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ABSTRACT

Video Quality Assessment (VQA) aims to simulate the process of
perceiving video quality by the Human Visual System (HVS). Al-
though subjective studies have shown that the judgments of HVS
are strongly influenced by human feelings, it remains unclear how
video content relates to human feelings. The recent rapid develop-
ment of Vision-Language pre-trained models (VLM) has established
a solid link between language and vision. And human feelings can
be accurately described by language, which means that VLM can ex-
tract information related to human feelings from visual content with
linguistic prompts. In this paper, we propose CLiF-VQA, which in-
novatively utilizes the visual linguistic capabilities of VLM to intro-
duce human feelings features based on traditional spatio-temporal
features to more accurately simulate the perceptual process of HVS.
In order to efficiently extract features related to human feelings
from videos, we pioneer the exploration of the consistency between
Contrastive Language-Image Pre-training (CLIP) and human feel-
ings in video perception. In addition, we design effective prompts,
i.e., a variety of objective and subjective descriptions closely related
to human feelings, as prompts. Extensive experiments show that
the proposed CLiF-VQA exhibits excellent performance on several
VQA datasets. The results show that introducing human feelings
features on top of spatio-temporal features is an effective way to
obtain better performance.
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1 INTRODUCTION

With the rapid advancement of technology, the threshold of video
production has been significantly lowered, enabling an increas-
ing number of users to create and upload videos to various online
platforms. However, User-Generated Content (UGC) videos often
have annoying distortion because of the absence of professional
filming equipment and skills. Moreover, compression techniques
[20, 22, 68, 74] and copyright protection processing [21] can also
damage the quality of UGC videos. Therefore, Video Quality As-
sessment (VQA) of in-the-wild videos is increasingly important for
major video platforms to filter out and enhance low-quality videos.

The lack of raw information and the diversity of distortion types
in in-the-wild videos present a significant challenge for VQA re-
search. Fortunately, there are many subjective experiments that
provide high-quality datasets [16, 32, 38, 43, 48, 56, 70], which are
labeled according to human mean opinion scores (MOS). With the
benefit of these datasets, the current VQA methods can perform
supervised training on them to fit the MOS as best as possible.
Traditional VQA methods [1, 5, 8, 25, 33, 41, 46, 53] are successful
in predicting the quality of perceptual videos, which model spa-
tial and temporal distortions using handcrafted features. However,
the hand-crafted features have a low correlation with human per-
ception, so its outcomes are not always reliable. In recent years,
with the advancement of deep learning techniques, VQA methods
[28, 29, 49, 59, 70] based on deep neural networks (DNNs) can ex-
tract more complex and abstract features related to video quality
and achieve superior performance than traditional methods. How-
ever, most deep learning approaches focus on the effect of spatial
and temporal video distortion on video quality, without adequately
considering the relationship between video quality factors and hu-
man feelings. Research has shown that human judgment is always
influenced by how the brain feelings [39, 72]. As shown in Fig. 1,
two videos with the same objective quality but different content
have different subjective quality scores. Considering that all the
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Figure 1: Validating the impact of human feelings on HVS for
VOQA and the relevance of CLIP with human feelings in video
perception. Two videos with the same quality captured in
the same scene using the same equipment. CLIP show high
consistency with human perception in video perception. We
selected 10 subjects to perform VQA on the two videos and
took their mean value as the video quality score.

current datasets used for VQA are labeled based on HVS, incorpo-
rating human feelings into VQA enables the model to achieve better
consistency with HVS. Although some recent studies [9, 29, 57, 60]
have demonstrated that video content can indeed influence the
human judgment of the video quality, these investigations predom-
inantly extract high-level abstract features that are not directly
related to human intuitive perception to assess the impact of video
content on HVS. Therefore, we believe that these features do not
effectively capture the true human feelings of video quality, thus
limiting the effectiveness of these methods in practical applications.

Extracting features that capture human feelings from videos
presents a significant challenge. This is largely due to the complexity
and subtlety of feelings conveyed through videos, which are not eas-
ily encapsulated by straightforward data features. It is well known
that human feelings can be accurately described through language.
Therefore, if we can deduce the feelings a video induces through
its associated linguistic expressions, we may open new pathways
to tackle the intricacies of such nuanced feature extraction, thereby
potentially resolving the challenges previously delineated. Fortu-
nately, the recent advancements in Vision-Language pre-trained
models (VLM) have significantly propelled the field forward. These
models have not only established a crucial link between linguistic
and visual information but have also equipped us with the ability to
interpret the feelings elicited by video content through an analysis
of language expressions. Specifically, Contrastive Language-Image
Pre-training (CLIP) [44], endowed with a rich vision language prior,
has demonstrated robust zero-shot predictive capabilities across
multiple tasks. Furthermore, CLIP has the ability to perceive image
and video quality to some extent [37, 55]. Nonetheless, a pending
challenge in video perception is whether CLIP has good agreement
with human feelings. If so, this implies that by conducting an in-
depth analysis of the linguistic descriptions related to videos, we
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can capture the feelings intended to be conveyed by the videos
with greater precision, thereby making unprecedented strides in
the understanding and interpretation of these feelings.

