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Abstract

Attention networks such as transformers have achieved state-of-the-art performance
in many domains. These networks rely heavily on the dot product attention opera-
tor, which computes the similarity between two points by taking their inner product.
However, the inner product does not explicitly model the complex structural prop-
erties of real world datasets, such as hierarchies between data points. To remedy
this, we introduce cone attention, a drop-in replacement for dot product attention
based on hyperbolic entailment cones. Cone attention associates two points by the
depth of their lowest common ancestor in a hierarchy defined by hyperbolic cones,
which intuitively measures the divergence of two points and gives a hierarchy
aware similarity score. We test cone attention on a wide variety of models and
tasks and show that it improves task-level performance over dot product attention
and other baselines, and is able to match dot-product attention with significantly
fewer parameters. Our results suggest that cone attention is an effective way to
capture hierarchical relationships when calculating attention.

1 Introduction

In recent years, attention networks have achieved highly competitive performance in a variety of
settings, often outperforming highly-engineered deep neural networks [7, 10, 34]. The majority of
these networks use dot product attention, which defines the similarity between two points u, v ∈ Rd

by their inner product u⊤v [34]. Although dot product attention empirically performs well, it also
suffers from drawbacks that limit its ability to scale to and capture complex relationships in large
datasets [36, 30]. The most well known of these issues is the quadratic time and memory cost of
computing pairwise attention. While many works on attention mechanisms have focused on reducing
the computational cost of dot product attention, few have considered the properties of the dot product
operator itself [36, 8].

Many real world datasets exhibit complex structural patterns and relationships which may not be well
captured by an inner product [33, 19]. For example, NLP tasks often contain hierarchies over tokens,
and images may contain clusters over pixels [37, 16]. Motivated by this, we propose a new framework
based on hyperbolic entailment cones to compute attention between sets of points [12, 40]. Our
attention mechanism, which we dub “cone attention”, utilizes partial orderings defined by hyperbolic
cones to better model hierarchical relationships between data points. More specifically, we associate
two points by the depth of their lowest common ancestor (LCA) in the cone partial ordering, which is
analogous to finding their LCA in a latent tree and captures how divergent two points are.

Cone attention effectively relies on two components: hyperbolic embeddings and entailment cones.
Hyperbolic embeddings, which use the underlying geometric properties of hyperbolic space, give low-
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Figure 1: Overview of cone attention vs. dot product attention. In dot product attention (left),
similarity scores are calculated with K = qk⊤. In cone attention (right), q and k are first projected
onto hyperbolic space. Then, pairwise similarity is calculated from the lowest common ancestor of
points in the partial ordering defined by entailment cones. Cone attention allows us to explicitly encode
notions of hierarchy in attention, and empirically gives better performance than dot product attention.

distortion embeddings of hierarchies that are not possible with Euclidean embeddings [28]. Entailment
cones, which rely on geometric cones to define partial orders between points, allow us to calculate
explicit relationships between points, such as their LCA [12, 40]. To the best of our knowledge, we
are the first to define a hierarchy-aware attention operator with hyperbolic entailment cones.

Functionally, cone attention is a drop-in replacement for dot product attention. We test cone attention
in both “classical” attention networks and transformers, and empirically show that cone attention
consistently improves end task performance across a variety of NLP, vision, and graph prediction
tasks. Furthermore, we are able to match dot product attention with significantly fewer embedding
dimensions, resulting in smaller models. To summarize, our contributions are:

• We propose cone attention, a hierarchy aware attention operator that uses the lowest common
ancestor of points in the partial ordering defined by hyperbolic entailment cones.

• We evaluate cone attention on NLP, vision, and graph prediction tasks, and show that it
consistently outperforms dot product attention and other baselines. For example, we achieve
+1 BLEU and +1% ImageNet Top-1 Accuracy on the transformer_iwslt_de_en and
DeiT-Ti models, respectively.

• We test cone attention at low embedding dimensions and show that we can significantly
reduce model size while maintaining performance relative to dot product attention. With
cone attention, we can use 21% fewer parameters for the IWSLT’14 De-En NMT task.

2 Background

In this section, we provide background on attention mechanisms, motivate the use of hyperbolic
space to embed hierarchies, and describe our choice of entailment cones to encode partial orderings.

2.1 Attention

The attention operator has gained significant popularity as a way to model interactions between sets
of tokens [34]. At its core, the attention operator A performs a “lookup” between a single query
qi ∈ Rd and a set of keys k ∈ Rn×d, and aggregates values v ∈ Rn×d associated with the keys to
“read out” a single value for qi. Mathematically, this can be represented as

A(qi, k) = C
∑
j

(K(qi, kj)vj) (1)

where C
∑

j K(qi, kj) = 1. In “traditional” dot product attention, which has generally superseded
“older” attention methods such as Additive Attention and Multiplicative Attention [6, 18],

K(qi, kj) = exp

(
qikj√
d

)
C =

1∑
j K(qi, kj)

A(qi, k) = softmax
(
qik

⊤
√
d

)
v (2)

similarity is scored with a combination of cosine similarity and embedding magnitudes.
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Existing works have proposed replacing dot product attention to various degrees. A large body of
works focus on efficiently computing dot product attention, such as with Random Fourier Features
and low-rank methods [26, 36]. These methods generally perform worse than dot product attention,
as they are approximations [41]. Some recent works, such as EVA attention, parameterize these
approximations and effectively get a larger class of dot-product-esque attention methods [41]. Beyond
this, Tsai et al. [32] replace K with compositions of classical kernels. Others extend dot product
attention, such as by controlling the “width” of attention with a learned Gaussian distribution or by
using an exponential moving average on inputs, although extensions do not usually depend on K
[14, 19]. Closer to our work, Gulcehre et al. [13] introduced hyperbolic distance attention, which
defines K(qi, ki) = exp(−βdH(qi, ki) − c) where dH is the hyperbolic distance, β ∈ R+, and
c ∈ R. K can be interpreted as an analog of the distance from qi to ki on a latent tree. Finally, in an
orthogonal direction, Tay et al. [29] ignore token-token interactions and synthesize attention maps
directly from random alignment matrices. Whether token-token interactions are actually needed is
outside the scope of this work, and we compare cone attention accordingly.

