)

where the expectations are taken with respect to the forward process q(z0:T |x). Kingma et al. (2021)
showed that a larger T corresponds to a tighter bound on the marginal likelihood log p(x), and as
T → ∞ the loss approaches the loss of a class of continuous-time diffusion models that includes the
ones considered by Song et al. (2021b).

Relative Entropy Coding (REC) Relative Entropy Coding (REC) deals with the problem of
efficiently communicating a single sample from a target distribution q using a coding distribution
p. Suppose two parties in communication have access to a common “prior” distribution p and
pseudo-random number generators with a common seed; a Relative Entropy Coding (REC) method
(Flamich et al., 2020) allows the sender to transmit a sample z ∼ q using close to KL(q ∥ p) bits on
average. If q arises from a conditional distribution, e.g., qx = q(z | x) is the inference distribution of
a VAE (which can be viewed as a noisy channel), a reverse channel coding or channel simulation
(Theis & Ahmed, 2022) algorithm then allows the sender to transmit z ∼ qx with x ∼ p(x) using
close to Ex∼p(x)[KL(q(z | x) ∥ p(z))] bits on average. At a high level, a typical REC method works
as follows. The sender generates a (possibly large) number of candidate z samples from the prior p,

zn ∼ p, n = 1, 2, 3, ...,

and appropriately chooses an index K such that zK is a fair sample from the target distribution, i.e.,
zK ∼ q. The chosen index K ∈ N is then converted to binary and transmitted to the receiver. The
receiver recovers zK by drawing the same sequence of z candidates from p (made possible by using
a pseudo-random number generator with the same seed as the sender) and stopping at the Kth one.

A major challenge of REC algorithms is that their computational complexity generally scales ex-
ponentially with the amount of information being communicated (Agustsson & Theis, 2020; Goc
& Flamich, 2024). As an example, the MRC algorithm (Cuff, 2008; Havasi et al., 2018) draws M
candidate samples and selects K ∈ {1, 2, , ...,M} with a probability proportional to the importance
weights, q(zn)/p(zn), n = 1, ...,M ; similarly to importance sampling, M needs to be on the order
of 2KL(q∥p) for zK to be (approximately) a fair sample from q, thus requiring a number of drawn
samples that scales exponentially with the relative entropy KL(q∥p) (the cost of transmitting K is thus
logM ≈ KL(q∥p) bits). The exponential complexity prevents, e.g., naively communicating the entire
latent tensor z in a Gaussian VAE for lossy compression, as the relative entropy KL(q(z|x) ∥ p(z))
easily exceeds thousands of bits, even for a small image. This difficulty can be partly remedied by
performing REC on sub-problems with lower dimensions (Flamich et al., 2020; 2022) for which
computationally viable REC algorithms exist (Flamich et al., 2024; Flamich, 2024), but at the expense
of worse bitrate efficiency due to the accumulation of codelength overhead across the dimensions.

Progressive Coding with Diffusion A progressive compression algorithm allows for lossy recon-
structions with improving quality as more bits are sent, up till a lossless reconstruction. This results
in variable-rate compression with a single bitstream, and is highly desirable in practical applications.

As we will explain, the NELBO of a diffusion model (eq. (1)) naturally corresponds to the lossless
coding cost of a progressive codec, which can be optimized end-to-end on the data distribution of
interest. Given a trained diffusion model, a REC algorithm, and a data point x, we can perform
progressive compression as follows (Ho et al., 2020; Theis et al., 2022): Initially, at time T , the sender
transmits a sample of q(zT |x) under the prior p(zT ), using LT bits on average. At each subsequent
time step t, the sender transmits a sample of q(zt−1|zt,x) given the previously transmitted zt, under
the (conditional) prior p(zt−1|zt), using approximately Lt−1 bits. Finally, given z0 at t = 0, x can
be transmitted losslessly under the model p(x|z0) by an entropy coding algorithm (e.g., arithmetic
coding), with a codelength close to Lx|z0

bits (Polyanskiy & Wu, 2022, Chapter 13.1). Thus, the
overall cost of losslessly compressing x sums up to L(x) bits, as in the NELBO in eq. (1). Crucially, at
any time t, the receiver can use the most-recently-received zt to obtain a lossy data reconstruction x̂t.
For this, several options are possible: Ho et al. (2020) consider using the diffusion model’s denoising
prediction x̂θ(zt), while Theis et al. (2022) consider sampling x̂t ∼ p(x|zt), either by ancestral
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sampling or a probability flow ODE (Song et al., 2021b). Note that if the reverse generative model
captures the data distribution perfectly, then x̂t ∼ p(x|zt) follows the same marginal distribution as
the data and has the desirable property of perfect realism, i.e., being indistinguishable from real data
(Theis et al., 2022).

Universal Quantization Although general-purpose REC algorithms suffer from exponential run-
time (Agustsson & Theis, 2020; Goc & Flamich, 2024), efficient REC algorithms exist if we are
willing to restrict the kinds of target and coding distributions allowed (Flamich et al., 2022; 2024).
Here, we focus on the special case where the target distribution q is given by a uniform noise channel,
which is solved efficiently by Universal Quantization (UQ) (Roberts, 1962; Zamir & Feder, 1992;
Agustsson & Theis, 2020). Specifically, suppose we (the sender) have access to a scalar r.v. Y ∼ pY ,
and would like to communicate a noise-perturbed version of it,

Ỹ = Y + U,

where U ∼ U(−∆/2,∆/2) is an independent r.v. with a uniform distribution on the interval [−∆/2,∆/2].
UQ accomplishes this as follows: Step 1. Perturb Y by adding another independent noise U ′ ∼
U(−∆/2,∆/2), and quantize the result to the closet quantization point K on a uniform grid of
width ∆, i.e., computing K := ∆⌊Y+U ′

∆ ⌉ where ⌊·⌉ denotes rounding to the nearest integer. Step
2. Entropy code and transmit K under the conditional distribution of K given U ′. Step 3. The
receiver draws the same U ′ by using the same random number generator and obtains a reconstruction
Ŷ := K − U ′ = ∆⌊Y+U ′

∆ ⌉ − U ′. Zamir & Feder (1992) showed that Ŷ indeed has the same
distribution as Ỹ , and the entropy coding cost of K is related to the differential entropy of Ỹ via

H[K|U ′] = I(Y ; Ỹ ) = h(Ỹ )− log(∆).