In this paper, to address the above difficulty, we verify through ex-
tensive experiments that CLIP has a high degree of consistency with
human feelings in video perception. Further, we propose a novel
model (denoted as CLiF-VQA) to enhance video quality assessment
(VQA) by incorporating high-level semantic information related to
human feelings. Our model innovatively utilizes the visual language
capabilities of CLIP to extract features from visual content that are
relevant to human feelings. In addition, it captures low-level-aware
features by using the Video Swin Transformer model [36] to reflect
spatial and temporal distortions in video frames, providing a com-
prehensive framework for assessing video quality that is highly
consistent with human perception. Specifically, we use a set of
objective (e.g., bright, blurry, noisy, colorful, etc.) and subjective
(e.g., pleasant, boring, fearful, etc.) descriptions that are closely re-
lated to human feelings as prompts. The cosine similarity between
the visual content and the text prompts is then computed thereby
predicting the score corresponding to each prompt. Further, we
design a semantic feature extractor (SFE), which extracts high-level
semantic feature maps corresponding to descriptions from multiple
regions of the video frame. Finally, we fuse the low-level-aware
and high-level semantic features to obtain the video quality score.

Our contributions can be summarized as follows:

e We validate for the first time that CLIP is highly con-
sistent with human feelings in video perception.

e We propose CLiF-VQA, which for the first time incor-
porates features related to human feelings in VQA.
Extensive experiments demonstrate that CLiF-VQA achieves
the best performance on multiple VQA datasets.

e We design some efficient objective and subjective de-
scriptions that are related to human feelings. These
prompts enable us to extract from the video rich features
related to subjective and objective human feelings.

e We design a zero-shot advanced semantic feature ex-
tractor (SFE) based on CLIP. It extracts semantic features
by sliding over multiple regions of a video frame and splices
the same semantic features according to their relative posi-
tions to obtain semantic feature maps of the video frame.

2 RELATED WORK

2.1 Classical VQA Methods

Classical VQA methods employ handcrafted features to capture
specific types of distortions in the video for quality prediction. Early
VQA often apply Image Quality Assessment (IQA) algorithms [12,
27, 40, 42, 67, 69] to obtain frame-level features, and then combine
with temporal dimension information to obtain video quality scores.
For example, V-CORNIA [66] extends the IQA algorithm CORNIA
[69] to VQA to obtain frame-level quality scores, and combines
these scores through temporal pooling. However, this method does
not fully consider the connection between the spatio-temporal
information of the video and how they affect the video quality
[2, 23, 45, 46]. Natural video statistics (NVS) can take into account
both spatio and temporal information, thus it is applied to address
the previous problem. V-BLIINDS [46] extracts spatio-temporal
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statistical features of frame-differences in the video DCT domain
and predicts crude frame quality scores using NIQE [42]. TLVQM
[25] considers two levels of features, first computing low complexity
features for each frame to extract frame-level statistical features
related to motion, and then computing high complexity features
related to spatial distortion for representative frames. VIDEVAL
[53] applies various handcrafted features to detect and measure the
distortions and reduces the computational complexity by reducing
the feature dimensions.

