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A Derivation of the sparse-MAML update

Here, we derive the sparse-MAML update rules on the initialization θ and on the underlying mask
parameter m, that are given by

θ ← θ − γθ Eτ∼p(τ)
[
∇φ Lout

τ (φτ,K)
]

(9)

m← m+ αγm Eτ∼p(τ)

[
∇φ Lout

τ (φτ,K) ◦
K−1∑
k=0

∇φ Lin
τ (φτ,k)

]
. (10)

Update of the initialization We first start by deriving the θ-update. To update θ with gradient
descent we need the total derivative dθ Lout

τ (φτ,K). Using the chain rule, it is equal to

dθ Lout
τ (φτ,K) = ∇φ Lout

τ (φτ,K) dθ φτ,K .

The last term of the right hand side of the previous equation requires backpropagating through the
training procedure as modifying the initialization changes the entire trajectory of φ. By using the
recursive formulation of φτ,K , we have

dθ φτ,K = dθ
[
φτ,K−1 − α1m≥0 ◦ ∇φ Lin

τ (φτ,K−1)
]

= dθ φτ,K−1 − α1m≥0 ◦
(
∇2
φ L

in
τ (φτ,K−1) dθ φτ,K−1

)
.

In sparse-MAML, we use a first-order approximation that consists in zeroing out all the second order
derivatives to keep the computations as simple as possible, while keeping the benefits of meta-learning.
It follows that

dθ φτ,K ≈ dθ φτ,0
= dθ θ
= Id

and
dθ Lout

τ (φτ,K) ≈ ∇φ Lout
τ (φτ,K),

leading to the update presented in Eq. 9 once the derivative approximation is inserted in a gradient
descent update.

In our online continual learning setting, we additionally apply the mask to the θ-update.

Update of the mask The derivation of the underlying mask parameter m update can be done
similarly to the one of the θ-update. We first apply the chain rule and get

dm L
out
τ (φτ,K) = ∇φ Lout

τ (φτ,K) dmφτ,K .

We then compute the derivative of φτ,K with respect to m:

dm φτ,K = dm φτ,K−1 − α dm
[
1m≥0 ◦ ∇φ Lin

τ (φτ,K−1)
]
.

As for the θ-update, we do not take in account second-order derivatives, we thus consider first-order
derivatives to be constant. The following terms remain

dm φτ,K ≈ dm φτ,K−1 − α dm [1m≥0] diag
(
∇φ Lin

τ (φτ,K−1)
)
.
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We approximate dm1m≥0 using straight-through estimation, which consists in taking this derivative
equal to the identity, thus having

dm φτ,K ≈ dmφK−1 − α diag
(
∇φLin

τ (φτ,K−1)
)

and

dm φτ,K ≈ −α
K−1∑
k=0

diag
(
∇φLin

τ (φτ,k)
)
.

Combining everything into a gradient descent update yields the update of Eq. 10.

Note that the updates for θ and m differ in their structure although both are obtained using first-order
approximations. This is because θ only enters the first update step of φ, while m consistently appears
along the whole trajectory of φ.

B Additional experimental details and analyses

B.1 Few-shot learning experiments

B.1.1 Reproducibility

Unless specified otherwise, all experiments presented in our paper follow the supervised few-shot
learning setup studied in ref. [11] and are performed on the miniImageNet dataset [47, 56] which
consists of 64 training classes, 12 validation classes and 24 test classes. The backbone classifier
consists of four convolutional layers each with 64 filters followed by a batch normalization layer [21]
as well as a max-pooling layer with kernel size and stride of 2. The network then projects to its output
via a fully-connected layer. We choose to use the 64-filter version (instead of the 32) to be one-to-one
comparable to BOIL [40] (and the ANIL results within) which uses the 64 channel variant.

In order to produce the results visualized in Figures 1 and 2, we used the following hyperparameters:

• Batch size 4 and 2 for 1-shot resp. 5-shot experiments (note that BOIL uses 4 for both).
• Inner-loop length K = 25 during meta-training and meta-test train.
• Inner-loop learning rate α = 0.1.
• Optimizer: Adam with default PyTorch hyperparameters and a learning rate of 0.001 (for

meta-parameters θ and m).
• Initialization: Kaiming [18] for meta-parameters θ and m.