In the above, the optimal entropy coding distribution P(K|U ′ = u′) is obtained by discretizing
pỸ := pY ⋆ U(−∆/2,∆/2) on a grid of width ∆ and offset by U ′ = u′ (Zamir & Feder, 1992), where
⋆ denotes convolution. If the true pỸ is unknown, we can replace it with a surrogate density model
fθ(ỹ) during entropy coding and incur a higher coding cost,

Ey∼PY
[KL(u(·|y) ∥ fθ(·))] ≥ I(Y ; Ỹ ), (2)

where u(·|y) denotes the density function of the uniform noise channel qỸ |Y=y = U(y−∆/2, y+∆/2).
It can be shown that the optimal choice of fθ is the convolution of pY with U(−∆/2,∆/2). Therefore,
as in prior work (Agustsson & Theis, 2020; Ballé et al., 2018), we will choose fθ to have the form of
another underlying density model gθ convolved with uniform noise, i.e.

fθ(·) = gθ(·) ⋆ U(· ;−∆/2,∆/2). (3)

3 UNIVERSALLY QUANTIZED DIFFUSION MODELS

We follow the same conceptual framework of progressive compression with diffusion models as in
(Ho et al., 2020; Theis et al., 2022), reviewed in the previous section. While Theis et al. (2022) use
Gaussian diffusion, relying on the communication of Gaussian samples which remains intractable
in higher dimensions, we want to apply UQ to similarly achieve a compression cost given by the
NELBO, while remaining computationally efficient. We therefore introduce a new model with a
modified forward process and reverse process, which we term universally quantized diffusion model
(UQDM), substituting Gaussian noise channels for uniform noise channels.

3.1 FORWARD PROCESS

The forward process of a standard diffusion model is often given by the transition kernel q(zt+1|zt)
(Ho et al., 2020) or perturbation kernel q(zt|x) (Kingma et al., 2021), which in turn determines the
conditional (reverse-time) distributions q(zT |x) and {q(zt−1|zt,x)|t = 1, ..., T} appearing in the
NELBO in eq. (1). As we are interested in operationalizing and optimizing the coding cost associated
with eq. (1), we will directly specify these conditional distributions to be compatible with UQ, rather
than deriving them from a transition/perturbation kernel. We thus specify the forward process with
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the same factorization as in DDIM (Song et al., 2021a) via q(z0:T |x) = q(zT |x)
∏T

t=1 q(zt−1|zt,x),
and consider a discrete-time non-Markovian process as follows,{

q(zT |x) := N (αTx, σ
2
T I),

q(zt−1|zt,x) := U
(
b(t)zt + c(t)x− ∆(t)

2 , b(t)zt + c(t)x+ ∆(t)
2

)
, t = 1, 2, ..., T,

(4)

where b(t), c(t), and ∆(t) are scalar-valued functions of time. Note that unlike in Gaussian diffusion,
our q(zt−1|zt,x) is chosen to be a uniform distribution so that it can be efficiently simulated with UQ
(as a result, our q(zt|x) for any t ̸= T does not admit a simple distributional form). There is freedom
in these choices of the forward process, but for simplicity we base them closely on the Gaussian case:
we choose a standard isotropic Gaussian q(zT |x), and set b(t), c(t), ∆(t) so that q(zt−1|zt,x) has
the same mean and variance as in the Gaussian case (see Appendix A for more details):

b(t) =
αt

αt−1

σ2
t−1

σ2
t

, c(t) = σ2
t|t−1

αt−1

σ2
t

, ∆(t) =
√
12σt|t−1

σt−1

σt
, with σ2

t|t−1 := σ2
t −

α2
t

α2
t−1

σ2
t−1.

We note here that q(zt|zT ,x) can be written as a sum of uniform distributions, which as we increase
T → ∞, converges in distribution to a Gaussian by the Central Limit Theorem. This implies that
q(zt|x) also converges to a Gaussian for every t, and that our forward process has the same underlying
continuous-time limit as in VDM (Kingma et al., 2021). We give the precise statement and a proof in
Appendix A.3.

As in VDM (Kingma et al., 2021), the forward process schedules (i.e., αt and σt, as well as
b(t), c(t),∆(t)) can be learned end-to-end, e.g., by parameterizing σ2

t = sigmoid(ϕ(t)), where ϕ is
a monotonic neural network. We did not find this to yield significant improvements compared to
using a linear noise schedule similar to the one in Kingma et al. (2021).

3.2 BACKWARD PROCESS

Analogously to the Gaussian case, we want to define a conditional distribution p(zt−1|zt) that
leverages a denoising model x̂t = x̂θ(zt, t) and closely matches the forward “posterior” q(zt−1|zt,x).
In our case, the forward “posterior” corresponds to a uniform noise channel with width ∆(t), i.e.,
zt−1 = b(t)zt + c(t)x+∆(t)ut,ut ∼ U(−1/2, 1/2); to simulate it with UQ, we choose a density
model for zt−1 with the same form as the convolution in eq. (3). Specifically, we let

p(zt−1|zt) = gθ(zt−1; zt, t) ⋆ U(−∆(t)/2,∆(t)/2), (5)

where gθ(zt−1; zt, t) is a learned density chosen to match q(zt−1|zt,x). Recall in Gaussian diffusion
(Kingma et al., 2021), p(zt−1|zt) is chosen to be a Gaussian of the form q(zt−1|zt,x = x̂θ(zt; t)),
i.e., the same as q(zt−1|zt,x) but with the original data x replaced by a denoised prediction x =
x̂θ(zt; t). For simplicity, we base gθ closely on the choice of p(zt−1|zt) in Gaussian diffusion, e.g.,

gθ(zt−1; zt, t) = N (b(t)zt + c(t)x̂θ(zt; t), σ
2
Q(t)I) (6)

or a logistic distribution with the same mean and variance,

gθ(zt−1; zt, t) = Logistic
(
b(t)zt + c(t)x̂θ(zt; t), σ

2
Q(t)I

)
. (7)

where σ2
Q(t) is the variance of the Gaussian forward “posterior”, and we use the same noise-prediction

network for x̂θ as in (Kingma et al., 2021). We found the Gaussian and logistic distributions to
give similar results, but the logistic to be numerically more stable and therefore adopt it in all our
experiments.

Inspired by (Nichol & Dhariwal, 2021), we found that learning a per-coordinate variance in the reverse
process to significantly improve the log-likelihood, which we demonstrate in Sec. 5. In practice, this
is implemented by doubling the output dimension of the score network to also compute a tensor of
scaling factors sθ(zt), so that the variance of gθ is σ2

θ = σ2
Q(t)⊙ sθ(zt). Refer to Appendix B.2 for

a more detailed analysis of the log-likelihood and how a learned variance is beneficial.