2.2 Deep Learning-based VQA Methods

Recently, deep learning-based VQA Methods [3, 28, 29, 34, 49, 58—
62, 65, 70, 73, 75, 76] have gradually achieved better performance
than classical methods. Rather than relying on handcrafted features,
deep VQA methods employ convolutional neural networks (CNN)
[10, 11, 13, 14, 47, 50-52] or Transformer models [7, 35, 36] to ex-
tract complex and abstract features that are relevant to video quality
aspects. For example, VSFA [29] extracts spatial features of video
frames using ResNet-50 [13] pre-trained on ImageNet [6], and then
models the temporal features using GRU [4]. Similar to the archi-
tecture of VSFA, while GST-VQA [3] applies VGG-16 [47] to extract
spatial features of videos. To better capture the spatio-temporal
information of the video, some works [34, 49, 57, 70, 71, 73] adopt
3D-CNN. For example, V-MEON [34] adopts a multi-task frame-
work which utilizes 3D-CNN to extract spatio-temporal features to
predict the quality of the video. Other studies [49, 57, 70, 73] com-
bine both 2D-CNN and 3D-CNN to capture the spatial and temporal
features of video, and then integrate the two features for quality
prediction. Recently, VQA methods [58-60] using the transformer
structure have achieved better results relative to CNN. DisCoVQA
[60] uses Video Swin Transformer [36] to extract multi-level spatio-
temporal features and improves the learning efficiency of the model
by temporal sampling of the features. Similarly, FAST-VQA [58] and
FasterVQA [59] obtain fragments by spatial-temporal grid mini-
cube sampling (St-GMS) and then feed the fragments into a modified
Video Swin Transformer [36]. Although deep learning-based VQA
methods can extract complex high-level semantic features, these
features are not directly related to the human point of view. Two
recent works [63, 64] attempt to address this issue. Specifically,
MaxVQA [64] captures a variety of quality factors that can be ob-
served by humans through a modified vision-language foundation
model CLIP and can jointly evaluate multiple specific quality factors
and overall perceptual quality scores. Several studies [30, 57, 60]
have noted that aesthetic factors [15, 17-19, 31] of visual content af-
fect video quality assessment. Inspired by this, Dover [63] assesses
video quality from both aesthetic and technical perspectives, so it
relatively well models the human process of perceiving quality.

3 CLIP FOR VIDEO PERCEPTION

CLIP, as shown in Fig. 2, demonstrates excellent zero-shot predic-
tion ability in vision-language tasks. Not only that, it also shows
some perceptive ability in IQA and VQA [37, 55]. However, it is not
verified whether it still has good perceptual ability on linguistic
prompts related to human feelings. The study in this section repre-
sents a pioneering effort to ascertain the degree to which the CLIP’s
video perception aligns with human feelings, thereby ensuring the
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extraction of human affective features from videos with the highest
possible fidelity. Specifically, in order to fully extract video features
while avoiding quality loss due to resizing and cropping, we extract
semantic features from multiple regions on all video frames by
means of sliding window (Details in Sec. 4.1). Then we compute the
mean of all the feature values corresponding to a specific prompt
as the feature of the video for that prompt.

Subjective Objective
Input Image Descriptions Descriptions
({24Xv224) exciting good
J depressing bad
disgusting noisy
sentimental hazy
+ +
| image block image block

Contrastive Language-Image Pre-training

(CLIP)
{good) {noisy)

{hazyN
Fl F2 F3

F.

{bad} {) exciting

Figure 2: The process of extracting semantic features using
CLIP. Each feature F; corresponds to a description.
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Prompt Design. We apply multiple objective descriptions related
to quality factors (e.g., bright, contrast, etc.) and multiple subjective
descriptions related to human feelings (e.g., interesting, exciting,
etc.) as prompts. For details see Sec. 4.1. Relative to the antonym
prompts strategy [55], our design can extract richer features related
to human feelings from videos. Here, we refer to HVS’s percep-
tion of video quality factors and content as human objective and
subjective feelings respectively. Further, we explore the correlation
between CLIP and human objective feelings and subjective feelings.
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Figure 3: CLIP for perception of four objective descriptions

(bright, contrast, noisy, colorful). "-" represents attenuation
and "+" represents enhancement.

Perception of Objective Feelings. We explore the performance
of CLIP on four objective descriptions (bright, contrast, noisy, color-
ful) related to video quality factors, as shown in Fig. 3. Specifically,
we first process the video corresponding to a certain description,
and then extract the semantic features that correspond to the de-
scription. It can be seen that CLIP is able to accurately perceive
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changes in video quality factors. This shows that CLIP has a good
consistency with human objective feelings in the perception of
video quality factors.

Perception of Subjective Feelings. Furthermore, we explore the
relationship between CLIP and human subjective feelings in video
content perception. In particular, we conduct experiments on four
subjective descriptions (interesting, exciting, depressing, fearful)
that reflect the subjective feelings that video content brings to
humans. As shown in Fig. 4. The results show that CLIP is highly
consistent with human judgments in perceiving video content.

interesting 0.485
exciting 0.313
depressing 0.052
fearful 0.150

interesting 0.421
exciting 0.281
depressing 0.039
fearful 0.259

interesting

¥ interesting 0.136
exciting  0.611
y| depressing 0.018
0.235

interesting 0.162
| exciting 0.589
depressing 0.022
0.227

exciting

fearful fearful

interesting 0.159
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depressing 0.736 |z
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interesting 0.075
exciting 0.099
depressing 0.045
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interesting 0.176
exciting 0.084
depressing 0.643
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depressing

fearful fearful

interesting 0.326
exciting 0.116
depressing 0.053
0.505

fearful

fearful

Figure 4: CLIP for perception of four subjective descriptions
(interesting, exciting, depressing, fearful).