Note that when analyzing the effects of varying a particular set of hyperparameters (e.g., the inner-loop
learning rate), we hold all other hyperparameters fixed.

We train all models for 400 epochs (600 for sparse MAML+) of 100 training tasks each. In the case
of sparse-ReLU we initialize all learnable inner-loop learning rates at the same value α, cf. Table S1.
Note that this leads to an initial gradient sparsity level of 0%, while still converging to high sparsity
levels.

All our few-shot learning results are reported for models that are early-stopped by measuring the
average validation set accuracy (across 300 validation set tasks). The model with best average
validation set accuracy is then tested on 300 tasks of the test set data and the cross-domain datasets.

We handle batch normalization parameters following the transductive learning setting, as originally
done in MAML [11, 39].

For the results shown in Table 1, we tuned the best values found by scanning over learning rates and
inner-loop lengths using a sparsity initialization of 50%. Additional details can be found in Table S2.

ResNet-12 For the ResNet-12 results shown in Table 2, we tuned the best values found by scanning
over inner-loop learning rates and inner-loop lengths with a sparsity initialization of 50%. For
sparse-ReLU-MAML we initialized the inner-loop learning rate to be α without any randomness. For
all experiments we optimize meta-parameters with Adam [25]. We also set γθ = 0.001, α = 0.05
and γm = 0.01,Ktest/train = 35. Meta-gradients are clipped to lie within [−10, 10]. The architecture
is identical to the one used in previous meta-learning studies [40, 31]. We tested two different sizes
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Table S1: Detailed results for the large and small ResNet-12 models on miniImageNet 5-way 1-
and 5-shot experiments, including sparsity levels and the performance of an economical snapshot
ensemble method used in previous studies of MAML [2]. Mean ± std. over 3 seeds.

Arch. Problem Method Acc. (%) Ensemble Acc. (%) Sparsity (%)

Large

1-shot

MAML 53.51±1.24 55.65±0.81 —
ANIL 52.95±1.30 55.23±0.66 all except head
sp-M 55.18±0.50 56.83±0.08 48.39
sp-ReLU-M 55.29±0.56 57.44±0.43 29.56

5-shot

MAML 69.58±1.08 72.77±0.60 —
ANIL 69.39±1.28 73.07±0.42 all except head
sp-M 69.93±0.61 72.83±0.35 23.57
sp-ReLU-M 72.93±0.92 75.60±0.12 12.95

Small

1-shot

MAML 53.91±0.61 56.09±0.12 —
ANIL 55.25±0.33 57.02±0.21 all except head
sp-M 55.02±0.46 57.53±0.25 37.56
sp-ReLU-M 56.39±0.38 58.41±0.38 28.44

5-shot

MAML 69.36±0.23 72.50±0.22 —
ANIL 70.03±0.58 73.09±0.13 all except head
sp-M 70.02±1.12 72.87±0.59 15.09
sp-ReLU-M 73.01±0.24 75.52±0.48 15.78

Table S2: Hyperparameters of sparse-MAML, sparse-MAML+ and sparse-ReLU-MAML to obtain
the reported results for in- and cross dataset few-shot experiments.

Problem Method Optimizer Ktrain Ktest α γm K tiered
test /KCUB

test /KCars
test

1-shot
sp-M Adam 35 100 0.25 0.0075 35
sp-M+ SGD+N 35 100 0.1 0.0075 35
sp-ReLU-M Adam 35 100 0.25 0.0075 35

5-shot
sp-M Adam 35 100 0.25 0.0075 100
sp-M+ SGD+N 35 100 0.1 0.0075 100
sp-ReLU-M Adam 35 100 0.1 0.0075 100

for the ResNet that we term large, with channel sizes (64, 160, 320, 640), and small, with channel
sizes (64, 128, 256, 512). We also adapted a strategy by [2] where we test on an ensemble of the 3
best models checkpointed while training. The results of all these variants are shown in Table S1.

Sparse-MAML+. To generate the underlying mask parameter m ∈ RN in sparse-MAML+ (N
being the dimension of the parameter space) we apply an affine transformation to a Gaussian vector
z ∈ RE (we set E = 1600) with explicitly learnable noise standard deviation σ:

m = A (z ◦ σ + µ) + b, (11)

with A ∈ RN×E , b ∈ RN , σ, µ ∈ RE and z ∼ N (0, I). We use this process to generate the gradient
mask parameters for convolutional layers only. As with every variant of sparse-MAML studied here,
we adjust the meta-parameters A, b, µ, σ using a first-order update and straight-through estimation.