We note that other possibilities for gθ exist besides Gaussian or logistic, e.g., mixture distributions
(Cheng et al., 2020), which trade off higher computation cost for increased modeling power. Analyz-
ing the time reversal of the our forward process, similarly to (Song et al., 2021a), may also suggest
better choices of the reverse-time density model gθ. We leave these explorations to future work.
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We adopt the same form of categorical likelihood model p(x|z0) as in VDM (Kingma et al., 2021),
as well as the use of Fourier features.

Algorithm 1 Encoding

zT ∼ p(zT )
for t = T, . . . , 2, 1 do

Let ∆t = ∆(t),µQ = b(t)zt + c(t)x.
Compute the parameters of p(zt−1|zt).
▷ Send zt−1 ∼ q(zt−1|zt,x) with UQ:
ut ∼ U(−1/2, 1/2).
kt = ∆t⌊

µQ

∆t
+ ut⌉.

Derive entropy model p(k|zt,ut) by dis-
cretizing p(zt−1|zt).

Entropy-encode kt under p(k|zt,ut).
zt−1 = kt −∆tut.

end for
Entropy-encode x with p(x|z0).

Algorithm 2 Decoding

zT ∼ p(zT ) ▷ Using shared seed
for t = T, . . . , 2, 1 do

Let ∆t = ∆(t).
Compute the parameters of p(zt−1|zt).
ut ∼ U(−1/2, 1/2). ▷ Using shared seed
Derive entropy model p(k|zt,ut) by dis-

cretizing p(zt−1|zt).
Entropy-decode kt under p(k|zt,ut).
zt−1 = kt −∆tut.
x̂t = x̂θ(zt−1; t− 1). ▷ Lossy

reconstruction
end for
Entropy-decode x with p(x|z0). ▷ Lossless

3.3 PROGRESSIVE CODING

Given a UQDM trained on the NELBO in eq. (1), we can use it for progressive compression similarly
to (Ho et al., 2020; Theis et al., 2022), outlined in Section 2.

The initial step t = T involves transmitting a Gaussian zT . Since we do not assume access to an
efficient REC scheme for the Gaussian channel, we will instead draw the same zT ∼ p(zT ) = N (0, I)
on both the encoder and decoder side, with the help of a shared pseudo-random seed.1 To avoid a
train/compression mismatch, we therefore always ensure q(zT |x) ≈ p(zT ) and hence LT ≈ 0. At
any subsequent step t, instead of sampling zt−1 = b(t)zt + c(t)x+∆(t)u′

t as in training, we apply
UQ to communicate the “forward posterior” mean vector µQ := b(t)zt + c(t)x. Specifically, given
zt, the sender computes µQ and the parameters of p(zt−1|zt) (by evaluating the score network),
draws a pseudo-random noise ut ∼ U(−1/2, 1/2), quantizes µQ to kt = ∆t⌊

µQ

∆t
+ ut⌉ where

∆t := ∆(t), derives an entropy model p(k|zt,ut) (by discretizing p(zt−1|zt) on a grid of width ∆t

and offset by ut), and entropy-encodes kt under p(k|zt,ut). The receiver draws the same pseudo-
random ut ∼ U(−1/2, 1/2), entropy-decodes kt under the same entropy model p(k|zt,ut), and
computes zt−1 = kt − ∆tut and (optionally) a lossy reconstruction x̂t from zt−1. Finally, after
having transmitted z0 when t = 1, x is losslessly compressed using the entropy model p(x|z0).
Pseudocode can be found in Algorithms 1 and 2. Note that we can replace the denoised prediction
x̂t = x̂θ(zt−1; t − 1) with more sophisticated ways to obtain lossy reconstructions such as flow-
based reconstruction or ancestral sampling (Theis et al., 2022). As our method is progressive,
the algorithm can be stopped at any time and the most recent lossy reconstruction be used as the
output. Compared to compression with VDM (Theis et al., 2022), the main difference is that we
transmit zt−1 ∼ q(zt−1|zt,x) under p(zt−1|zt) using UQ instead of Gaussian channel simulation;
the overall computation complexity is now dominated by the evaluation of the denoising network x̂θ

(for computing the parameters of p(zt−1|zt)), which scales linearly with the number of time steps.

We implemented the progressive codec using tensorflow-compression (Ballé et al.), and
found the actual file size to be within 3% of the theoretical NELBO.

4 RELATED WORK

Diffusion models (Sohl-Dickstein et al., 2015) have achieved impressive results on image generation
(Ho et al., 2020; Song et al., 2021a) and density estimation (Kingma et al., 2021; Nichol & Dhariwal,
2021). Our work is closely based on the latent-variable formalism of diffusion models (Ho et al.,

1This corresponds to a trivial REC problem where a sample from q = p can be transmitted using KL(q∥p) =
0 bits.
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2020; Kingma et al., 2021), with our forward and backward processes adapted from the Gaussian case.
Our forward process is non-Markovian like DDIM (Song et al., 2021a), and our reverse process uses
learned variance, inspired by (Nichol & Dhariwal, 2021). Recent research has focused on efficient
sampling (Song et al., 2021a; Pandey et al., 2023) and better scalability via latent diffusion (Rombach
et al., 2022), consistency models (Song et al., 2023), and distillation (Sauer et al., 2024), whereas we
focus on the compression task. Related to our approach, cold diffusion (Bansal et al., 2024) showed
that alternative forward processes other than the Gaussian still produce good image generation results.

Several diffusion-based neural compression methods exist, but they use conditional diffusion models
(Yang & Mandt, 2023; Careil et al., 2023; Hoogeboom et al., 2023) which do not permit progressive
decoding. Furthermore, they are also less flexible as a separate model has to be trained for each
bitrate. Progressive neural compression has so far been mostly achieved by combining non-linear
transform coding (for example using a VAE) with progressive quantization schemes. Such methods
include PLONQ (Lu et al., 2021), which uses nested quantization, DPICT (Lee et al., 2022) and its
extension CTC (Jeon et al., 2023), which use trit-plane coding, and DeepHQ (Lee et al., 2024) which
uses a learned quantization scheme. Finally, codecs based on hierarchical VAEs (Townsend et al.,
2024; Duan et al., 2023) are closely related but do not directly target the realism criterion.