Performance of CLIP in VQA. The experiments above demon-
strate that CLIP has highly consistent results with humans in per-
ceiving both the quality and content of the video separately. How-
ever, it remains to be verified whether CLIP is still effective when
both objective and subjective descriptions are used as prompts.
Therefore, we conduct further experiments to explore CLIP’s per-
formance in video quality perception when using both objective
and subjective descriptions that can reflect human feelings.
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EfficientNet-V2
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0.37
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Figure 5: Comparison results of CLIP with some classical
methods in VQA.

Specifically, we use multiple objective and subjective descriptions
as prompts, as shown in Fig. 2. We adopt the architecture of the
classical VQA model VSFA [29] to input the feature vectors of the
frames into the GRU for regression and time pooling operation to
get the quality scores. We conduct our experiments on KoNViD-1k
dataset [16], and in addition to processing the comparison with the
VSFA model, we also compare with two feature extraction methods
(VGG-16 [47] and EfficientNet-V2 [51]) widely used in VQA. And
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we evaluate performance on SROCC, KROCC and PLCC metrics, as
shown in Fig. 5. The results demonstrate that using both objective
and subjective descriptions can achieve better results, compared
to using a single description. Furthermore, it can be observed that
relying on only features related to human feelings surpasses CNN
extracted features in VQA. The results also confirm the validity of
the prompts we designed.

4 THE PROPOSED APPROACH

In this section, we introduce the proposed CLiF-VQA, which con-
sists of the semantic feature extraction module 4.1 and the spatial
feature extraction module 4.2, as shown in Fig. 6. First, we em-
ploy the semantic feature extraction module to extract high-level
semantic features that are related to human feelings. Then low-
level-aware features are extracted using spatio-temporal feature
extraction module. Finally we fuse these two features through a
regression module thus obtaining the video quality score.

4.1 Semantic Feature Extraction

In order to effectively extract features that can reflect human feel-
ings, we first design some objective descriptions and subjective de-
scriptions related to human feelings as prompts of CLIP, as shown
in Fig. 2. The prompts P designed in this paper contains two types
of descriptions: objective p"b and subjective ps”b:

b ,ob b b b b
P=1p1"s 05" s Py s P15 05" o Py | )
The adjectives and nouns that delineate feelings within objective
descriptions are denoted as A°P and N°b respectively. Objective
descriptions are categorized into the following two forms depending
on whether they use adjectives or nouns:

ob A;’,b + ”image block” , @
s =Y. 1 ,1<i <n
P; image block with” + Ni‘?b !

Subjective descriptions exclusively employ adjectives AU 1o
convey feelings:

p;f’b = A;f‘b +”image block”,1 < j < ny (3)

In addition, due to the limitation of the visual encoder of CLIP
on the input size, we can only extract the semantic information
of a small region in the video frame. In order to be able to obtain
as much semantic information as possible contained in the video
frames, we extracted features from multiple regions of the video
frames by sampling them multiple times at different locations, as
shown in Fig. 6(b). This avoids the loss of video quality caused by
resizing and excessive cropping.

Specifically, assuming the video has T frames, we perform a
sampling operation on the video frames I;(¢t = 1,2, ..., T)to obtain
m X n image blocks:

{bi’j|1 <i<ml1<j< n} = Sampling(1;) (4)

where b;’f represents the block obtained by sampling in the i-th
row and j-th column.

Given any visual input b;’] and text prompt P, the vision E,
and text E; encoders of CLIP encode them to achieve a consistent
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(a) Hlustration of the framework of CLiF-VQA.
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Figure 6: The framework of CLiF-VQA, which extracts semantic features related to human feelings through the semantic
feature extraction module as well as low-level-aware features through the spatio-temporal feature extraction module, and then
obtains the quality scores by aggregating the two features through the aggregation header.

representation within a unified feature space:

fot = Eo(b))s fe = Ee(P) )
Then, calculate the cosine similarity between the visual content
and prompts to predict the score for each dimension:

ij
|n1+n2 — f;ht ﬁ 6
L]
fid] s
A normalization procedure is applied to the acquired cosine
similarity score to standardize its range:

Sim(b}’,P) =s

iLj
. exp(s
,J Pl t,l ni+ny )
n1+n2 i,jy 'I=1
ply o exp(syy)
where the feature values of v;’J are the same number and one-to-one
correspondence with the number of descriptions.