B.1.2 Additional analyses

Complementing Figure 1, we show in Figure S1 emerging gradient sparsity in batch normalization
and bias parameters throughout the network. Interestingly, we observe non-monotonicity in the
sparsity levels especially in batch normalization parameters throughout training. This is possible
by allowing to change sparsity in both directions by using the straight-through estimator for the
binary mask. We find that the bias parameters eventually become entirely frozen (Figure S1 right)
irrespective of initialization.
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Figure S1: Emergent gradient sparsity in 5-shot 5-way classification of miniImageNet on the standard
4-convolutional-layer neural network, with inner-loop learning rate 0.1 and 25 inner-loop steps.
Results averaged over 5 seeds ± std. Left: Different final gradient sparsity for batch normalization
gain parameters emerges with gradually less sparsity from earlier to deeper layers, all initialized at
50% sparsity. Right: Output layer bias parameter sparsity for different initial sparsity levels tend
towards 100%. Note that deeper layers typically tend towards lower levels of sparsity.
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Figure S2: Additional results for 5-way miniImageNet classification, complementing Figure 2. Left:
In 1-shot learning problems, long inner-loops lead to an increase in generalization performance
accompanied by high gradient sparsity levels. By contrast, the performance of standard MAML
does not improve with longer inner-loops. Right: Gradient sparsity decreases as hidden layer width
increases. The inner-loop learning rate was set to 0.1 for all hidden layer sizes and gradient sparsity
is initially ∼ 50%. Results are averages over 5 seeds ± std.

We additionally carry out an analysis of models with varying hidden layer sizes, cf. Figure S2, and
find that sparsity is anti-correlated with network width, indicating that the pressure of preventing
interference by sparse gradients is reduced in large-capacity models.

We further show the performance of sparse-MAML on models without bias parameters, as these are
consistently chosen to be frozen by meta-learning, to verify whether they are useful as task-shared
parameters or simply not required at all. We find that performance drops slightly when removing the
bias parameters, Table S3, which indicates that sparse-MAML ascribes to these parameters the role
of providing useful task-shared bias.

These experiments are complemented by a study of the challenging non-transductive BatchNorm
setting. Here, we simply compute batch statistics over the course of meta-train/test training without
computing new statistics during meta-train/test testing – we point to ref. [6] for a discussion. Since
FOMAML was close to chance-level performance for 35 inner-loop steps, the results reported for
FOMAML are produced with 10 inner-loop steps and α = 0.1. Sparsity emerges again with sparse-
MAML, although now without bringing a performance advantage over FOMAML, see Table S3. All

Table S3: Additional 5-way 5-shot miniImageNet few-shot learning experiments investigating the
non-transductive batch normalization setting, and an ablation study in which bias parameters (which
are consistently frozen by sparse-MAML) are removed from the model.

Algorithm Test set acc. (%)

sparse-MAML 67.03±0.74

sparse-MAML w/o bias parameters 66.11±0.57

FOMAML non-transductive BatchNorm 55.58±1.68

sparse-MAML non-transductive BatchNorm 54.75±1.17
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Table S4: Two-phase learning experiments: meta-learning a gradient mask after learning the model
initialization using standard MAML does not result in improved generalization performance on 5-shot
miniImageNet learning.

Setup Initial sparsity (%) Final sparsity (%) Test set acc. (%)

1-shot sparse-MAML 0 9 46.42±0.58

1-shot sparse-MAML 50 45 46.42±0.27

5-shot sparse-MAML 0 29 64.68±0.16

5-shot sparse-MAML 50 51 64.01±0.47

hyperparameters were kept the same as described in Table S2, except for the change in inner-loop
length and α that was needed to stabilize FOMAML.

We present one last few-shot learning study in Table S4, where we test whether meta-learning of the
model initialization θ and the sparsity mask m have to happen jointly, or if an appropriate gradient
mask can be found separately after standard MAML training, keeping θ fixed. We find that this form
of meta-learning fails to improve upon standard MAML alone. Thus, the generalization performance
improvements brought by sparse-MAML rely on discovering a model initialization that is specialized
for sparse learning. These results indicate that it is unlikely that the performance of sparse-MAML
can be reached by simply analyzing the MAML solution post-training and heuristically disabling
certain weight updates.