2.2 Hyperbolic Space

d-dimensional Hyperbolic space, denoted Hd, is a simply connected Riemannian manifold with con-
stant negative sectional curvature [4]. This negative curvature results in geometric properties that
makes hyperbolic space well-suited for embedding tree-like structures [28, 38]. For example, the vol-
ume of a hyperbolic ball grows exponentially with respect to its radius; in a tree, the number of leaves
grows exponentially with respect to depth. Furthermore, dH(u, v) ≈ dH(u,O) + dH(O, v), where O
is the origin, which again mirrors a tree where dT (u, v) = dT (u,LCA(u, v)) + dT (LCA(u, v), v).
Since hyperbolic space cannot be isometrically embedded into Euclidean space, it is usually repre-
sented on a subset of Euclidean space by a “model” of Hd [13]. These models are isometric to each
other, and the key differences between them lie in their different parameterizations, which allow for
cleaner computations and visualizations for certain tasks.

In this work, we primarily use the Poincaré half-space model, which is the manifold Hd = (Ud, gu)
where Ud = {x ∈ Rd : xd > 0}, gu(x) = ge/x

2
d, and ge is the Euclidean metric [4]. In the Poincaré

half-space, “special” points and curves have particularly nice Euclidean forms. Ideal points, or points
at infinity, are the points where xd = 0 (the “x-axis”) and the single point xd = ∞ at which all lines
orthogonal to the x-axis converge. Geodesics, the shortest path between two points, are Euclidean
semicircles with the origin on the x-axis or vertical rays orthogonal to the x-axis. Horospheres,
curves where all normal curves converge at the ideal point, are represented by either an Euclidean
ball tangent to the x-axis or a horizontal hyperplane when the ideal point is xd = ∞.

2.3 Entailment Cones

Entailment cones in hyperbolic space were first introduced by Ganea et al. [12] to embed partial
orders. The general concept of Ganea’s entailment cones is to capture partial orders between points
with membership relations between points and geodesically convex cones rooted at said points. That
is, if u ∈ the cone of v, then v ≺ u. Ganea’s cones (figure 2 right) are defined on the Poincaré ball by
a radial angle function ψ(r), with an ϵ-ball around the origin where cones are undefined [4, 12]. This
makes learning complicated models with Ganea’s cones difficult, as optimization on the Poincaré ball
is nontrivial and the ϵ-ball negatively impacts embedding initializations [40, 12].

In this work, we instead use the shadow cone construction introduced in [40] and operate on the
Poincaré half-space, which makes computing our desired attention function numerically simpler.
Shadow cones are defined by shadows cast by points and a single light source S, and consist of the
penumbral and umbral settings (figure 2 left quadrant). In the penumbral setting, S is a ball of fixed
radius and points are points. The shadow and cone of u are both the region enclosed by geodesics
through u tangent to S. In the umbral setting, S is instead a point, and points are centers of balls of
fixed radius. Here, the shadow of u is the region enclosed by geodesics tangent to the ball around u
that intersect at S . However, to preserve transitivity, the cone of u is a subset of the shadow of u (see
figure 2). The shadow cone formulation can also be achieved with subset relations between shadows
instead of membership relations between points and cones, which may be conceptually clearer.

Infinite-setting Shadow Cones. For penumbral cones, when S is a ball with center at xd = ∞, S’s
boundary is a horosphere of user-defined height h. Here, all shadows are defined by intersections of
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Figure 2: (Left Quadrant) Clockwise from top left: finite setting penumbral cone, infinite setting
penumbral cone, infinite setting umbral cone, and finite setting umbral cone. All figures are in H2.
Shadows are represented by shaded regions, and cones are enclosed in green. In all figures, u ≺ v
since v is in the cone of u. (Right) Ganea’s entailment cones, as defined on the Poincaré ball. Note
the ϵ-ball where cones are not defined, which makes optimization nontrivial. Figure from [12].

Euclidean semicircles of Euclidean radius h. Notably, the infinite setting penumbral cone construction
is similar to Ganea’s cones under an isometry from the Poincaré half-space to the Poincaré ball where
S maps to the ϵ-ball [40]. For umbral cones, when S is xd = ∞, shadows are regions bounded by
Euclidean lines perpendicular to the x-axis.

Unlike Ganea’s cones and penumbral cones, umbral cones are not geodesically convex [40]. That is,
the shortest path between two points in an umbral cone may not necessarily lie in the cone. In a tree,
this corresponds to the shortest path between two nodes not being in the subtree of their LCA, which
is not possible. Empirically, while still better than dot product attention, umbral attention usually
performs worse than penumbral attention.

2.4 Lowest Common Ancestor (LCA) and Least Upper Bound

The LCA of two nodes u, v in a directed acyclic graph is the lowest (deepest in hierarchy) node
that is an ancestor of both u and v. Although the two terms are similar, the LCA is not the same
as the least upper bound of a partial ordering. The least upper bound of two points x, y in a partial
ordering, denoted sup(x, y), is the point p such that p ⪯ x, y and ∀q where q ⪯ x, y, q ⪯ p. The key
difference is that all other upper bounds must precede the least upper bound, while not all ancestors
of u and v must also be ancestors of LCA(u, v). Furthermore, p may not actually exist.

3 Hierarchy Aware Attention

Here, we describe cone attention using the shadow cone construction, and discuss projection functions
onto Hd that allow us to use cone attention within attention networks. All definitions use the infinite-
setting shadow cones, and proofs and derivations are in the appendix. For clarity, we refer to Ganea’s
entailment cones as “Ganea’s cones” and the general set of cones that captures entailment relations
(e.g. Ganea’s cones and shadow cones) as “entailment cones” [12, 40]. Our methods are agnostic
entailment cone choice, and can also be used with Ganea’s cones.

3.1 Cone Attention

We wish to associate u, v ∈ Hd by their LCA in some latent tree T , which is analogous to finding
their LCA, denoted sup2(u, v), in the partial ordering defined by entailment cones. Formally,
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Figure 3: In this example using penumbral cones in Hd, sup2(u, v) is the lowest common ancestor
of u and v. The red region is the set of points P s.t. p ∈ P ⪯ u, v. Of these, sup2(u, v) is the lowest
point whose cone (light gray) contains both u and v. Here, S is the root of all hierarchies, and points
closer to xd = 0 are closer to the “leaves” of hierarchies. If d = 2, then sup2(u, v) is also the least
upper bound of u and v in the partial ordering defined by entailment cones.

sup2(u, v) = r

(
argmax
C:u,v∈C

dH(S, r(C))
)

(3)

where r(C) denotes the root of a cone C. This corresponds to finding the cone that is farthest away
from S , which is the root of all hierarchies in the shadow cones construction. When d = 2, sup2(u, v)
also has the nice property of being the least upper bound sup(u, v) in the partial ordering defined by
shadow cones. Then, we define the similarity between u and v as

K(u, v) = f(dH(sup2(u, v),S)) (4)

where f is a user-defined monotonically increasing function. If K(u, v) > K(u,w), then
dH(sup2(u, v),S) > dH(sup2(u,w),S), which implies that u and v have a more recent “ancestor”
than u and w. Thus, K gives a higher similarity score to points who have a more recent “ancestor” in
T . In the infinite-setting shadow cone construction, sup2(u, v) is root of the minimum height (literal
lowest) cone that contains both u and v, or sup2(u, v) = r

(
argminC:u,v∈C r(C)d

)
.