Then the splicing operation (SFRP) is performed on all the fea-

Ot

tures vtj based on the relative position to obtain the semantic
feature map M; of frame I;:

- SFRP({U;‘JH <i<mil<j< n}) ®)

M; contains r feature maps, each corresponding to a description.
Further, we perform the global average pooling operation (GPgyg)
and the global max pooling operation (GPpqax) on My to obtain
the universal features and distinctive features as shown Fig. 6(a).
The outputs of (GPgyy) and (GPpqayx) are two r-dimensional feature

vectors ft‘wg and f;"%%, respectively.

favg GPaz)g(Mt) fmax = GPmax (Mt) (9)

f;wg and f/"%* are then concatenated as the semantic feature

vectors f; of the video frame I;:

ft avg ® fmax (10)

where @ is the concatenation operator and f; is a feature vector of
length 2 X (n1 + ny).

Next, we perform a concatenation operation on the semantic fea-
tures { ft}tT:1 of all the video frames thereby obtaining the semantic
feature maps M of the video:

Mi=fiofh®efi®..®fr (11)

where @ here is not exactly the same as the concatenation of &
in Eq. 10. Here, the feature vectors { ft}{:l are concatenated along
the channel dimension, so that the dimension of the obtained M; is
[2 X (n1 + ny), T]. Each feature map corresponds to a description,
and the feature maps here are divided into two types, namely the
feature map with global average pooling operation (GPyy) and
the feature map with global max pooling operation (GPmqgx).

After extracting the semantic feature maps of the video, we use
a multi-layer perceptron (MLP) to obtain the feature vectors Fs
corresponding to the descriptions. The MLP is composed of two
fully connected layers and the activation function is GELU:

Fs = FCo(GELU(FC1(Ms))) (12)

where Fs is a 2 X (n7 + ny) dimensional feature vector.

4.2 Spatio-Temporal Feature Extraction

In VQA, the spatio-temporal features of the video play a very im-
portant role in estimating the overall video quality. Since low-level
information is easily affected by distortion, extracting the low-
level-aware features of the video can effectively capture the spatio-
temporal distortion of the video.

In our approach, to diminish the computational complexity, the
video is sampled employing the grid mini-patch sampling approach
[58]. First, the video frame I; (t = 1,2, ..., T) is segmented into N XN
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grids of equal size:
iXxH (i+1)xH jxW (+1)xW
N N N N

gi’j =1

I (13

where gi’j denotes the grid of the i-th row and j-th column, and W
and H are the height and width of the video. N
A random patch sampling is then performed on each g;’] thus

obtaining a mini-patch MP;’j :
MP;’j = Samplingi’j (gi’j) (14)

where Sampling;’j represents the random sampling operation on
the grid of the i-th row and j-th column of the t-th frame. The
sampling operation samples the same position on different video
frames to ensure temporal continuity.

Then splice MP;’] (1 £ i,j £ N) according to their original
positions thereby obtaining the sampled map S; of the video frame
I;. The same operation is performed on all frames of the video to
obtain the sampled fragments Vy = [{S;|tT=1}].

The video fragments V are then fed into a modified Video Swin
Transformer Tiny [36] and non-linear layers to obtain local quality
maps M final-

Mg = Swin Transformer(Vy) (15)

Finally we flatten Mg ;4 to obtain the spatio-temporal feature
vector Fg of the video.

Ff = Flatten(Mgipq)) (16)

4.3 Quality Regression

After extracting the semantic and spatio-temporal features of the
video through the semantic feature extraction module and spatio-
temporal feature extraction module, we need to map these features
to the quality scores via a regression model. First, We concatenate
the semantic features Fs and spatial features F to get the overall
features F, of the video:

Fy,=Fs @ Ff (17)

Then we design a regression head with two fully connected
layers to predict the quality score of the video:

Score = FC4(GELU(FC3(Fy))) (18)

4.4 Loss Function

The loss function used to optimize the proposed models consists

of two parts: the monotonicity-induced loss and linearity-induced

loss. Given m predicted quality scores O = {d1, ¢2, ..., gjn} and m

ground-truth subjective quality scores Q = {q1, 92, ..., qm }-
Specifically, the monotonicity-induced loss predicts the mono-

tonicity of the video quality scores by introducing additional order

constraints. The monotonicity-induced loss function is defined as

follows:

1 m m

Lmon = — > > max(0,|qi = qj| - f(qi.q7) - (di = Gj))  (19)

m i=1 j=1

where f(q;,q;) = 1if g; > qj, otherwise f(g;,q;) = —1.
In contrast, the goal of the linearity-induced loss is to compute
the linear relationship between the predicted quality score and
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ground-truth subjective quality score. The linearity-induced loss
function can be denoted as:

> (G —a)(gi — a)
VE G- 9?50 (g - a)?

_ 1ym . ~_ 1 xym 4.
wherea = ;.3 giand a = ;2% Gi.

Finally, the total loss function L is obtained by combining the
two loss functions Ly,on and Ly;, above:

L = aLmon + BLiin (21)

Lyjp = (1- )z (20)

where « and f represent the weights of monotonicity-induced loss
and linearity-induced loss.