B.2 La-MAML experiments

B.2.1 Reproducibility
Algorithm 1: One step of sparse-La-MAML
Require: Parameters θ, mask parameters m,

replay buffer R, incoming batch of
data B, inner-loop learning rate α0,
mask learning rate γm, loss L

φ← θ
gin ← 0
for 1 ≤ k ≤ |B| do

φ← φ− α0 1m≥0 ◦ ∇L(φ,Bk)
gin ← gin +∇L(φ,Bk)

R ← Sample past data batch from R
m← m+ γm α0∇L(φ,B ∪R) ◦ gin

θ ← θ − α0 1m≥0 ◦ ∇L(φ,B ∪R)
R← Update replay buffer R with B

We strictly follow the experimental setup of
the original La-MAML study and use the code
provided by the authors2. The reported results
are obtained by scanning three hyperparame-
ters in the same range considered in the origi-
nal paper, cf. Appendix of ref. [15]. Therefore,
we only vary the number of glances within
{5, 10}, the outer-loop mask learning rate γm,
and the inner-loop learning rate α0. See Table
S6 for the hyperparameters found by our scan.
The network used for the MNIST experiments
is a 2-hidden-layer neural network with 100
hidden rectified linear units and the number of
parameters is 89.610: [(78400, 100), (10000,
100), (1000, 10)] in (no. of weights, no. of
biases) format and in input-to-output order. The output layer has a softmax nonlinearity and we use
the cross-entropy loss.

Pseudocode for one complete iteration of sparse-La-MAML can be found in Algorithm 1. The
fixed-size replay buffer R is updated stochastically with the reservoir sampling method presented in
ref. [49].

Following the original La-MAML experimental setup, we study three supervised continual learning
(CL) problems based on MNIST. In MNIST rotations (20 tasks, 1000 examples per task), each task is
a classification problem where MNIST digits rotated by a fixed task-specific common angle (in [0,
π]) are to be classified. In MNIST permutations (20 tasks, 1000 samples per task) and the harder
many permutations variant (100 tasks, 200 examples per task), a fixed task-specific pixel shuffling
order is applied to every MNIST digit instead.

To produce the results in the left panel of Figure 3, we choose the configuration used for MNIST
rotations found by our scan (cf. S6) and vary the layer size of the two hidden layers of the fully-

2https://github.com/montrealrobotics/La-MAML
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connected network. For the results shown in Figure 4, we keep the hyperparameters of the original
La-MAML paper but iterate over the dataset 10 times (epochs) instead of only once.

B.2.2 Additional analyses
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Figure S4: Gradient sparsity when learning on MNIST permutations (upper column) and many
permutations (lower column) with La-MAML (first row) and sparse-La-MAML (second and third
row). Results averaged over 3 seeds ± std. Upper left (original La-MAML algorithm): Sparsity
emerges across the three-layer network and monotonically increases with the number of tasks
and with depth for both weight (W1,W2,W3) and bias parameters (b1, b2, b3). Center (sparse-La-
MAML): A similar behavior is observed when replacing meta-learned learning rates by meta-learned
binary gradient masks. Right (sparsity/accuracy vs. layer size): Overall sparsity of sparse-La-MAML
decreases with increased network capacity accompanied with higher retained accuracy (RA). Network
capacity is varied by changing the number of neurons in the two hidden layers simultaneously.

For completeness, we visualize the patterns of gradient sparsity that emerge when learning continually
with La-MAML and sparse-La-MAML on the MNIST permutations and many permutations CL
problems, see Figure S4. The findings reported in the main text translate to these two datasets, and
the two variants of La-MAML again behave in a qualitatively similar way.

In our experiments, we observe that the inner-loop learning rate α0 has a strong effect on gradient
sparsity. This is depicted in Figure S3 where the final gradient sparsity level for sparse-La-MAML
trained on MNIST permutations is shown, together with retained accuracy. We find that while sparsity
and accuracy are jointly maximized for lower inner-loop learning rate α0, high retained accuracies
can still be achieved when increasing the learning rate α0, up to a point where accuracy eventually
drops.