Using this, we provide definitions for K(u, v) in the infinite-setting shadow cone construction. Both
the umbral and penumbral definitions correspond to the Euclidean height of sup2(u, v). In the
penumbral setting, when sup2(u, v) does not exist, we return the Euclidean height of lowest light
source where sup2(u, v) exists. xd denotes the last dimension of x, and x:−1 denotes the first d− 1
dimensions of x. γ ∈ R+ corresponds to the softmax “temperature” in attention. In the penumbral
setting, r ∈ R+ is the user-defined height of the horosphere light source. In the umbral setting,
r ∈ R+ is the user-defined radius of the ball centered at each point.
Definition 1. Penumbral Attention:

K(u, v) = exp

−γmax

ud, vd,
√√√√r2 −

(√
r2 − u2d +

√
r2 − v2d − ∥u:−1 − v:−1∥

2

)2



(5)

when there exists a cone that contains u and v, and

K(u, v) = exp

−γ

√(
∥u:−1 − v:−1∥2 + u2d − v2d

2∥u:−1 − v:−1∥

)2

+ v2d

 (6)

otherwise. There exists a cone that contains u and v when

(
∥u:−1 − v:−1∥ −

√
r2 − u2d

)2

+ v2d < r2 (7)

Definition 2. Umbral Attention:

K(u, v) = exp

(
−γmax

(
ud, vd,

∥u:−1 − v:−1∥
2 sinh(r)

+
ud + vd

2

))
(8)
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These definitions possess a rather interesting property – when ud = vd and K is normalized across a
set of vs, cone attention reduces to the Laplacian kernel K(u:−1, v:−1) = exp(−γ∥u:−1 − v:−1∥).
Since Euclidean space is isomorphic to a horosphere, and u and v are on the same horosphere if
ud = vd, cone attention can also be seen as an extension of the Laplacian kernel [22].

Cone attention and dot product attention both take O(n2d) time to compute pairwise attention
between two sets of n d-dimensional tokens q, k ∈ Rn×d [36]. However, cone attention takes more
operations than dot product attention, which computes qk⊤. In transformers, our PyTorch cone
attention implementations with torch.compile were empirically 10-20% slower than dot product
attention with torch.bmm (cuBLAS)[24] (see section 7.6). torch.compile is not optimal, and a
raw CUDA implementation of cone attention would likely be faster and narrow the speed gap between
the two methods [24].

3.2 Mapping Functions

Here, we discuss mappings from Euclidean space to the Poincaré half-space. These mappings
allow us to use cone attention within larger models. The canonical map in manifold learning is the
exponential map Expx(v), which maps a vector v from the tangent space of a manifold M at x onto
M by following the geodesic corresponding to v [27, 4]. In the Poincaré half-space [39],

Expx(v):−1 = x:−1+
xd

∥v∥/ tanh(∥v∥)− vd
v:−1 Expx(v)d =

xd
cosh(∥v∥)− vd sinh(∥v∥)/∥v∥

(9)

While Expx(v) is geometrically well motivated, it suffers from numerical instabilities when ∥v∥ is
very large or small. These instabilities make using the exponential map in complicated models such
as transformers rather difficult. Using fp64 reduces the risk of numerical over/underflows, but fp64
significantly reduces performance on GPUs, which is highly undesirable [1].

Instead, we use maps of the form (x:−1, xd) → (x:−1f(xd), f(xd)) that preserve the exponential
volume of hyperbolic space while offering better numerics for large-scale optimization. Our use
of alternatives to Expx(v) follows Gulcehre et al. [13]’s psuedopolar map onto the Hyperboloid.
Geometrically, since n-dimensional Euclidean space is isomorphic to a horosphere in Hn+1, these
maps corresond to selecting a horosphere with f(xd) and then projecting x:−1 onto that horosphere
[22]. To achieve exponential space as xd → −∞, we use functions f of the form exp(·).
For the infinite-setting umbral construction, since there is no restriction on where points can go in the
Poincaré half-space, we map x ∈ Rd to Hd with ψ : Rd → Hd:

ψ(x):−1 = x:−1 exp(xd) ψ(x)d = exp(xd) (10)

For the infinite-setting penumbral construction, since the mapped point cannot enter the light source
at height h, we map x ∈ Rd to area below the light source with ξ : Rd → Hd

ξ(x):−1 = x:−1
h

1 + exp(−x)
ξ(x)d =

h

1 + exp(−x)
(11)

While ξ is structurally the sigmoid operation, note that sigmoid(x) = exp(−softplus(−x)). Since
softplus(x) ≈ x for large values of x, ξ preserves the exponential volume properties we seek.

4 Experiments

Here, we present an empirical evaluation of cone attention in various attention networks. For each
model we test, our experimental procedure consists of changing K in attention and training a new
model from scratch. Unless otherwise noted in the appendix, we use the code and training scripts that
the authors of each original model released. We assume released hyperparameters are tuned for dot
product attention, as these models were state-of-the-art (SOTA) when new.

4.1 Baselines

Our main baseline is dot product attention, as it is the most commonly used form of attention in
modern attention networks. Additionally, we compare cone attention against Gulcehre et al. [13]’s
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hyperbolic distance attention and the Laplacian kernel. To the best of our knowledge, few other works
have studied direct replacements of the dot product for attention.

Gulcehre et al. [13]’s original hyperbolic distance attention formulation not only computed the
similarity matrix K in the Hyperboloid, but also aggregated values v in hyperbolic space by taking
the Einstein midpoint with respect to weights α in the Klein model (see appendix for definitions)
[27]. However, the Einstein midpoint, defined as

m(α, v) =
∑
i

(
αiγ(vi)∑
j αjγ(vj)

)
(12)

where γ(v) = 1/
√
1− ∥v∥2, does not actually depend on how α is computed. That is, α could be

computed with Euclidean dot product attention or cone attention and m(α, v) would still be valid.
The focus of our work is on computing similarity scores, so we do not use hyperbolic aggregation
in our experiments. We test hyperbolic distance attention using both Gulcehre et al. [13]’s original
pseudopolar projection onto the Hyperboloid model and with our ψ map onto the Poincaré half-space.