5 EXPERIMENTS
5.1 Experimental Setups

5.1.1 Datasets. We test the model on four datasets including LSVQ
[70], KoNViD-1k (1200 videos) [16], LIVE-VQC (585 videos) [48],
and YouTube-UGC (1067 videos) [56]. Specifically, we pre-train
CLiF-VQA on LSVQy4in, a subset of LSVQ containing 28,056 videos.
Intra-dataset testing is performed on two subsets of LSVQ, LSVQ; s/
(7400 videos) and LSVQ10s0p (3600 videos). We perform cross-dataset
testing on KoNViD-1k and LIVE-VQC. Further, we fine-tune the
model on KoNViD-1k, LIVE-VQC, and YouTube-UGC. It should
be noted that YouTube-UGC contains 1500 videos, but only 1067
videos are available to us.

5.1.2  Evaluation Criteria. Spearman Rank Order Correlation Coef-
ficient (SROCC) and Pearson Linear Correlation Coefficient (PLCC)
are used as evaluation Metrics. Specifically, SROCC is used to mea-
sure the prediction monotonicity between predicted scores and
true scores by ranking the values in both series and calculating the
linear correlation between the two ranked series. In contrast, PLCC
evaluates prediction accuracy by calculating the linear correlation
between a series of predicted scores and true scores. And higher
SROCC and PLCC scores indicate better performance.

5.1.3 Implementation Details. we employ PyTorch framework and
an NVIDIA GeForce RTX 3090 card to train the model in all ex-
perimental implementations. In the semantic feature extraction
module, we sample each frame of the video 9 times and then per-
form zero-shot feature extraction with CLIP, as shown in Fig. 6(b).
In the spatio-temporal feature extraction module, we use Video
Swin Transformer Tiny [36], pre-trained on the Kinetics-400 [24]
dataset, as the backbone. During training, the initial learning rate
of Swin Transformer backbone is set to 0.000075, and the initial
learning of other parts is set to 0.00075. We set the batch size to 12
and use the AdamW optimizer with a weight decay rate of 0.05.

5.1.4 Baseline Methods. We compare the proposed method with
the following methods:
e Classical Methods: BRISQUE [40], TLVQM [25], VIDEVAL
[53], RAPIQUE [54].
e Classical + Deep Learning Methods: CNN+TLVQM [26],
CNN+VIDEVAL [53].
e Deep Learning Methods: VSFA [29], PVQ [70], BVQA [28],
GST-VQA [3], CoINVOQ [57], FAST-VQA [58], FasterVQA [59],
DOVER [63].
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Table 1: Experimental performance of the pre-trained CLiF-VQA model on the LSVQ dataset on four test sets (LSVQy,s;,
LSVQ1080p, KoNViD-1k, LIVE-VQC). LSVQ;,s: and LSVQ10s0) are used for intra-dataset testing. While KoNViD-1k and LIVE-VQC

are used for cross-dataset testing. Best in red and second in blue.

Testing Type Intra-dataset Test Datasets Cross-dataset Test Datasets
Testing Datasets LSVQyest LSVQ1080p KoNViD-1k LIVE-VQC

Methods Source SROCC PLCC SROCC PLCC SROCC PLCC SROCC PLCC
BRISQUE [40] TIP, 2012 0.569 0.576 0.497 0.531 0.646 0.647 0.524 0.536
TLVQM [25] TIP, 2019 0.772 0.774 0.589 0.616 0.732 0.724 0.670 0.691
VIDEVAL [53] TIP, 2021 0.794 0.783 0.545 0.554 0.751 0.741 0.630 0.640

S VSFA[29] | ACMMM, 2019 | 0801 079 | 0675 0704 | 0784 079 | 0734 0772
PVQ.yo/patcn [70] CVPR, 2021 0.814 0.816 0.686 0.708 0.781 0.781 0.747 0.776
PVQ.,/patch [70] CVPR, 2021 0.827 0.828 0.711 0.739 0.791 0.795 0.770 0.807
BVQA [28] TCSVT, 2022 0.852 0.854 0.771 0.782 0.834 0.837 0.816 0.824
FAST-VQA-M [58] ECCV, 2022 0.852 0.854 0.739 0.773 0.841 0.832 0.788 0.810
FAST-VQA [58] ECCYV, 2022 0.872 0.874 0.770 0.809 0.864 0.862 0.824 0.841
FasterVQA [59] TPAMI, 2023 0.873 0.874 0.772 0.811 0.863 0.863 0.813 0.837
DOVER [63] ICCV, 2023 0.881 0.879 0.782 0.827 0.871 0.872 0.812 0.841
CLiF-VQA Ours 0.886 0.887 0.790 0.832 0.877 0.874 0.834 0.855

" improvement to existing best | | 0.57%  0.91% | 1.02%  0.61% | 0.69%  0.23% | 121%  1.66%

Table 2: The finetune results on LIVE-VQC, KoNViD and YouTube-UGC. Best in red and second in blue.