5 EXPERIMENTS

We train UQDM end-to-end by directly optimizing the NELBO loss eq. (1), summing up Lt across
all time steps. This involves simulating the entire forward process {z0, ..., zT } according to eq. (4)
and can be computationally expensive when T is large but can be avoided by using a Monte-Carlo
estimate based on a single Lt as in the diffusion literature (Ho et al., 2020). We found a small T
(< 10) to give the best compression performance, and therefore leave the investigation of training
with a single-step Monte-Carlo objective to future work. Note that this would require sampling from
the marginal distribution q(zt|x), which becomes approximately Gaussian for large t (see Sec. 3.1).

When considering the progressive compression performance of VDM and UQDM, we consider
three ways of computing progressive reconstructions from zt: denoise, where x̂ = x̂θ(zt; t) is
the prediction from the denoising network; ancestral, where x̂ ∼ p(x|zt) is drawn by ancestral
sampling; and flow-based where x̂ ∼ p(x|zt) is computed deterministically using the probability
flow ODE as in (Theis et al., 2022). In VDM, the probability flow ODE produces the same trajectory
of marginal distributions as ancestral sampling, but gives improved lossy compression performance
(Theis et al., 2022). In the case of UQDM, we apply the same update equations and observe similar
benefits, likely due to the continuous-time equivalence of the underlying processes of UQDM and
VDM. See Appendix B.3 for details. Note that DiffC-A and DiffC-F (Theis et al., 2022) directly
correspond to our VDM results with ancestral and flow-based reconstructions.

In all experiments involving VDM and UQDM, we always use the same denoising U-net architecture
for both, except UQDM uses twice as many output dimensions to additionally predict the reverse-
process variance (see Sec. 3). We refer to Appendix Sec. C for further experiment details.

5.1 SWIRL TOY DATA

We obtain initial insights into the behavior of our proposed UQDM by experimenting on toy swirl data
(see Appendix C.1 for details) and comparing with the hypothetical performance of VDM (Kingma
et al., 2021).

First, we train UQDM end-to-end for various values of T ∈ {3, 4, 5, 10, 15, 20, 30}, with and without
learning the reverse process variance. For comparison, we also train a single VDM with T = 1000,
but compute the progressive-coding NELBO eq. (1) using different T . Fig. 2 plots the resulting
NELBO values, corresponding to the bits-per-dimension cost of lossless compression. We observe
that for UQDM, learning the reverse-process variance significantly improves the NELBO across all
T , and a higher T is not necessarily better. In fact, there seems to be an optimal T ≈ 5, for which
we obtain a bpd of around 8. The theoretical performance of VDM, by comparison, monotonically
improves with T (green curve) until it converges to a bpd of 5.8 at T = 1000, as consistent with
theory (Kingma et al., 2021). We also tried initializing a UQDM without learned reverse-process
variances to use the pre-trained VDM weights; interestingly, this resulted in very similar performance
to the end-to-end trained result (blue curve), and further finetuning gave little to no improvement.
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Figure 2: Results on swirl data. The VDM curves correspond to the hypothetical performance of
REC that remains computationally intractable. Left: Lossless compression rates v.s. the choice of
T , for UQDM with/without learned reverse-process variance (blue/orange) and VDM (green). For
UQDM, learning the reverse-process variance significantly improved the NELBO, and an optimal
T ≈ 5. Middle, Right: Progressive lossy compression performance for VDM and UQDM, measured
in fidelity (PSNR) v.s. bit-rate (middle), or realism (sliced Wasserstein distance) v.s. bit-rate (right).

Figure 3: Progressive lossy compression performance of UQDM on the CIFAR10 dataset, comparing
fidelity (PSNR) and realism (FID) with bit-rate per pixel (bpp), using either ancestral sampling or
denoised prediction to obtain progressive reconstructions as indicated. The VDM curve corresponds
to hypothetical performance of REC that is computationally intractable. We achieve better fidelity
and realism than JPEG and JPEG2000 across all bit-rates and than BPG in the high bit-rate regime.

This suggests that a pretrained VDM can already be used for progressive compression with UQ via
our moment-matching scheme (see Section 3), although the compression performance will be much
worse compared to end-to-end trained UQDM with learned reverse-process variances.

We then examine the lossy compression performance of progressive coding. Here, we train UQDM
end-to-end with learned reverse-process variances, and perform progressive reconstruction by ances-
tral sampling. Figure 2 plots the results in fidelity v.s. bit-rate and realism v.s. bit-rate. For reference,
we also show the theoretical performance of VDM using T = 100 discretization steps, assuming a
hypothetical REC algorithm that operates with no overhead. The results are consistent with those on
lossless compression, with a similar performance ranking for T among UQDM, and a gap remains to
the hypothetical performance of VDM.

Finally, we examine the quality of unconditional samples from UQDM with varying T . Although
our earlier results indicate worse compression performance for T > 5, Figure 7 shows that UQDM’s
sample quality monotonically improves with increasing T .

5.2 CIFAR10

Next, we apply our method to natural images. We start with the CIFAR10 dataset containing 32× 32
images. We train a baseline VDM model with a smaller architecture than that used by Kingma et al.
(2021), converging to around 3 bits per dimension. We use the noise schedule σ2

t = σ(γt) where γt
is linear in t with learned endpoints γT and γ0. For our UQDM model we empirically find that T ≈ 4
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Figure 4: Progressive lossy compression performance of UQDM on the Imagenet64 dataset, compar-
ing fidelity (PSNR) and realism (FID) with bit-rate per pixel (bpp), using either ancestral sampling
or the denoised prediction to obtain progressive reconstructions as indicated. The VDM curve
corresponds to hypothetical performance of REC that remains computationally intractable. While
the reconstruction quality of other codecs like CDC or BPG plateaus at higher bit-rates, our method
continues to gradually improve fidelity and realism even at higher bit-rates where it achieves the best
results of any baseline. We beat compression performance of JPEG, JPEG2000, and CTC across all
bit-rates. Note that only UQDM, CTC, and JPEG2000 implement progressive coding.

yields the best trade-off between bit-rate and reconstruction quality. We train our model end-to-end
on the progressive coding NELBO eq. (1) with learned reverse-process variances.

We compare against the wavelet-based codecs JPEG, JPEG2000, and BPG (Bellard, 2018). For JPEG
and BPG we use a fixed set of quality levels and encode the images independently, for JPEG2000 we
instead use its progressive compression mode that allows us to set the approximate size reduction in
each quality layer and obtain a rate-distortion curve from one bit-stream.