Table S5: Sparsity (%) of La-MAML and sparse-La-MAML after learning on one of the three MNIST
continual learning problems rotations, permutations and many permutations. Hyperparameters were
tuned for best retained accuracy, not sparsity. We split between weight and bias parameters (weights
followed by bias) when presenting per-layer average levels of sparsity within layers (ordered from
network input to output). Structured gradient sparsity emerges, with lower-levels of sparsity for
lower-level features closer to the input. Bias parameters tend to be close to frozen in almost all cases.

Dataset Algorithm Average within layers (%) Average (%)

Rotations La-MAML [16, 45, 96], [95, 94, 100] 20.47
sparse-La-MAML [5, 19, 80], [67, 54, 100] 7.13

Permutations La-MAML [20, 53, 97], [99, 93, 100] 24.81
sparse-La-MAML [8, 29, 78], [100, 87, 100] 16.17

Many permutations La-MAML [45, 56, 98], [100, 98, 100] 46.53
sparse-La-MAML [10, 29, 87], [100, 93, 100] 13.08

6



Table S6: Hyperparameter settings for the reported La-MAML and sparse-La-MAML results.
Dataset Algorithm α0 γm K / Glances

MNIST

Rotations LaM 0.15 0.3 5
sp-LaM 0.15 1.7 5

Permutations LaM 0.15 0.3 5
sp-LaM 0.1 1.7 10

Many LaM 0.1 0.3 10
sp-LaM 0.05 0.75 10

Table S7: Final full CIFAR-10 test-set classification accuracy, continually-learned in a class-
incremental, streaming fashion, in 5 tasks comprising 2 classes each. Each data point is seen
only once. We compare sparse-La-MAML (sp-LaM; binary gradient masks, straight-through update),
standard La-MAML (LaM; rectified learning rates, meta-learned without straight-through update),
experience replay, gradient episodic memory (GEM) and meta-experience replay (MER), for two
different replay buffer sizes. Results are averages over 5 seeds ± std.

Total memory size Algorithm Final acc. (%)

200

Experience replay 19.75±1.23

MER 25.11±1.77

GEM 25.14±0.67

LaM 22.08±1.83

sp-LaM 27.85±0.69

1000

Experience replay 29.12±2.41

MER 34.66±1.38

GEM 31.55±0.81

LaM 36.24±0.91

sp-LaM 37.70±0.80
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Figure S3: Retained accuracy (RA) and final gra-
dient sparsity levels (in %) for sparse-La-MAML
applied to MNIST permutations, for different set-
tings of the inner-loop learning rate α0.

Streaming Split-CIFAR-10 experiments.
Finally, we complement our continual learning
investigation of gradient sparsity in La-MAML
with results on a streaming Split-CIFAR-10
class-incremental learning problem. In this
problem, the CIFAR-10 dataset is split into 5
tasks of 2 classes each, and each data point
is processed online only once. We use a
4-convolutional-layer neural network, the same
used in the original La-MAML paper [15].
This is a challenging setting where experience
replay (ER) remains a strong baseline [1]. We
produced this baseline for our architecture, and
compared sparse-La-MAML to it, performing
for both methods a hyperparameter scan over
replay batch size, the number of gradient
updates per incoming batch, and learning rates. We also compare to GEM (while optimizing the
following hyperparameters: batch sizes, number of gradient updates per batch, gradient clipping
norm, the strength with which the memory constraint is enforced) and MER (scanning over batch
sizes, regularization strength, gradient clipping norm, and learning rates).

For both small (20 examples per class) and large (100 examples per class) replay buffer sizes,
sparse-La-MAML consistently outperforms ER, cf. Table S7, as well as MER and GEM.

We observe a qualitatively distinct gradient sparsity pattern emerge in this setting, compared to our
MNIST experiments. Here, sparse-La-MAML leads to a large fraction of frozen weights in the final
fully-connected layer (57.5± 0.866% for the small replay buffer case, and 64.75± 0.8292% for the
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large replay buffer), which increase as more classes are learned, and significantly lower values of
gradient sparsity for the remaining parameters (1.6±0.68% overall sparsity for the small replay buffer
case, and 1.0± 0.70% for the large replay buffer). Our results confirm that the strong performance of
La-MAML translates to a more challenging class-incremental continual learning problem, and reveal
that meta-learning finds a solution with large gradient sparsity in the final output layer.