Finetune Datasets LIVE-VQC(585) KoNViD-1k(1200) YouTube-UGC(1067) Average

Methods Source SROCC PLCC SROCC PLCC SROCC PLCC SROCC PLCC
TLVQM [25] TIP, 2019 0.799 0.803 0.773 0.768 0.669 0.659 0.732 0.726
VIDEVAL [53] TIP, 2021 0.752 0.751 0.783 0.780 0.779 0.773 0.772 0.772
RAPIQUE [54] OJSP, 2021 0.755 0.786 0.803 0.817 0.759 0.768 0.774 0.790

~ CNN+TLVQM [26] | ACMMM, 2020 | ~ 0825 0834 | 0816 0818 | 0809 0802 | 0815 0814
CNN+VIDEVAL [53] TIP, 2021 0.785 0.810 0.815 0.817 0.808 0.803 0.806 0.810

COVSEA[29] | ACMMM, 2019 | ~0773° ~ 0795 | 0773 0775 | 0724 0743 | 0752 0765
PVQ [70] CVPR, 2021 0.827 0.837 0.791 0.786 NA NA NA NA
GST-VQA [3] TCSVT, 2021 NA NA 0.814 0.825 NA NA NA NA
CoINVQ [57] TCSVT, 2021 NA NA 0.767 0.764 0.816 0.802 NA NA
BVQA [28] TCSVT, 2022 0.831 0.842 0.834 0.836 0.831 0.819 0.832 0.832
FAST-VQA-M [58] ECCV, 2022 0.803 0.828 0.873 0.872 0.768 0.765 0.815 0.822
FAST-VQA [58] ECCV, 2022 0.845 0.852 0.890 0.889 0.857 0.853 0.864 0.865
FasterVQA [59] TPAMI, 2023 0.843 0.858 0.895 0.898 0.863 0.859 0.867 0.872
DOVER [63] ICCV, 2023 0.812 0.852 0.897 0.899 0.877 0.873 0.862 0.875
CLiF-VQA Ours 0.866 0.878 0.903 0.903 0.888 0.890 0.886 0.890

" improvement to existing best | | 2.49%  233% | 0.67%  045% | 125%  1.95% | 219%  1.71%

Table 3: FLOPs and running time(average of 10 runs) on GPU (RTX 3090) and CPU (i7-14700K) comparison of CLiF-VQA.

Methods | 540p | 720p | 1080p
FLOPs(G) | Time(GPU/s) & Time(CPU/s) | FLOPs(G) A Time(GPU/s)  Time(CPU/s) | FLOPs(G)  Time(GPU/s) Time(CPU/s)

VSFA [29] 6440 1.506 ‘ 38.65 11426 2.556 ‘ 64.66 25712 5.291 ‘ 150.2
PVQ [70] 9203 | 1.792 | 39.71 13842 2.968 | 68.50 36760 | 6.556 | 173.7
BVOQA [28] 17705 | 3.145 | 101.5 31533 | 7.813 | 165.8 70714 14.34 | 510.6
FAST-VQA [58] 284 | 0.246 \ 4.383 284 | 0.246 \ 4.297 284 | 0.248 \ 4.338
DOVER [63] 282 | 0.310 \ 6.098 282 | 0.310 \ 6.259 282 I 0.310 \ 6.139
CLiF-VQA 1432 ' 1.395 f 33.26 1432 1.397 f 33.31 1432 1394 33.24

5.2 Pre-training Results on LSVQ

We pre-train CLiF-VQA on LSVQ and compare it with the existing
advanced classical and deep VQA methods on four test datasets, as
shown in Tab. 1. All experiments are conducted under 10 train-test
splits. Compared with some classical methods, CLiF-VQA achieves
a significant improvement in performance on all test datasets. In
addition, CLiF-VQA achieves better results compared to FAST-VQA
and FasterVQA, which focus only on low-level-aware features of the
video. This suggests that the introduced human feelings features can
well complement the spatial features, thus improving the prediction

accuracy. In addition, CLiF-VQA performs better on both intra-
dataset testing and cross-dataset testing compared to the current
state-of-the-art DOVER, with an average improvement of 1.02%
and 0.85% on SROCC and PLCC.

