CLiF-VQA: Enhancing Video Quality Assessment by Incorporating
High-Level Semantic Information related to Human Feelings

1 DETAILS ON SUBJECTIVE EXPERIMENTS

We will detail the setup of the experiments (shown in Fig. 1 of
the paper) on the effects of human feelings on the judgments of
the human visual system (HVS) conducted in Sec. 1 of the paper.
Specifically, we choose Honor Magic3 as the shooting device. An
expert with professional shooting skills takes the video and the
video resolution obtained is 1920 X 1080. For the subjective experi-
ment, we ask 10 experts to evaluate the quality of the video. While
evaluating the quality of the video, the experts only need to give a
rating as to which of the two videos is better in terms of quality.
The better quality video gets a score of 1 while the poor quality
video gets a score of 0. Then we calculate the mean of all the scores
given by the experts as the quality score of the video. In addition,
we design four pairs of antonyms as CLIP prompts to explore the
consistency of CLIP with human feelings. Specifically, we use one
pair of antonyms at a time as prompts to extract features from the
video, and then we use the CLIP with prompts to perform feature
extraction at 10 different locations in the video frame. Finally, the
average of all feature values corresponding to a particular prompt
is computed as the feature of the video.

2 DETAILS ON EXPLORING THE
PERFORMANCE OF CLIP IN VQA

In Sec. 3 of the paper, the model we designed for exploring the
performance of CLIP in video quality assessment is shown in Fig
1. Specifically, we apply the architecture of the classic VQA model
VSFA, but we replace the feature extraction module used in VSFA
with our CLIP-based semantic feature extraction module, leaving
the other modules intact.

Table 1: Feature extraction models for NR-VQA.

Methods Venus Feature Extraction
VSFA[4] ACMMM’19 ResNet-50
GST-VQA[1] TCSVT’21 VGG-16
MD-VQA[11] CVPR’23 EfficientNet-V2

Table 2: Performance comparison of different feature extrac-
tion methods. ’0’ denotes using only objective description
(35), ’s’ denotes using only subjective description (17), and ’a’
denotes using both objective and subjective description.

Method SROCCT | KROCCT | PLCCT | RMSE]|
VGG-16 0.740 0.542 0.742 0.412
ResNet-50 0.771 0.575 0.775 0.398
EfficientNet-V2 0.797 0.599 0.795 0.387
CLIP, 0.782 0.590 0.786 0.401
CLIPg 0.499 0.343 0.531 0.528
CLIP, 0.814 0.622 0.826 0.375

We compare the CLIP-based feature extraction method with
three other feature extraction methods (ResNet-50 [2], VGG-16 [6],
EfficientNet-V2 [8]) that are widely used for VQA, as shown in Tab.
1. Specifically, we compare the performance of different feature ex-
traction methods by keeping the temporal-memory effect modeling
module unchanged. In the comparison experiment, we use a total of
52 descriptions related to human objective and subjective feelings
as prompts of CLIP. The results of the comparison experiments are
shown in Tab. 2. The results here correspond to the bar chart in
the paper. Detailed information about the prompts we use will be
presented in the next section.

3 DETAILED INFORMATION ON PROMPT
SETTINGS

3.1 Prompt Design on Human Feelings

A total of 52 descriptions related to human feelings are designed
as prompts, including 35 descriptions related to human objective
feelings and 17 descriptions related to human subjective feelings.
The details of the descriptions are as follows.