As shown in Figure 3, we consistently outperform both JPEG and JPEG2000 over all bit-rates
and metrics. Even though BPG, a competitive non-progressive codec optimized for rate-distortion
performance, achieves better reconstruction fidelity (as measured in PSNR) in the low bit-rate
regime, our method closely matches BPG in realism (as measured in FID) and even beats BPG in
PSNR at higher bit-rates. The theoretical performance of compression with Gaussian diffusion (e.g.,
VDM) (Theis et al., 2022), especially with a high number of steps such as T = 1000, is currently
computationally infeasible, both due to the large number of neural function evaluations required, and
due the intractable runtime of REC algorithms in the Gaussian case. Still, for reference we report
theoretical results both for T = 1000 and T = 20, where the latter uses a smaller and more practical
number of diffusion/progressive reconstruction steps.

5.3 IMAGENET 64 × 64

Finally, we present results on the ImageNet 64 × 64 dataset. We train a baseline VDM model with
the same architecture as in (Kingma et al., 2021), reproducing their reported BPD of around 3.4;
we train a UQDM of the same architecture with learned reverse-process variances and T = 4. In
addition to the baselines described in the previous section, we also compare with CTC (Jeon et al.,
2023), a recent progressive neural codec, and CDC (Yang & Mandt, 2023), a non-progressive neural
codec based on a conditional diffusion model that can trade-off between distortion and realism
via a hyperparameter p. We separately report results for both p = 0, which purely optimizes the
conditional diffusion objective, and p = 0.9, which prioritizes more realistic reconstructions that also
jointly minimizes a perceptual loss. For CTC we use pre-trained model checkpoints from the official
implementation (Jeon et al., 2023); for CDC we fix the architecture but train a new model for each
bit-rate v.s. reconstruction quality/realism trade-off.

The results are shown in Figure 4. When obtaining progressive reconstructions from denoised
predictions, UQDM again outperforms both JPEG and JPEG2000. Our results are comparable to, if
not slightly better than, CTC, and even though the reconstruction quality of other codecs plateaus
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Figure 5: Example progressive reconstructions from UQDM trained with T = 4, obtained with
denoised prediction (left) or ancestral sampling (right). The latter avoids blurriness but introduces
graininess at low bit-rates, likely because the UQDM is unable to completely capture the data
distribution and achieve perfect realism (perfect realism is also difficult to achieve also for Gaussian
diffusion, as seen in the rate-realism plot of (Theis et al., 2022)). Flow-based reconstructions are
qualitatively similar to the denoising-based reconstructions and can be found in Figure 8.

at higher bit-rates, our method continues to improve quality and realism gradually, even at higher
bit-rates. Refer to Figures 1, 5 and 8 for qualitative results demonstrating progressive coding and
comparison across codecs. At high bit-rates, UQDM preserves details better than other neural
codecs. UQDM with denoised predictions tends to introduce blurriness, while ancestral sampling
introduces graininess at low bit-rates, likely because the UQDM is unable to completely capture
the data distribution and achieve perfect realism. Flow-based denoising matches the distortion of
denoised predictions but achieves significantly higher realism as measured by FID. We note that
the ideal of perfect realism (i.e., achieving 0 divergence between the data distribution and model’s
distribution) remains a challenge even for state-of-the-art diffusion models.

6 DISCUSSION

In this paper, we presented a new progressive coding scheme based on a novel adaptation of the
standard diffusion model. Our universally quantized diffusion model (UQDM) implements the idea of
progressive compression with an unconditional diffusion model (Theis et al., 2022) but bypasses the
intractability of Gaussian channel simulation by using universal quantization (Zamir & Feder, 1992)
instead. We present promising first results that match or outperform classic and neural compression
baselines, including a recent progressive neural image compression method (Jeon et al., 2023). Given
the practical advantages of a progressive neural codec – allowing for dynamic trade-offs between
rate, distortion and computation, support for both lossy and lossless compression, and potential for
high realism, all in a single model – our approach brings neural compression a step closer towards
real-world deployment.

Future work may further improve our approach to close the performance gap to Gaussian diffusion;
the latter represents the ideal lossy compression performance under a perfect realism constraint
for an approximately Gaussian-distributed data source (Theis et al., 2022). This may require more
sophisticated methods for computing progressive reconstructions that can achieve higher quality
with fewer steps, or exploring different parameterizations of the forward and reverse processes with
better theoretical properties. Finally, we expect further improvement in computation efficiency and
scalability when combining our method with ideas such as latent diffusion (Rombach et al., 2022),
distillation (Sauer et al., 2024), or consistency models (Song et al., 2023).

10



Published as a conference paper at ICLR 2025

ETHICS STATEMENT
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APPENDIX

A FORWARD PROCESS DETAILS

A.1 GAUSSIAN (DDPM/VDM)

For completeness and reference, we restate the forward process and related conditionals given in
(Kingma et al., 2021). The forward process is defined by

q(zt|x) := N (αtx, σ
2
t I),

where αt and σ2
t are positive scalar-valued functions of t. As in (Kingma et al., 2021), we define the

following notation shorthand which are used in the rest of the appendix: for any s < t, let

αt|s :=
αt

αs
, σ2

t|s := σ2
t −

α2
t

α2
s

σ2
s , bt|s :=

αt

αs

σ2
s

σ2
t

, ct|s := σ2
t|s

αs

σ2
t

, βt|s := σt|s
σs

σt
.

By properties of the Gaussian distribution, it can be shown that for any 0 ≤ s < t ≤ T ,

q(zt|zs) = N (αt|sx, σ
2
t|sI),

q(zs|zt,x) = N (bt|szt + ct|sx, β
2
t|sI),

In particular,

q(zt−1|zt,x) = N (bt|t−1zt + ct|t−1x, β
2
t|t−1I),

q(zt|zT ,x) = N (bT |tzt + cT |tx, β
2
T |tI),

and we can use the reparameterization trick to write

zt−1 = bt|t−1 zt + ct|t−1 x+ βt|t−1 ϵt, ϵt ∼ N (0, I),

zt = bT |t zT + cT |t x+ βT |t ϵT , ϵT ∼ N (0, I)

A.2 UNIFORM (OURS)

Our forward process is specified by q(zT |x) and q(zt−1|zt,x) for each t, and closely follows that of
the Gaussian diffusion. We set q(zT |x) to be the same as in the Gaussian case, i.e.,

q(zT |x) := N (αTx, σ
2
T I),

and q(zt−1|zt,x) to be a uniform with the same mean and variance as in the Gaussian case, such that

q(zt−1|zt,x) := U(bt|t−1zt + ct|t−1x−
√
3βt|t−1, bt|t−1zt + ct|t−1x+

√
3βt|t−1),

or in other words,

zt−1 = bt|t−1zt + ct|t−1x+
√
12βt|t−1ut, ut ∼ U(−1/2, 1/2).