4.2 Models

We use the following models to test cone attention and the various baselines. These models span
graph prediction, NLP, and vision tasks, and range in size from a few thousand to almost 250 million
parameters. While we would have liked to test larger models, our compute infrastructure limited us
from feasibly training billion-parameter models from scratch.

Graph Attention Networks. Graph attention networks (GATs) were first introduced by Veličković
et al. [35] for graph prediction tasks. GATs use self-attention layers to compute node-level attention
maps over neighboring nodes. The original GAT used a concatenation-based attention mechanism
and achieved SOTA performance on multiple transductive and inductive graph prediction tasks [35].
We test GATs on the transductive Cora and inductive multi-graph PPI datasets [20, 15].

Neural Machine Translation (NMT) Transformers. Transformers were first applied to NMT in
Vaswani et al. [34]’s seminal transformer paper. We use the fairseq transformer_iwslt_de_en
architecture to train a German to English translation model on the IWSLT’14 De-En dataset [23, 11].
This architecture contains 39.5 million parameters and achieves near-SOTA performance on the
IWSLT’14 De-En task for vanilla transformers [23]. As this model is the fastest transformer to train
out of the tested models, we use it for ablations.

Vision Transformers. Vision transformers (ViT) use transformer-like architectures to perform image
classification [10]. In a ViT, image patches are used as a tokens in a transformer encoder to classify
the image. We use the Data Efficient Vision Transformer (DeiT) model proposed by FAIR, which
uses a student-teacher setup to improve the data efficiency of ViTs [31]. DeiTs and ViTs share the
same architecture, and the only differences are how they are trained and the distillation token. We
train DeiT-Ti models with 5 million parameters on the ImageNet-1K dataset for 300 epochs[31, 9].
We also train cone and dot product attention for 500 epochs, as we observed that training for more
iterations improves performance.

Adaptive Input Representations for Transformers. Adaptive input representations were introduced
by Baevski and Auli for transformers in language modeling tasks [5]. In adaptive inputs, rarer tokens
use lower dimensional embeddings, which serves as a form of regularization. We use the fairseq
transformer_lm_wiki103 architecture (246.9M parameters) and train models on the WikiText-103
language modeling dataset with a block size of 512 tokens [23, 21]. We also test the same architecture
without adaptive inputs, which has 520M parameters. This version converges in significantly fewer
iterations, allowing us to train such a large model.

Diffusion Transformers. Diffusion transformers (DiT) are diffusion models that replace the U-Net
backbone with a transformer [25]. DiTs operate on latent space patches, so we expect there to be less
hierarchical information vs. taking image patches. We use DiTs to test cone attention when the data
is less hierarchical. We train DiT-B/4 models with 130M parameters on ImageNet-1K [25, 9].
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Table 1: Performance of various attention methods across models and tasks. ∗ indicates the model
failed to converge or ran into NaN errors. ↑ indicates higher is better, and ↓ indicates lower is better.
Cone attention methods (†) generally outperform dot product attention and other baselines. Model
default refers to a model’s default attention method, which is dot product attention except for GATs.

Method NMT IWLST
(BLEU ↑)

DeiT-Ti Imagenet
Top-1 / 5 (Acc. ↑)

300 Epochs

DeiT-Ti Imagenet
Top-1 / 5 (Acc. ↑)

500 Epochs

GAT Cora /
PPI (Acc. ↑)

Model Default 34.56 72.05 / 91.17 73.65 / 91.99 0.831 / 0.977
Dot Product 34.56 72.05 / 91.17 73.65 / 91.99 0.834 / 0.985
Penumbral† 35.56 72.67 / 91.12 74.34 / 92.38 0.835 / 0.990
Umbral† 35.07 73.14 / 91.82 74.46 / 92.54 0.836 / 0.989
dH Hn ξ 32.54 49.19∗ / 74.68∗ – 0.834 / 0.987
dH Hyperboloid 33.80 0.10∗ / 0.45∗ – 0.13∗ / 0.989
Laplacian Kernel 34.68 71.25 / 90.84 – 0.823 / 0.986

Method Adaptive Inputs WikiText-103
0 / 480 Context Window (Ppl. ↓)

Without Adaptive
Inputs

DiT-B/4 @ 400K Steps
(FID-50K ↓)

Dot Product 20.86 / 19.22 26.62 / 24.73 68.9
Penumbral 20.72 / 19.01 26.44 / 24.31 67.7
Umbral 21.16 / 19.59 27.82 / 26.73 67.6

5 Results

Table 1 summarizes the performance of cone attention across various models and tasks. Both
penumbral and umbral attention significantly outperform baselines on the NMT IWSLT and DeiT-Ti
Imagenet tasks. For DeiT-Ti, umbral attention achieves 73.14% top-1 and 91.82% top-5 accuracy
at 300 epochs and 74.46% top-1 and 92.54% top-5 accuracy at 500 epochs, which matches a
distilled DeiT-Ti with more parameters (74.5% / 91.9%) [31]. On the GAT tasks, cone attention
again outperforms baselines and achieves Graph Convolutional Network-level performance on the
PPI dataset. Interestingly, almost all baselines, including dot product attention, outperform the
concatenation-based attention in the original GAT paper. The two GAT tasks also reveal some
interesting differences between penumbral and umbral attention. The Cora citation dataset is more
tree-like with an average of 2 edges per node and chronological dependencies between nodes (a paper
cannot cite a newer paper), while the PPI dataset is closer to a clustered graph with 14.3 edges per
node [35, 15, 20]. As noted in [40], umbral cones appear to be better for strict hierarchies, while
penumbral cones capture more complicated relationships such as those in the PPI dataset.

The adaptive inputs method regularizes models by reducing d for rare words. We expect rarer
words to be closer to the leaves of a word hierarchy, so the adaptive inputs method also acts as a
hierarchical prior on the data [37]. We use adaptive inputs to test cone attention when combined
with other hierarchical priors. Penumbral attention outperforms dot product attention with or without
adaptive inputs, but the gap between the two methods is larger without adaptive inputs. On the other
hand, umbral attention performs worse than dot product attention and penumbral attention on the
WikiText103 task, with or without adaptive inputs. Since umbral cones are not geodesically convex,
which means that the shortest path between two points in a cone may not necessarily lie entirely in that
cone, we suspect that convexity is important for the WikiText-103 language modeling task. In the DiT
model, patches are taken at the latent space-level, which we suspect gives less hierarchical information
than when patches are taken from an input image [25]. Here, cone attention still outperforms dot
product attention, but to a lesser degree. This mirrors our expectation that the DiT model does not
benefit as much from hierarchical attention, and verifies that in such cases, using cone attention does
not hurt performance. Interestingly, umbral cones slightly outperform penumbral cones in the DiT-
B/4 task, which may be a result of patches being over the latent space, and not the input image.