Objective Descriptions: [ "good image block", "bad image block",

"on "o

"noisy image block", "hazy image block", "dark image block", "bright
image block", "blurry image block", "over exposure image block’, "sharp
image block", "colorful image block", "dull image block", "high contrast
image block", "low contrast image block’, "image block without noise’,
"image block without blur", "image block with additive gaussian noise",
"image block with noise in color compression", "image block with spa-

"o "on

tially correlated noise", "image block with masked noise", "image block
with high frequency noise", "image block with impulse noise", "image
block with quantization noise", "image block with gaussian blur", "im-
age block with motion blur", "image block with bokeh blur", "uniform
color image block", "uneven color image block’", "image block with
chromatic aberration’, "image block without chromatic aberration”,
"image block with distortions", "image block without distortions", "uni-
form illumination image block", "unevenly illuminated image block”,
"image block with sharpness loss", "image block without sharpness
loss"]

Subjective Descriptions: [ "light-hearted image block", "depressing
image block", "comfortable image block", "uncomfortable image block",
"sad image block", "sentimental image block", "fearful image block",
"exciting image block", "satisfactory image block", "calming image
block", "fascinating image block", "interesting image block", "impatient
image block", "tense image block", "puzzling image block", "delightful

image block", "outrageous image block", "disgusting image block"]

"o
>

3.2 Experiments on Different Prompt Words

As you can see the prompt word we use is <image block>, which we
chose after a lot of comparison experiments. Since the performance
of CLIP is affected by the prompt word [5], choosing a suitable
prompt word can make CLIP perform better in our task. Therefore,
we design six alternative prompt words (<photo>, <photo block>,
<video frame>, <video frame block>, <image>, <image block>).
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Figure 1: Model architecture (mentioned in Sec. 3) used when exploring performance of CLIP in VQA. More details about the

model can be found in model VSFA[4].

Of these, <photo>, <video frame> and <image> are widely used
prompt words for CLIP. Since we use CLIP to extract semantic fea-
tures from multiple region blocks in a video frame, we consider that
adding <block> to prompt words might improve the performance
of CLIP, and thus design prompt words <photo block>, <video frame
block> and <image block>.

Table 3: Performance using different prompt words.

Prompt word SROCCT | KROCCT | PLCCT | RMSE]
photo 0.796 0.601 0.799 0.402
photo block 0.806 0.597 0.806 0.388
video frame 0.789 0.568 0.781 0.440
video frame block 0.788 0.573 0.779 0.435
image 0.803 0.596 0.805 0.392
image block 0.814 0.622 0.826 0.375

We perform our experiments on the dataset KoNViD-1K [3]
containing 1200 videos with a resolution of 960 X 540. And we
perform 85 semantic feature extractions at different locations on
each frame of the video. The experimental results are shown in
Tab 3. The results indicate that using <image block> as the prompt
word has the best performance, so we choose to use it as the prompt
word.

3.3 Experiments on the Number of Prompts

Although we design 52 prompts, we also explore the performance
of the model (shown in Fig. 1) in VQA when using fewer prompts.
We experiment with five additional sets of prompts with different
numbers, with the same experimental setup as in Sec. 3.2, as shown
in Tab. 4. The results show that increasing the number of prompts

Table 4: Performance using different number of prompts.
’ob’ denotes objective description, ’sub’ denotes subjective de-
scription; ’f’ denotes randomly using the half of descriptions,
’a’ denotes all descriptions.

Description | SROCCT | KROCCT | PLCCT | RMSE|
only-ob-f 0.751 0.550 0.755 0.422
only-ob-a 0.782 0.590 0.786 0.401
only-sub-f 0.358 0.242 0.378 0.576
only-sub-a 0.499 0.343 0.531 0.528
obj-sub-f 0.803 0.602 0.798 0.392
obj-sub-a 0.814 0.622 0.826 0.375

can improve the performance of CLIP in the VQA task. This sug-
gests that using more prompts might enable CLIP to capture more
semantic features of the video. This may mean that using more cues
than the 52 prompts we designed might further improve the per-
formance of CLIP, which remains to be verified. We next consider
designing more prompts to test this hypothesis.

4 MORE INFORMATION ON MODEL
TRAINING

During pre-training, we train on the LSVQ [10] dataset for 30 epochs.
After each epoch of training, we validate the performance of the
model on multiple small datasets (KoNViD-1k [3], LIVE-VQC [7],
YouTube-UGC [9]). We save the parameters from that time when
the model performed best on a small dataset, and then use the
parameters as initial parameters when fine-tuning on that dataset.
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