In the notation of eq. (4) this corresponds to letting b(t) = bt|t−1, c(t) = ct|t−1, ∆(t) =
√
12βt|t−1.

It follows by algebraic manipulation that

zt = bT |t zT + cT |t x+

T∑
v=t+1

√
12δv|tuv︸ ︷︷ ︸

:=ωt

, (8)

where
uv ∼ U(−1/2, 1/2), v = t+ 1, ..., T

are independent uniform noise variables, and

δv|t := βv|v−1

v−1∏
j=t+1

bj|j−1 =
σ2
t

αt

√
SNR(v − 1)− SNR(v),
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where

SNR(s) :=
α2
s

σ2
s

.

It can be verified that

E [ωt] = 0,

Var (ωt) =

T∑
v=t+1

δ2v|tI =
σ4
t

α2
t

[SNR(t)− SNR(T )]I = β2
T |tI,

or in other words, at any step t our forward-process “posterior” distribution q(zt|zT ,x) has the same
mean and variance as in the Gaussian case.

A.3 CONVERGENCE TO THE GAUSSIAN CASE

We show that both forward processes are equivalent in the continuous-time limit. To allow comparison
across different number of steps T , we suppose that αt and σt are obtained from continuous-time
schedules α(·) : [0, 1] → R+ and σ(·) : [0, 1] → R+ (which were fixed ahead of time), such that
αt := α(t/T ) and σt := σ(t/T ) for t = 0, . . . , T , for any choice of T . As in VDM (Kingma et al.,
2021), we assume that the continuous-time signal-to-noise ratio snr(·) := α(·)2/σ(·)2 is strictly
monotonically decreasing.

To obtain the continuous-time limit, we hold the “continuous” time ρ := t
T fixed for some ρ ∈ [0, 1),

and let T → ∞ (or equivalently, let the time discretization 1
T → 0). We note that the quantities bT |t,

cT |t, β2
T |t only depend on ρ, and are thus well-defined when we hold ρ fixed and let T → ∞:

bT |t =
αT

αt

σ2
t

σ2
T

=
α(1)

α(ρ)

σ2(ρ)

σ2(1)
,

cT |t =

(
σ2(1)− α2(1)

α2(ρ)
σ2(ρ)

)
α(ρ)

σ2(1)
,

β2
T |t =

(
σ2(1)− α2(1)

α2(ρ)
σ2(ρ)

)
σ2(ρ)

σ2(1)
=

σ4(ρ)

α2(ρ)
(snr(ρ)− snr(1)).

We start by showing that our q(zt|zT ,x) converges to the corresponding Gaussian distribution in
VDM in the continuous-time limit, which in turn implies the convergence of our q(zt|x) to the
corresponding Gaussian distribution in VDM.
Theorem A.1.
For every fixed ρ := t

T ∈ [0, 1), q(zt|zT ,x)
d−→ N (bT |t zT + cT |t x, β

2
T |t I) as T → ∞.

Proof.
Recall the following fact in the forward process of UQDM (see eq. (8)):

zt = bT |t zT + cT |t x+

T∑
v=t+1

√
12δv|tuv︸ ︷︷ ︸

:=ωt

, (9)

where
uv ∼ U(−1/2, 1/2), v = t+ 1, ..., T

are independent uniform noise variables, and

δv|t := βv|v−1

v−1∏
j=t+1

bj|j−1 =
σ2
t

αt

√
SNR(v − 1)− SNR(v),

where

SNR(s) :=
α2
s

σ2
s

.
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It therefore suffices to show that ωt converges in distribution to N (0, β2
T |tI) in the continuous-time

limit. Since the different coordinates of ωt are independent, we focus on a single coordinate and
study the continuous-time limit of a scalar Ωt, given by a sum of scaled uniform variables,

Ωt :=

T∑
v=t+1

(√
12σ2(ρ)

α(ρ)

√
snr(

v − 1

T
)− snr(

v

T
)

)
Uv (10)

=

n∑
j=1

(√
12σ2(ρ)

α(ρ)

√
snr(ρ+

j − 1

T
)− snr(ρ+

j

T
)

)
Uj (11)

where Uj’s are i.i.d. U(−1/2, 1/2) variables, and in the last step we set n := n(T ) = T − t and
switched the summation index to j = v − t.

Define a triangular array of variables by

Xn,j =

(√
12σ2(ρ)

α(ρ)

√
snr(ρ+

j − 1

T
)− snr(ρ+

j

T
)

)
Uj ,

for j = 1, 2, ..., n and for n ∈ N+. For each n, {Xn,j}j=1,2,...,n are independent variables with
E[Xn,j ] = 0, and it can be verified that

n∑
j=1

E[X2
n,j ] = Var (Ωt) = β2

T |t =
σ4(ρ)

α2(ρ)
(snr(ρ)− snr(1)).

To apply the Lindeberg-Feller central limit theorem (Durrett, 2019, Theorem 3.4.10) to Ωt =
Xn,1 + ...+Xn,n, it remains to verify the condition

∀ϵ > 0, lim
n→∞

n∑
j=1

E[X2
n,j1{|Xn,j | > ϵ}] = 0.

Let ϵ > 0. Since snr(·) is continuous on a compact domain [0, 1], it is also uniformly continuous;
then there exists a δ such that

|snr(x1)− snr(x2)| <
(

ϵα(ρ)√
12σ2(ρ)

)2

, ∀x1, x2, |x1 − x2| < δ. (12)

Let T (and thus n = T − t) become sufficiently large such that 1
T < δ. Then, for all such T (and

thus n) sufficiently large, and for all j, it holds that 1{|Xn,j | > ϵ} = 0 almost everywhere:

P(|Xn,j | > ϵ) = P

((√
12σ2(ρ)

α(ρ)

√
snr(ρ+

j − 1

T
)− snr(ρ+

j

T
)

)
|Uj | > ϵ

)
(13)

= P

|Uj | >
ϵα(ρ)√
12σ2(ρ)

1√
snr(ρ+ j−1

T )− snr(ρ+ j
T )

 (14)

by eq. (12)
≤ P (|Uj | > 1) (15)

= 0 (16)

since Uj ∼ U(−1/2, 1/2), and it follows that

E[X2
n,j1{|Xn,j | > ϵ}] = 0

for all j for all sufficiently large n. We conclude by the Lindeberg-Feller theorem that

Ωt = Xn,1 + ...+Xn,n
d−→ N (0, β2

T |t)

as T → ∞. Applying the above argument coordinate-wise then proves the original statement.
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Corollary A.1.1.
If we assume σT and αT to be constants, then for every t, q(zt|x)

d−→ N (αtx, σ
2
t I) as T → ∞,

that is, our forward model approaches the Gaussian forward process of VDM with an increasing
number of diffusion steps.