5.1 Effect of Mapping Functions

Table 2 compares how ψ and ξ compare to the exponential map and psueodpolar map (section 3.2)
on the NMT IWSLT task. Here, we use the exponential map at the origin of Hd, O = (0, 0, ..., 1).
To compare ExpO(v) to ψ, we first take ExpO(v) and then project the point onto the boundary of
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Table 2: Comparison of various mappings from Euclidean space to hyperbolic models for the NMT
IWSLT task (BLEU scores, higher is better). The exponential map generally performs worse than ψ
and the pseudopolar map. While ψ also performs worse than the psuedopolar map, table 1 indicates
that the pseudopolar map is less numerically stable than ψ.

Method ExpO(v) → Hd ξ → Hd ψ → Hd Pseudopolar → Hyperboloid

Penumbral 35.12 35.56 - -
Umbral 34.63 - 35.07 -
dH 30.59 - 32.54 33.80

Dimension

B
LE

U

30

32

34

36

3 (30.2M params) 4 (30.3M) 6 (30.5M) 8 (30.6M) 12 (30.9M) 16 (31.2M)

Dot Product Umbral Penumbral Dot Product d=128 (39.5M) Umbral d=128 (39.5M) Penumbral d=128 (39.5M)

Performance at Low q, k Dimensions for NMT IWSLT

Figure 4: Performance of cone and dot product attention at low dimensions on NMT IWSLT. The
base architecture uses 128 dimensions, and cone attention is able to match dot product attention with
only 16 dimensions. For this model, this allows us to use 21% fewer parameters to reach performance
parity, indicating that cone attention more efficiently captures hierarchical information.

L if ExpO(v) is in L. In the infinite penumbral setting, this corresponds to taking ExpO(v)d =
min(ExpO(v)d, h). ψ and ξ generally perform much better than taking the exponential map at the
origin O, which suggests that ψ and ξ have better optimization properties. For dH attention, Gulcehre
et al.’s pseudopolar map slightly outperforms ξ. However, table 1 indicates that outside of this specific
task, using the psuedopolar map and Hyperboloid is less numerically stable.

5.2 Attention Efficiency and Model Size

Figure 4 shows the performance of cone attention vs. dot product attention at low token (q, k)
embedding dimensions (d from before) on the NMT IWSLT task. Both umbral and penumbral
attention are able to achieve significantly better performance than dot product attention in this regime,
matching dot product attention at d = 128 with only d = 16. For this model, using 16 dimensions
reduces the number of parameters from 39.5M to 31.2M. Table 3 shows the performance of DeiT-Ti
at d = 16. Here, penumbral attention at d = 16 is able to outperform dot product attention at d = 64,
again indicating that cone attention is able to more efficiently capture hierarchies.

5.3 Sensitivity to Initialization

Hyperbolic embeddings are known to be sensitive to initialization [12, 40]. To test cone attention’s
sensitivity to initialization, we trained 5 seeds for the IWSLT De2En task for cone attention and dot

Table 3: Performance of DeiT-Ti at 64 (default) and 16 dimensions, 300 epochs.

Method d = 64 d = 16

Dot Product 72.05 / 91.17 71.29 / 90.54
Penumbral 72.67 / 91.12 72.25 / 91.20
Umbral 73.14 / 91.82 71.67 / 90.71
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Figure 5: Attention heatmaps from an attention head in a trained IWSLT De2En translation model for
the tokenized validation sequence “Und ich meine, "Zieh sie aus! Mach dir keine gedanken, verstehst
du.’, which translates to “I’m like, "Get it off! Don’t worry about it, you know.” The cone attention
heatmaps (left and center) have a clear distinction between the two parts of the sequence separated by
“!”, whereas the dot product heatmap (right) does not have a clear separation.

product attention. Dot product had an average BLEU score of 34.59 and standard deviation 0.12,
penumbral achieved 35.41± 0.14, and umbral achieved 35.03± 0.30. There was one outlier in the
umbral attention trials, and with the outlier removed umbral achieved 35.16±0.09. The cone attention
methods appear to have slightly higher variance than dot product attention, but not significantly so.

5.4 Attention Heatmaps

A natural question arises about what cone attention methods actually learn. Figure 5 shows heatmaps
from an attention head in a trained IWSLT De2En translation model. The heatmaps for penumbral
and umbral attention show clearer separation than the dot product attention heatmap. Furthermore, the
separation in the two cone attention methods happens at the exclamation mark, a natural segmentation
of the sequence into two parts. Intuitively, cone attention can be seen as an attention method that
satisfies certain “logical constraints,” such as “if z ≺ y and y ≺ x, then z ≺ x,” which leads to
relations between attention scores. For example. if K(x, y) and K(y, z) are both high, then K(x, z)
should also be relatively high in cone attention. In dot product attention, this is not guaranteed. If
x = (1, 1, 0, 0), y = (10, 10, 10, 10), and z = (0, 0, 1, 1), then ⟨x, y⟩ = ⟨y, z⟩ = 20, but ⟨x, z⟩ = 0.
We suspect this is a reason why cone attention methods show better separation than dot product
attention, which can aid performance.

6 Conclusion

We introduce cone attention, a hierarchy-aware method for calculating attention. Cone attention
relies on entailment cones and the geometric properties of hyperbolic space to capture complex
structural patterns that dot product attention does not explicitly model. We test cone attention in a
variety of attention networks ranging from a few thousand to a few hundred million parameters, and
achieve consistent performance improvements in NLP, vision, and graph prediction tasks over dot
product attention and baselines. Cone attention also matches dot product attention with significantly
fewer embedding dimensions, opening the potential for smaller models. These results suggest that
cone attention is an effective way to encode hierarchical relationships in attention, and can potentially
improve task-level performance in a wide variety of models and task domains.