5.3 Fine-tuning Results on Small Datasets

After pre-training on LSVQ, we fine-tune CLiF-VQA on three small
datasets (LIVE-VQC, KoNViD-1k, YouTube-UGC), as shown in Tab.
2. As before, all experiments are conducted under 10 train-test splits.
As can be seen, CLiF-VQA achieves unprecedented performance on
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all three datasets. Relative to the current best performance, CLiF-
VQA improved by an average of 2.19% and 1.71% on SROCC and
PLCC, respectively. The results further illustrate the effectiveness
of introducing human feelings in VQA.
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Figure 7: The performance of the model on two sets of videos
when using only spatio-temporal features as well as using
both spatio-temporal and semantic features.

5.4 Efficiency

To test the efficiency, we compare CLiF-VQA with several deep
learning-based VQA methods, as shown in Tab. 3. Specifically, we
compare the FLOPs and GPU/CPU runtimes for videos of different
resolutions, where the length of the videos are 150 frames. Since
the semantic feature extraction process is performed offline,
our model does not include the parameters of CLIP during
training, and thus does not add too much computational
effort. In the efficiency test, for a fair comparison, we consider the
increase in FLOPs and computation time due to the offline use of
CLIP for extracting video semantic features. Compared with VSFA,
PVQ, and BVQA, CLiF-VQA reduces FLOPs by up to 18x, 26x, and
49x, as well as reduces computation time by up to 4x, 5x, and 15x,
respectively. In addition, CLiF-VQA achieves the best performance
with acceptable FLOPs and computation time compared to the
fastest VQA methods, FAST-VQA and DOVER.

Table 4: Ablation study of three main components: Semantic
Feature Extraction, Spatio-Temporal Feature Extraction and
Regression Head. SROCC and PLCC are are average results
on LIVE-VQC, KoNViD-1k and YouTube-UGC.

Semantic Spatial Regression SROCC PLCC
v 0.792 0.788

v 0.864 0.865

v v 0.812 0.820

v v 0.868 0.869

v v 0.879 0.882

v v 0.886 0.890

5.5 Ablation Studies

5.5.1 Ablation on the Compositions of CLiF-VQA. We validate the
effectiveness of the three modules that make up CLiF-VQA. As
shown in Tab. 4, CLiF-VQA has acceptable performance when only
semantic features related to human feelings are extracted, and the
performance of CLiF-VQA is further improved when the regres-
sion head is introduced. When only low-level-aware features of
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the video are extracted, CLiF-VQA performs better than when only
semantic features are extracted. However, the performance did not
improve significantly after further introducing the regression head.
When features related to human feelings are introduced on top of
the spatial features, the performance of the model improves signif-
icantly, and it is further improved by introducing the regression
head. In addition, we further compare the performance of the model
on videos that elicit different feelings in humans when using only
spatial features and when using both spatial and semantic features,
as shown in Fig. 7. We choose two sets of videos that have very
different MOS, but have similar quality scores when predicted using
only spatial features. After we further introduce semantic features
related to human feelings, the predicted quality scores are closer to
the real MOS. These experimental results illustrate the validity of
human feelings we introduced in VQA.

Table 5: Ablation study on descriptions. ’Obj’ and ’Sub’ denote
objective and subjective descriptions, respectively.

Datasets LIVE-VQC KoNViD-1k YouTube-UGC
Descriptions SROCC/PLCC SROCC/PLCC SROCC/PLCC
None 0.845/0.852 0.890/0.889 0.857/0.853
Only-Obj 0.857/0.868 0.898/0.895 0.880/0.876
Only-Sub 0.849/0.856 0.893/0.891 0.863/0.860
Obj+Sub 0.866/0.878 0.903/0.903 0.888/0.890

5.5.2  Ablation on Descriptions. In Tab. 5, we verify the effect of
different types of descriptions on the performance of CLiF-VQA.
The results demonstrate that objective descriptions have a greater
impact on the performance improvement of CliF-VQA compared to
subjective descriptions. And the optimal results can be obtained by
using both objective and subjective descriptions.

6 CONCLUSION

In this paper, we first analyze that human feelings have a significant
impact on video quality assessment (VQA). Further, We validate for
the first time that CLIP is highly consistent with human feelings in
video quality perception. Extensive experiments demonstrate that
CLIP not only has good consistency with human feelings, but also
can achieve satisfactory results in VQA by using only the features
related to human feelings extracted by CLIP. Motivated by these
findings, we propose CLiF-VQA, a method that extracts features
related to human feelings and low-level-aware features of the video.
Then, the quality score of the video is obtained by aggregating the
two features. Experimental results demonstrate that the proposed
CLiF-VQA outperforms existing methods on multiple VQA datasets.

7 LIMITATION

Our model is not end-to-end, and since considering CLIP’s in train-
ing would lead to slow computation, we perform CLIP feature
extraction separately. There is room for optimizing the prompts we
design, such as increasing the number of prompts as well as and
selecting better prompts.
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