We further compare to the original La-MAML implementation provided in [16] for the MNIST
experiments, which uses rectified learning rates (Eq. 7) but not our straight-through update. As
discussed in the main text, this leads to dead parameter updates that can never recover once the
learning rate goes below zero. We find that this variant of La-MAML leads to very high levels of
gradient sparsity in the entire model (96.3±1.5% when using small replay buffers, and 34.0±1.39%
when using large replay buffers) but a performance hit, highlighting the importance of fine-tuning
gradient masks without aggressively shutting off learning.

We found the following hyperparameters to work the best for each particular method:

• La-MAML. Batch size and replay batch size: 10; number of gradient steps per data point: 2;
For memory size 200, 1000 we used αinit = 0.005, 0.01 and γ = 0.1, 0.01, resp.

• GEM. Number of steps per data point: 2; memory strength: 0.5; 500 samples per task. For
memory sizes of 200 and 1000, we use batch sizes of 20 and 5, resp.

• MER. Batch size and replay batch size: 10, β = 0.1. γ = 0.05, γ = 0.08 for memory sizes
of 200 and 1000, resp.

• ER. Batch size of 10 for both memory sizes. Gradient steps per data point: 2, 4, γ: 0.001,
0.01; replay batch size: 20, 10, for memory sizes of 200 and 1000 resp.

B.3 C-MAML experiments

We provide the full performance overview of the different C-MAML variants studied in the main text
together with related work in Table S8.

B.3.1 Reproducibility and ablation study

In order to obtain the reported results, we use the code base3 that accompanies ref. [7]. We do
not alter the architecture of the 4-convolutional-layer neural network (64 hidden units) used in the
original C-MAML study. All our results are based on the best performing, non-ablated version
of the C-MAML algorithm, termed C-MAML+UM+PAP in the original paper [7]. Furthermore,
we do not change the provided hyperparameters, and only tune the inner-loop and mask learning
rates α0 and γm (resp.) for our sparse-C-MAML and sparse-ReLU-C-MAML algorithm variants.
For sparse-C-MAML in the p = 0.98 setup, we initialized the mask parameters with the Kaiming
initialization leading to an initial sparsity of 50%. For all sparse-ReLU-C-MAML runs, we initialized
the mask parameters with a uniform initialization over the range [0.005, 0.1].

3https://github.com/ElementAI/osaka

Table S8: Cumulative online accuracy on the Omniglot-MNIST-FashionMNIST online learning
benchmark as well as the accuracy on the single tasks. Tasks switch with probability 1− p. Results
from previous work taken from ref. [7]. Mean ± std. over 5 seeds.