Future Work. It remains to be seen how cone attention scales to very large models. Beyond this,
[12] and [40] suggest that hyperbolic embeddings are sensitive to initialization, which implies that
different transformer weight initializations may affect cone attention.
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7 Appendix

7.1 Additional Hyperbolic Manifolds and Maps

7.1.1 Pseudopolar Coordinates and the Hyperboloid Model

The pseudopolar map π used in [13] is given by

π(x):−1 = x:−1 sinh(xd) π(x)d = cosh(xd) (13)

using the notation from the main text.

The hyperboloid model Hd is a model of Hd in the d+ 1 dimensional Minkowski space. Formally,

Hd = {x ∈ Rd+1|⟨x, x⟩M = −1, xd+1 > 0} (14)

where

⟨q, k⟩M =

(
n∑

i=1

qiki

)
− qd+1kd+1 (15)

The distance metric on Hd is given by dH(q, k) = arcosh(−⟨q, k⟩M ). We refer the reader to [13]
and [4] for more information on the Hyperboloid model.

7.1.2 Klein Model

The Klein model used in [13] for Einstein aggregation is given by Kd = {x ∈ Rn|∥x∥ < 1}. A point
in Kd can be obtained from a point in Hd by taking the projection

πHd→Kd(x)i≤d =
xi
xd+1

(16)

with inverse

πKd→Hd(x) =
(x, 1)√
1− ∥x∥

(17)

The distance in Kd can be computed with dH(q, k) = arcosh(−⟨πKd→Hd(q), πKd→Hd(k)⟩M ). We
refer the reader to [13] and [4] for more information on the Klein model.

7.1.3 Poincaré Ball Model and Ganea’s Cones

The Poincaré ball model is closely related to the Poincaré half-space, and is defined as the manifold
(Bd, gp), where Bd = {x ∈ Rd|∥x∥ < 1} and

gp(x) =

(
2

1− ∥x∥2

)2

ge. (18)

The distance between two points q and k on the Poincaré ball is given by

dH(q, k) = arcosh

(
1 + 2

∥q − k∥2

(1− ∥q∥2)(1− ∥k∥)2

)
(19)

When ∥x∥ → 1, dH changes very quickly, which makes optimization difficult near the boundary of
the Poincaré ball.

Ganea’s cones are defined by a radial angle function ψ. For a point x, the angle of the cone at x is
given by
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Figure 6: The gray area (A∪B ∪C ∪D) is the region of all points that share a cone with u. B is the
cone of u, and D is the region of points whose cones contain u (ancestors of u).

Figure 7: If vx ≥ ux, then sup2(u, v) is the intersection of the “right” geodesic of u (red) and the
“left” geodesic of v (blue).

ψ(x) = arcsin

(
K

1− ∥x∥2

∥x∥

)
(20)

where K is a user-chosen constant that defines the size of the ϵ-ball. Clearly, cones do not exist for
small x, giving the ϵ-ball.

7.2 Penumbral Attention Derivation

Recall the definition of Penumbral Attention in the infinite setting shadow cone construction:

K(u, v) = exp

−γmax

ud, vd,
√√√√r2 −

(√
r2 − u2d +

√
r2 − v2d − ∥u:−1 − v:−1∥

2

)2


(21)

when there exists a cone that contains u and v, and

K(u, v) = exp

−γ

√(
∥u:−1 − v:−1∥2 + u2d − v2d

2∥u:−1 − v:−1∥

)2

+ v2d

 (22)

otherwise. There exists a cone that contains u and v when
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(
∥u:−1 − v:−1∥ −

√
r2 − u2d

)2

+ v2d < r2 or ∥u:−1 − v:−1∥ ≤
√
r2 − u2d (23)

Below, we give a derivation of this definition in the infinite penumbral cone construction. From
theorem 2, sup2(u, v) is the lowest cone that contains u and v in the plane containing u, v, and the
ideal point of S. This lets us derive the height of sup2(u, v) in that plane, which is given by the
intersection of Euclidean semicircle geodesics with Euclidean radius r.

First, we check if there exists a cone that contains u and v in this plane. Note that the region of points
v s.t. ∃ a cone containing u and v is the region contained by the two geodesics forming the cone of u
(see figure 6). Assume ux = 0. Then, in the infininte setting penumbral construction, these geodesics
are the two semicircles centered at

(
±
√
r2 − u2y, 0

)
with radius r. We can check if a point is in

this region by checking if it is in the quarter circle bounded by
(
−
√
r2 − u2y, 0

)
and the arc from(

−
√
r2 − u2y − r, 0

)
to
(
−
√
r2 − u2y, r

)
, the quarter circle bounded by

(√
r2 − u2y, 0

)
and the arc

from
(√

r2 − u2yr, 0
)

to
(√

r2 − u2y, r
)

, or the rectangular region between the two. This is given by

(((
vx −

√
r2 − u2y

)2
+ (vy − 0)2 < r2

)
∧ vx >

√
r2 − u2y

)
∨ vx ≤

√
r2 − u2y (24)

which reduces to equation 23 since ux = 0 =⇒ vx = ∥u:−1 − v:−1∥.

Now, we derive the height of sup2(u, v) when there exists a cone containing u and v. Assume WLOG
that vx ≥ ux, and normalize u and v s.t. ux = −∥u:−1 − v:−1∥/2 and vx = ∥u:−1 − v:−1∥/2. If
u ⊀ v and v ⊀ u, sup2(u, v) is intersection of the “right” geodesic of u and the “left” geodesic of v

(see figure 7). The center of the right geodesic of u is given by
(
ux +

√
r2 − u2y, 0

)
, and the center

of the left geodesic of v is given by
(
vx −

√
r2 − v2y

)
. Since sup2(u, v) is equidistant from these

two centers, sup2(u, v)x =
(√

r2 − u2y −
√
r2 − v2y

)
/2. Then,

sup2(u, v)y =

√√√√√r2 −


√
r2 − u2y −

√
r2 − v2y

2
−
(
ux +

√
r2 − u2y

)2

(25)

=

√√√√√r2 −

∥u:−1 − v:−1∥ −
√
r2 − u2y −

√
r2 − v2y

2

2

(26)

=

√√√√√r2 −


√
r2 − u2y +

√
r2 − v2y − ∥u:−1 − v:−1∥

2

2

(27)

If u ≺ v or v ≺ u, then sup2(u, v) is equal to u or v, respectively. In this situation, equation 27 is
less than uy or vy , repsectively. Thus, we take the max of uy , vy , and equation 27 to get equation 21.