Proof. As q(zT |x) = N (αTx, σ
2
T I) does not depend on T , the joint distribution q(zt, zT |x) =

q(zt|zT ,x)q(zT |x) converges in distribution, which in turn implies convergence of q(zt|x). The
statement then follows from the identity

N (zt;αtx, σ
2
t I) =

∫
N (zt; bT |t zT + cT |t x, β

2
T |t I)N (zT ;αTx, σ

2
T I) dzT .

B BACKWARD PROCESS DETAILS AND RATE ESTIMATES

B.1 GAUSSIAN (DDPM/VDM)

Kingma et al. (2021) set p(zt−1|zt) := q(zt−1|zt,x = x̂t) = N (bt|t−1 zt + ct|t−1 x̂t, β
2
t|t−1I)

which yields

Lt−1 = KL(N (bt|t−1 zt + ct|t−1 x, β
2
t|t−1I) ∥N (bt|t−1 zt + ct|t−1 x̂t, β

2
t|t−1I))

=
1

2

c2t|t−1

β2
t|t−1

∥x− x̂t∥22 =
1

2
(SNR(t− 1)− SNR(t)) ∥x− x̂t∥22 .

We have that Lt−1 → 0 as T → ∞, due to the continuity of SNR(· /T ) = snr(·) = α(·)2/σ(·)2.

B.2 UNIFORM (OURS)

Recall that we choose each coordinate of the reverse-process model p(zt−1|zt) to have the density

p(zt−1|zt)i := gt(z) ⋆ U(z;−∆t/2,∆t/2)

=
1

∆t

∫ z+∆t/2

z−∆t/2

gt(z) dz =
1

∆t
(Gt(z + ∆t/2)−Gt(z − ∆t/2)),

where Gt and gt are the cdf and pdf of a distribution with mean µ̂t := bt|t−1z + ct|t−1x̂ and variance
σ2
g , z := (zt)i, x := xi, and x̂ := x̂θ(zt; t)i. Using the shorthand µt := bt|t−1z + ct|t−1x we can

derive the rate associated with the ith coordinate

Lt−1 = KL(U(z;µt − ∆t/2, µt + ∆t/2) ∥ gt(z) ⋆ U(z;−∆/2t,∆/2t))

=
1

∆t

∫ µt+∆t/2

µt−∆t/2

log
1
∆t

1[µt−∆t/2,µt+∆t/2](z)
1
∆t

(Gt(z + ∆t/2)−Gt(z − ∆t/2))
dz

=
1

∆t

∫ ∆t/2

−∆t/2

− log(Gt(z + µt + ∆t/2)−Gt(z + µt − ∆t/2))︸ ︷︷ ︸
:= h(z)

dz.

To gain some intuition for this rate, note that h(z) is lowest when most of the probability mass of Gt

is concentrated tightly around z + µt, which is the case when |µt − µ̂t| is small. Specifically, if Gt is
in a distributional family with a standardized cdf G0 such that Gt(z) = G0((z − µ̂t)/σg) then

Gt(z + µt + ∆t/2)−Gt(z + µt − ∆t/2) →


1 if |z + µt − µ̂t| < ∆t/2

G0(0) if |z − µt − µ̂t| = ∆t/2

0 else

as σg → 0. Thus, if |µt − µ̂t| ≪ ∆t/2, we obtain improved bit-rates for σg that are small (relative
to ∆t). On the other hand, as almost certainly |µt − µ̂t| > 0, we can’t choose arbitrarily small
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σg because in that case both max(−h(−∆t/2),−h(∆t/2)) → ∞ and Lt−1 → ∞ as σg → 0. This
further motivates the merit of learning the backwards variances as σ2

g = sθ(z)β
2
t|t−1 = sθ(z)∆

2
t/12,

allowing them to adapt to |µt − µ̂t|. Conversely, by the mean value theorem, there exists one
c ∈ (−∆t/2,∆t/2) so that

Gt(z + µt + ∆t/2)−Gt(z + µt − ∆t/2) = ∆tgt(z + µt + c) ≈ ∆tgt(z + µt)

where the last approximation becomes more accurate for larger σg. If we further assume that Gt is
Gaussian (or sufficiently similar) h(t) becomes approximately quadratic. In that case we study

h(z) ≈
(
1− 4z2

∆2
t

)
h(0) +

2z2 −∆tz

∆2
t

h(−∆t/2) +
2z2 +∆tz

∆2
t

h(∆t/2),

a quadratic function that exactly matches h at values z ∈ {−∆t/2, 0,∆t/2}. Finally, this results in

Lt−1 ≈ 1

∆t

[
2

∆2
t

(h(−∆t/2) + h(∆t/2)− 2h(0))

∫ ∆t/2

−∆t/2

z2 dz +
1

∆t
(h(∆t/2)− h(∆t/2)))

∫ ∆t/2

−∆t/2

z dz +∆th(0)

]

= −1

6
[4h(0) + h(−∆t/2) + h(∆t/2)] ≥ 1

3
log(2),

where the last equality uses h(z) ≤ 0 and h(−∆t/2) + h(∆t/2) ≤ log(0.25) which follow from the
fact that Gt is a cdf. Empirically we note that this estimate is very accurate as long as σ2

g ≥ β2
t|t−1,

demonstrating that simply matching moments as in VDM will occur a constant overhead for each
diffusion step. As seen in Figure 2, this can be partly mitigated with smaller σ2

g but increasing the
number of diffusion steps T might still lead to an increase in ELBO. Numerical integration of Lt−1

confirms that if σ2
g is close to the optimal choice of σg ≈ |µt − µ̂t|, Lt−1 → 0 as T → ∞ as in the

Gaussian case.