p = 0.98 p = 0.90
METHOD TOTAL OMNIGLOT MNIST FASHION TOTAL OMNIGLOT MNIST FASHION

ONLINE ADAM 73.9 ±2.2 81.7 ±2.3 70.0 ±3.6 62.3 ±2.5 23.8 ±1.2 26.6 ±2.0 20.0 ±1.4 22.1 ±1.3

FINE TUNING 72.7 ±1.7 80.8 ±2.0 68.7 ±2.8 59.6 ±3.1 22.1 ±1.1 25.5 ±1.5 18.1 ±1.9 19.2 ±1.6

MAML [11] 84.5 ±1.7 97.3 ±0.3 80.4 ±0.3 63.5 ±0.3 75.5 ±0.7 88.8 ±0.4 68.1 ±0.5 56.2 ±0.4

ANIL [44] 75.3 ±2.0 95.1 ±0.6 58.7 ±2.9 49.7 ±0.3 69.1 ±0.8 88.3 ±0.5 52.4 ±0.6 47.6 ±0.9

BGD [60] 87.8 ±1.3 95.1 ±0.5 86.9 ±1.1 74.4 ±1.1 63.4 ±0.9 72.8 ±1.2 55.9 ±2.2 51.7 ±1.3

METACOG [19] 88.0 ±1.0 95.2 ±0.5 87.1 ±1.5 74.3 ±1.5 63.6 ±0.9 73.5 ±1.3 55.9 ±1.8 51.7 ±1.4

METABGD [19] 91.1 ±2.6 96.8 ±1.5 92.5 ±1.9 77.8 ±3.8 74.8 ±1.1 83.1 ±1.0 71.7 ±1.5 61.5 ±1.2

C-MAML 92.8 ±0.6 97.8 ±0.2 93.9 ±0.8 79.9 ±0.7 83.3 ±0.4 89.0 ±0.5 84.5 ±0.7 71.1 ±0.7

SPARSE-C-MAML 94.2 ±0.4 97.3 ±0.1 93.4±0.4 86.3±0.3 86.3 ±0.4 89.3 ±0.5 87.7±0.4 77.4±0.5

SPARSE-RELU-C-MAML 93.5±0.5 97.16±0.2 97.2±0.2 94.1±0.4 84.7 ±1.3 89.3 ±0.2 87.5 ±0.5 78.3 ±0.2
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Algorithm 2: One step of sparse-C-MAML
Require: Current parameters φ, meta-parameters θ, mask parameters m,

replay buffer R, incoming batch of data B, inner-loop learning rate
α0, mask learning rate γm, loss function L, learning rate
adaptation function g

if not task change detected then
φ← φ− α0 1m≥0 ◦ ∇L(φ,B)
R← R ∪ B // update replay buffer with current data

else
Rt ← sample batch of training data from R
φ← θ − α0 1m≥0 ◦ ∇L(θ,Rt)
Rv ← sample batch of validation data from R
η ← g(L(φ,Rv)) // adapt learning rate
θ ← θ − η∇L(φ,Rv)
R← {} // reset replay buffer
φ← θ − α0 1m≥0 ◦ ∇L(θ,B)
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Figure S5: Gradient sparsity when learn-
ing online with sparse-C-MAML. Gra-
dient sparsity decreases with depth and
rises again for the output layer.

We provide pseudocode for one iteration of sparse-C-
MAML in Algorithm 2. Following Caccia et al. [7] and
do not use any pretraining; the base parameters θ and the
current parameters used for prediction φ are initialized
randomly and equal to one another. The replay buffer
R is also initially empty. For details on the task change
detection function and outer-loop learning rate adaptation
function we refer to the original C-MAML study [7].

Omniglot-MNIST-FashionMNIST setup. The
Omniglot-MNIST-FashionMNIST benchmark studied
here was introduced in the original C-MAML paper [7];
we do not modify the experimental setup. In this online
learning problem, at every time step t the task changes
with probability 1− p. Each task is a K-shot, 10-way classification problem. Tasks are created by
sampling 10 classes uniformly (for Omniglot; MNIST and FashionMNIST are by default 10-way
problems) and then sampling K examples for each of the selected 10 classes.

Gradient masking ablation study. In order to verify the advantage of gradient masking, we also
compare to an ablated version of C-MAML (called C-MAML-fixed) which does not feature any
meta-learned learning rate parameters, setting the inner-loop learning rate to a fixed hyperparameter
value (we note that the original C-MAML algorithm included a small set of meta-learned learning
rates that were shared for large parameter groups and which were not restricted to be non-negative).
Results are shown in Table S9. In the Omniglot-MNIST-FashionMNIST experiment, the performance
of C-MAML is matched by C-MAML-fixed.

In all of our experiments, we observed sparsity emerging and higher overall average accuracies for
sparse-C-MAML compared to C-MAML-fixed and C-MAML. Note that the only difference between
sparse-C-MAML and C-MAML-fixed is the ability to stop learning some of the parameters.

C Brief discussion on meta-learning-based approaches to continual learning

The surge of meta-learning in continual learning can be explained by its ability to automatically
discover the inductive biases that are appropriate for learning without forgetting. Previous works
hypothesize that a particular inductive bias will mitigate catastrophic forgetting, e.g. keeping parame-
ters from diverging too much from previous versions [26], and then develop a solution around that.
Contrarily, meta-learning based approaches will learn inductive biases that are conducive for learning
without interference in a data-driven way. For example, in ref. [23] sparsity emerges in the learned
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representations, a characteristic that has long been hypothesized as desirable in continual learning
[13].