When there does not exist a cone containing u and v, we return the height of the lowest light source
s.t. there exists such a cone. This corresponds to the height of the highest point in the extended
geodesic through u and v. Since geodesics are Euclidean semicircles, this height is the radius of the
Euclidean semicircle through u and v. Let the center of this semicircle be (x, 0), and normalize u
and v s.t. ux = 0 and vx = ∥u:−1 − v:−1∥. Then, we have
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x2 + u2y = (vx − x)
2
+ v2y (28)

2vxx = v2x + v2y − u2y (29)

2∥u:−1 − v:−1∥x = ∥u:−1 − v:−1∥2 + v2y − u2y (30)

x =
∥u:−1 − v:−1∥2 + v2y − u2y

2∥u:−1 − v:−1∥
(31)

The radius of the semicircle through u and v is then

√(∥u:−1 − v:−1∥2 + v2y − u2y
2∥u:−1 − v:−1∥

)2

+ u2d (32)

It is easy to verify that this is symmetric in u and v and gives equation 22. Furthermore, it is also
easy to verify that when (

∥u:−1 − v:−1∥ −
√
r2 − u2d

)2

+ v2d = r2 (33)

the in-cone and out-of-cone heights are both r, and equations 21 and 22 both equal exp(−γr), making
K continuous with respect to the positions of u and v.

7.3 Umbral Attention Derivation

Recall the definition of Umbral Attention in the infinite setting shadow cone construction:

K(u, v) = exp

(
−γmax

(
ud, vd,

∥u:−1 − v:−1∥
2 sinh(r)

+
ud + vd

2

))
(34)

As shown in [40], cone regions for infinite setting umbral cones are given by Euclidean triangles
with angle apertures of 2 arctan(sinh(r)). WLOG, assume that vx ≥ ux and normalize u and v s.t.
ux = 0 and vx = ∥u:−1 − v:−1∥. When u ⊀ v and v ⊀ u, sup2(u, v) is given by the intersection of
the line with slope 1/ sinh(r) through u and the line with slope −1/ sinh(r) through v. This gives

y − uy =
x− ux
sinh(r)

(35)

y − vy =
x+ vx
sinh(r)

(36)

2y =
vx − ux
sinh(r)

+ vy + uy (37)

y =
∥u:−1 − v:−1∥

2 sinh(r)
+
vy + uy

2
(38)

where sup2(u, v) = (x, y). When u ≺ v or v ≺ u, equation 38 is less than uy or vy, respec-
tively. Thus, we take the max of uy, vy, and equation 38, giving us equation 34. When vx < ux,
sup2(u, v) becomes the intersection of the line with slope 1/ sinh(r) through v and the line with
slope −1/ sinh(r) through u, which gives us the same result.

7.4 Theorems

Theorem 1. In the infinite shadow cone construction, the cone with root farthest away from S that
contains u and v is the minimum height cone that contains u and v.

Proof. We prove the umbral and penumbral cases separately.

17



Penumbral Cones: The distance from boundary of S to a point x is the length of geodesic orthogonal
to S through x. In the infinite penumbral construction, S is a horosphere, so this geodesic is the
vertical Euclidean line from x to S. Clearly, the longer this line is, the lower x is.

Umbral Cones: Here S is a point, and geodesics through S are vertical Euclidean lines orthogonal to
the “x-axis” (using the definition of “x-axis” from the main text). As with the penumbral case, since
the geodesic from a point x to S is vertical Euclidean line, the longer this line is the lower x is.

Theorem 2. In the infinite shadow cone construction, the root of the minimum height cone that
contains u and v lies on the plane containing u, v, and S (or the ideal point of S).

Proof. We prove the umbral and penumbral cases separately.

Penumbral Cones: Consider the region of points x s.t. x ≺ u. This is the region of geodesics
through u that intersect S and is axially symmetric around the vertical Euclidean line Au through
u [40]. Denote this region Cu and its boundary Bu. Note that the ideal point of S, xd = ∞, is the
intersection of vertical line geodesics, so all planes through u and xd = ∞ contain Au. Since Cu is
axially symmetric w/r.t. Au, it follows that it is reflection-symmetric across such planes.

Now, consider the intersection of Cu and Cv , which has boundary Bu∩v . Cu ∩ Cv is clearly reflection-
symmetric along the plane P containing u, v, and xd = ∞. As such, for any plane P ′ orthogonal to
P , all points on Bu∩d ∩ P ′ are either on Bu or Bv but not both. Since the geodesics that form Bu are
monotonically increasing in height in the direction away from Au (and likewise for v), the minimum
height cone that contains u and v must have root in Bu∩v . Furthermore, the root of minimum height
cone on Bu∩v ∩ P ′ is the closest point on Bu∩v ∩ P ′ to Au. Since the set of closest points on a plane
to a parallel line is the intersection of the orthogonal plane through the line, the minimum height cone
on Bu∩v ∩ P ′ is on P . Thus, the minimum height cone that contains u and v, which is the minimum
over P ′ of minimum height cones on Bu∩d ∩ P ′, is on P .

Umbral Cones: The proof for the umbral construction is identical to the penumbral construction,
except that S is a point at xd = ∞.

7.5 Implementation Details

All experiments were run on a shared GPU cluster with various machine configurations. All GPUs in
the cluster were NVIDIA Volta or newer cards, and all machines had Intel Skylake or newer CPUs or
AMD Milan or newer CPUs. Most experiments used PyTorch 2.0 with torch.compile and TF32
turned on for matrix multiplications. We provide PyTorch implementations of the infinite-setting
penumbral and umbral attention operators at https://github.com/tsengalb99/coneheads.
Below, we give implementation details for each tested model. For penumbral attention, we set the
height of S to h = 1. For umbral attention, we set the radius of the ball around each point to r = 0.1

Graph Attention Networks. We use the Pytorch-GAT repository (https://github.com/
gordicaleksa/pytorch-GAT) for our experiments. In this repository, we modified the
//models/definitions/GAT.py file to implement various attention mechanisms. We use the pro-
vided training commands and hyperparameters to train models. We experimented with different
hyperparameters, which did not have a significant effect on the final results. We report the default
attention results from the original GAT paper.

Neural Machine Translation (NMT) Transformers. For NMT experiments, we used the fairseq
repository available at https://github.com/facebookresearch/fairseq. We primarily mod-
ified //fairseq/modules/multihead_attention.py. We used the commands provided at
https://github.com/facebookresearch/fairseq/blob/main/examples/translation/
README.md to download and preprocess the IWSLT’14 De-En dataset and to train models.