B.3 FLOW-BASED RECONSTRUCTIONS

Given an intermediate latent zt, ancestral sampling yields an intermediate lossy reconstruction
x̂ ∼ p(x|zt) that requires us to repeatedly sample from the conditional p(zt−1|zt) until finally
obtaining a reconstruction from z0 with the help of p(x|z0). This is equivalent to approximately
solving a reverse SDE (Song et al., 2021c) and introduces additional noise during inference, which
can make reconstructions grainy for diffusion models with a small number of steps, as can be seen in
Figure 5. Song et al. (2021c) further note that an alternative approximate solution to the SDE can
be obtained by deterministically reversing a “probability-flow” ODE (see also Theis et al. (2022)).
Specifically, this involves repeatedly evaluating zt−1 = f(zt, t), where f for VDM is defined as

f(zt, t) =
αt−1

αt
zt +

(
σt−1 −

αt−1

αt
σt

)
ϵ̂t =

σt−1

σt
zt +

(
αt−1 −

σt−1

σt
αt

)
x̂t, (17)

recovering the same process defined in (Song et al., 2021a). The equivalence of the continuous
limit in Corollary A.1.1, suggests that the discrete-time backward processes of UQDM and VDM
are similar enough in the sense that eq. (17) also approximately solves the implied reverse SDE of
UQDM. Thus we use eq. (17) to obtain flow-based reconstructions for both VDM and UQDM.
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T = 2

true data
samples

T = 5 T = 10 T = 30

Unconditional UQDM samples

Figure 7: Unconditional samples from UQDM models trained with varying T on the swirl dataset.
The sample quality improves with larger T ; however the compression performance becomes worse
after T > 5, as discussed in Section 5.
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UQDM (VDM weights)
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UQDM (learned rev. var.)
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Figure 6: Left: 1000 samples from the toy swirl source. Right: Additional results on swirl data. We
examined the compression performance of applying universal quantization to a pre-trained VDM
model; conceptually this is equivalent to When using fixed reverse-process variances, we can directly
re-use weights from a pretrained VDM model (orange), which achieves comparable results to training
a UQDM model from scratch, even for a smaller number of timesteps.

Figure 8: Additional results on ImageNet 64x64 data. Left: Example progressive reconstructions
from UQDM trained with T = 4, obtained with flow-based denoising, as in Figure 5. Flow-based
reconstructions achieve similar distortion (as meassured with PSNR) than denoised predictions at
higher fidelity (as meassured with FID). Right: Ablation of the influence of model size on validation
loss. Bars are labeled with the number of parameters for each model. Increasing the size of the
denoising network allows for smaller bitrates.
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C ADDITIONAL EXPERIMENTAL RESULTS

C.1 SWIRL DATA

We use the swirl data from the codebase of (Kingma et al., 2021); Figure 6 shows 1000 samples
from the toy data source. We use the same denoisng network x̂θ as in the official implementation,2
which consists of 2 hidden layers with 512 units each. Figure 6 highlights the consequence of
Corollary A.1.1: Because VDM and UQDM share the same continuous limit, we can use the weights
of a pretrained VDM to obtain comparable UQDM results as a UQDM model that has been trained
from scratch.

C.2 CIFAR10

We use a scaled-down version of the denoising network from the VDM paper (Kingma et al., 2021)
for faster experimentation. We use a U-Net of depth 8, consisting of 8 ResNet blocks in the forward
direction and 9 ResNet blocks in the reverse direction, with a single attention layer and two additional
ResNet blocks in the middle. We keep the number of channels constant throughout at 128.

We verified that our UQDM implementation based on tensorflow-compression achieves file
size close the theoretical NELBO. When compressing a single 32x32 CIFAR image, we observe file
size overhead ≤ 3% of the theoretical NELBO. In terms of computation speed, it takes our model
with fixed reverse-process variance less than 1 second to encode or decode a CIFAR image, either
on CPU or GPU,3 likely because the very few neural-network evaluations required (T = 4). For
our model with learned reverse-process variance, however, it takes about 5 minutes to compress or
decompress a CIFAR image, with nearly all of the compute time spent on a single CPU core. This
is because with learned reverse-process variance, each latent dimension has a different predicted
variance, and a separate CDF table needs to be built for each latent dimension during entropy coding;
the tensorflow-compression library builds the CDF table for each coordinate in a naive
for-loop rather than in parallel. Thus we expect the coding speed to be dramatically faster with a
parallel implementation of entropy coding, e.g., using the DietGPU4 library.

C.3 IMAGENET 64× 64

We use the same denoising network as in the VDM paper (Kingma et al., 2021). We use a U-Net
of depth 64, consisting of 64 ResNet blocks in the forward direction and 65 ResNet blocks in the
reverse direction, with a single attention layer and two additional ResNet blocks in the middle. We
keep the number of channels constant throughout at 256. To investigate the impact of the size of the
denoising network, in addition to this configuration with 237M parameters we call UQDM-big, we
also run experiments with three smaller networks with 32 ResNet blocks and 128 channels (UQDM-
medium, 122M parameters), 8 ResNet blocks and 64 channels (UQDM-small, 2M parameters), and 1
ResNet block and 32 channels (UQDM-tiny, 127K parameters), respectively. Smaller network are
significantly faster and more resource-efficient but will naturally suffer from higher bitrates, as can
be seen in Figure 8.

The required number of FLOPS per pixel for encoding and decoding is strongly dominated by the
number of neural function evaluations (NFE) of our denoising network which depends on how soon
we stop the encoding and decoding process. For lossless compression we have to multiple the FLOPS
per NFE with T which is equal to 4 in our case. For lossy compression after t steps, with lossy
reconstructions obtained through a denoised prediction, we obtain the required FLOPS for encoding
and decoding by multiplying with t and t + 1 respectively. The FLOPS per NFE depend on the
network size, our investigated model size require 389K, 2.3M, 105M, and 204M FLOPS per pixel, in
order from smallest to biggest model.

2https://github.com/google-research/vdm/blob/main/colab/2D_VDM_Example.
ipynb

3Around 0.6 s for encoding and 0.5 s for decoding on Intel(R) Xeon(R) Gold 5218 CPU @
2.30GHz CPU; 0.5 s for encoding and 0.3 s for decoding on a single Quadro RTX 8000 GPU.

4https://github.com/facebookresearch/dietgpu
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Figures 9 and 10 show more example reconstructions from several traditional and neural codecs,
similar to Figure 1. At lower bitrates the artifacts each compression codecs introduces become more
visible.
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Figure 9: Additional example reconstructions , chosen at roughly similar (high) bitrates.

Figure 10: Additional example reconstructions , chosen at roughly similar (low) bitrates.
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