Regularization-based methods are notoriously incapable of working in more realistic settings, such as
those considered in our work, mostly because they are not equipped with a mechanism to perform
cross-task discrimination or to recalibrate themselves on past tasks after some interference has
occurred. The same applies for dynamic architectures, which rely on task labels. This reliance can be
bypassed with a task-inference module, which may however suffer from some forgetting itself.

Rehearsal-based methods do not suffer from the aforementioned weaknesses. Nevertheless, they
scale poorly due to their reliance on always approximating an i.i.d. distribution at every update. The
total runtime of these methods scales quadratically with the number of tasks.

The ambitious goal of meta-learning inductive biases that benefit continual learning directly from
data may come at the cost of decreasing sample efficiency and increasing compute requirements.
However, the latter is potentially offset by reducing the number of hyperparameter-search trials [37].

D Resources

Compute. We used 24 (3x8 servers) NVIDIA GeForce 2080 Ti GPUs for our experiments and
conducted experiments and hyperparameter scans for approximately one month in order to obtain the
reported results.

Table S9: Task-averaged cumulative online accuracy of C-MAML, C-MAML-fixed and sparse-C-
MAML and the hyperparameters that lead to the result.

Method Accuracy (%) α0 γm

p = 0.9
C-MAML 83.3±0.4 0.1 0.001
C-MAML-fixed 85.3±0.5 0.3 -
sparse-C-MAML 86.3±0.4 0.3 0.003
sparse-ReLU-C-MAML 86.1±0.2 - 0.01

p = 0.98
C-MAML 92.8±0.6 0.1 0.005
C-MAML-fixed 92.0±0.1 0.1 -
sparse-C-MAML 94.2±0.4 0.3 0.01
sparse-ReLU-C-MAML 93.5±0.4 - 0.01

Software, libraries and licensing information. The results reported in this paper were produced
with open source, free software whenever possible. We developed custom code in Python using the
PyTorch (BSD-style license) [43] and NumPy (BSD-style license) [17] libraries; few-shot learning
dataset splits and meta-gradient computations further relied on the Torchmeta library (MIT license)
version 1.6 [10]. Our extensions of the La-MAML (Apache-2.0 license) and C-MAML (unknown
license; permission to extend granted by the authors) algorithms were built directly on top of the code
distributed by the authors. All plots were generated using matplotlib (BSD-style license) [20]. Our
computers run Ubuntu Linux.

We investigated our learning algorithms on the public domain datasets MNIST (GNU GPL v3.0)
[30], FashionMNIST (MIT license) [59], Omniglot [29] (MIT license), miniImageNet [47] (custom
MIT/ImageNet license), CIFAR-10 (MIT license) [28], CUB (custom license) [57], tieredImageNet
(custom ImageNet license) [48] and Cars (custom license) [27].

E PyTorch code snippet

In all of our experiment we backpropagate through binary or ReLU masks using the straight-through
estimator. For illustrative reasons, we provide a Python code snippet showing how to use either the
ReLU straight-through or the binary mask e.g. inside an inner loop of MAML:
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Listing 1: Backpropagate through binary or ReLU mask
import t o r c h
class Binary ( t o r c h . a u t o g r a d . F u n c t i o n ) :

def __init__ ( self ) :
super ( Binary , self ) . __init__ ( )

@staticmethod
def f o r w a r d ( c tx , input ) :

return t o r c h . s i g n ( input )
@staticmethod
def backward ( c tx , g r a d _ o u t p u t ) :

return g r a d _ o u t p u t

class ReLUThrough ( t o r c h . a u t o g r a d . F u n c t i o n ) :
def __init__ ( self ) :

super ( ReLUThrough , self ) . __init__ ( )
@staticmethod
def f o r w a r d ( c tx , input ) :

return t o r c h . r e l u ( input )
@staticmethod
def backward ( c tx , g r a d _ o u t p u t ) :

return g r a d _ o u t p u t

def t r a i n i n g ( ) :
. . .
# I n s i d e an i n n e r loop
g r a d s = t o r c h . a u t o g r a d . g r ad ( l o s s , w e i g h t s )
if ReLUThroughMask :

params = params − ReLUThrough . apply (m)* g r a d s
elif BinaryMask :

# a l p h a i s t h e i n n e r loop l e a r n i n g r a t e and a h y p e r p a r a m e t e r
params = params − a l p h a * 0 . 5 * ( Binary . apply (m) + 1 ) * g r a d s
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