Vision Transformers. For DeiT-Ti experiments, we use the Facebook DeiT repository avail-
able at https://github.com/facebookresearch/deit/blob/main/README_deit.md. We
observed that all methods performed better at 500 epochs than at 300 epochs, and we report our
experimental results for 300 and 500 epochs. The DeiT repository relies on the Hugging Face
timm repository, which is available at https://huggingface.co/timm. We primarily modify
//models/vision_transformer.py in the timm.
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Table 4: Training speed in iterations per second of various attention models across the 4 tested trans-
formers. When used in transformers, cone attention is slightly slower than dot product attention. As
mentioned in the main text, torch.compile is not optimal at fusing operations, and the performance
gap can likely be narrowed with a custom CUDA implementation. torch.compile was not used for
the NMT transformer since the training speed was sufficiently fast and, as of writing, torch.cdist
has issues with dynamic-shaped tensors. We expect this to be fixed in future PyTorch releases and the
performance to be similar to the Adaptive Inputs transformer. All numbers were obtained on a single
NVIDIA Tesla V100 SXM2 GPU.

Method NMT
(4096 tokens/it)

Adaptive Inputs
(4096 tokens/it)

DeiT-Ti
(bs=256)

DiT-B/4
(bs=64)

Dot Product 9.09 0.526 62.9 1.09
Penumbral 7.10 (-21.9%) 0.490 (-6.86%) 51.3 (-18.6%) 1.08 (-0.92%)
Umbral 7.48 (-17.7%) 0.488 (-7.32%) 56.0 (-11.0%) 1.07 (-1.83%)
torch.compile? No Yes Yes Yes

Adaptive Input Representations for Transformers. For adaptive inputs experiments, we use the
same fairseq repository as the NMT experiments. The transformer_lm_wiki103 architecture in
the fairseq repository uses 8 attention heads per module, which does not match 16 attention heads per
module in in [5]. Thus, our results and those from other papers that use this repository, such as [41],
are not directly comparable to the results presented in [5].

Diffusion Transformers. For DiT-B/4 experiments, we use the code and training instructions
available at https://github.com/facebookresearch/DiT. We use the Pytorch version of the
codebase, and train with seed 42 to match the experiments presented in [25] and the repository. The
DiT codebase also uses timm, so we make the same modifications as in DeiT. We report the DiT-B/4
seed 42 PyTorch result for dot product attention from the DiT Github repository.

7.6 Runtime Comparison

Table 4 shows the training speed of the 4 tested transformers in iterations per second. Like dot prod-
uct attention, cone attention requres O(n2d) operations. However, cone attention requires more
operations, since dot product attention can be computed with a batch matrix multiply. Inside a trans-
former, cone attention generally results in a 10-20% performance decrease when implemented with
torch.compile. However, torch.compile is not perfect, and an optimized raw CUDA implemen-
tation would likely narrow the speed gap between dot product and cone attention. torch.compile
was not used for the NMT transformer since the training speed was sufficiently fast and, as of writing,
torch.cdist has issues with dynamic-shaped tensors. We expect this to be fixed in future PyTorch
releases and performance to be similar to the Adaptive Inputs transformer.

7.7 α-approximate rank

Here, we discuss an interesting and potentially useful connection between the problem of encoding
hierarchies in dot product attention and the α-approximate rank problem. This connection gives us
some intuition as why larger models with large token embedding dimensions perform well, even with
hierarchical data. We note that we have not extensively studied this connection and how it relates to
training dynamics, such as in the context of learning attention with gradient based optimizers, and
leave that for future work.

Consider the following formulation of encoding a partial ordering in attention:

K(x, y) = exp(γP (x, y)) P (x, y) ∈
{
[1, α] if x ⪯ y

[−α,−1] if x ⪯̸ y
(39)

where 1 ≤ α ≤ ∞. Essentially, for a set of keys and a single query, the attention matrix should give
higher “weight” to keys who are descendants of the query, which is similar to cone attention. If α
is close to 1, then this gives a tighter margin on the attention matrix, which gives a “higher quality”
attention after softmax normalization. We wish to characterize the number of dimensions d needed in
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dot product attention to encode a partial ordering with equation 39. Now, consider the α-approximate
rank of a sign matrix A:
Definition 3. α-approximate rank: For a sign matrix A ∈ {−1,+1}n×n, the α-approximate rank
is defined as the minimum rank of a matrix A′ ∈ Rn×n such that J ≤ A ◦A′ ≤ αJ , where J is the
all one’s matrix, α ≥ 1, and ◦ is the elementwise product.

In dot product attention, P = qk⊤, where q, k ∈ Rn×d. Note that P has rank d. Furthermore, if
the partial ordering is encoded in a sign matrix S s.t. Sij = +1 if i ⪯ j and −1 otherwise, finding
the minimum d s.t. ∃P that satisfies equation 39 reduces to finding the α-approximate rank of S. A
number of works have focused on characterizing the α-approximate rank of arbitrary sign matrices.
Below, we summarize some results from [2] and [17]. Lee and Shraibman [17] give the following
bounds on the α-approximate rank of a n×m sign matrix A, denoted rkα(A).

1

α2
γα2 (A)

2 ≤ rkα(A) ≤
8192α6

(α− 1)6
ln3(4mn)γα2 (A)

6 (40)

where γα2 (A) is defined as

γα2 (A) = min
A′:J≤A◦A′≤αJ

γ2(A
′) (41)

and γ2(A) is defined as

γ2(A) = max
u,v:∥u∥=∥v∥=1

∥A ◦ vu⊤∥tr, (42)

and

rkα+t
1−t

(A) ≤ 4γα2 (A)
2 ln(4mn)

t2
(43)

for 0 < t < 1. These bounds depend on γα2 , which, to the best of our knowledge, has not been well
characterized for partial ordering matrices. However, γα2 can be computed in polynomial time with
a semidefinite program, which may be useful [17]. Equation 40 gives some indication of how α
changes with d = rkα. From equation 40

α ≤ 1

1− 6

√
8192 ln3(4n2)γα

2 (S)6

d

(44)

For fixed S, as d increases, this upper bound on the achievable α margin decreases with O(1/(1−
6
√
1/d)). Finally, if we go in the other direction and set α = ∞, finding d reduces to finding the sign-

rank of S. From [3], the sign-rank of S is bounded by SC(S) + 1, where SC is the minimum over
all column permutations of S of the maximum number of sign changes in a row of S. If S encodes a
hierarchy, and the nodes of that hierarchy are numbered depth first in S, then SC(S) ≤ 2, and so the
sign-rank is at most 3.
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