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Abstract

We consider the problem of designing contextual bandit algorithms in the “cross-
learning” setting of Balseiro et al., where the learner observes the loss for the action
they play in all possible contexts, not just the context of the current round. We
specifically consider the setting where losses are chosen adversarially and contexts
are sampled i.i.d. from an unknown distribution. In this setting, we resolve an
open problem of Balseiro et al. by providing an efficient algorithm with a nearly
tight (up to logarithmic factors) regret bound of Õ(

√
TK), independent of the

number of contexts. As a consequence, we obtain the first nearly tight regret bounds
for the problems of learning to bid in first-price auctions (under unknown value
distributions) and sleeping bandits with a stochastic action set.
At the core of our algorithm is a novel technique for coordinating the execution
of a learning algorithm over multiple epochs in such a way to remove correlations
between estimation of the unknown distribution and the actions played by the
algorithm. This technique may be of independent interest for other learning
problems involving estimation of an unknown context distribution.

1 Introduction

In the contextual bandits problem, a learner repeatedly observes a context, chooses an action, and
observes a reward for the chosen action only. The goal is to learn a policy that maximizes the expected
reward over time, while taking into account the fact that the context can change from one round to
the next. Algorithms for the contextual bandits problem are extensively used across various domains,
such as personalized recommendations in e-commerce, dynamic pricing, clinical trials, and adaptive
routing in networks, among others.

Traditionally, in contextual bandits problems, the learner only observes the reward for the current
action and the current context. However, in some applications, the learner may be able to deduce the
reward they would have received from taking this action in other contexts and attempt to make use of
this additional information. For example, if a learner is repeatedly bidding into an auction (where
their context is their private value for the item, and their action is the bid), they can deduce their net
utility under different counterfactual values for the item.

This form of “cross-learning” between contexts was first introduced by Balseiro et al. [2019], who
showed that with this extra information it is possible to construct algorithms for this problem with
regret guarantees (compared to the best fixed mapping from contexts to actions) that are independent
of the total number of contexts C – in contrast, without this cross-learning information it is necessary
to suffer at least Ω(

√
CKT ) regret against such a benchmark. In particular, when contexts are drawn

i.i.d. from a known distribution ν and losses are chosen adversarially, Balseiro et al. [2019] present an
efficient algorithm that achieves Õ(

√
KT ) expected regret compared to the best fixed mapping from

contexts to actions. However, this learning algorithm crucially requires knowledge of the distribution
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ν over contexts (knowledge which is unrealistic to have in many of the desired applications). Balseiro
et al. [2019] present an alternate algorithm in the case where ν is unknown, albeit with a significantly
worse regret bound of O(K1/3T 2/3).

Our main contribution in this paper is to close this gap, providing an efficient algorithm (Algorithm 1)
which does not require any prior knowledge of ν, and attains Õ(

√
KT ) regret (where the Õ hides

logarithmic factors in K and T , but not C). Since there is an Ω(
√
KT ) regret bound from ordinary

(non-contextual) bandits, this bound is optimal up to logarithmic factors in K and T .

Techniques At first glance, it may seem misleadingly simple to migrate algorithms from the known
context distribution setting to the unknown context distribution setting. After all, we are provided one
sample from this context distribution every round, and these samples are unbiased and unaffected by
the actions we take. This suggests the idea of just replacing any use of the true context distribution in
the original algorithm by the current empirically estimated context distribution.

Unfortunately, this does not easily work as stated. We go into more detail about why this fails and
the challenges of getting this to work in Section 2.1 after we have introduced some notation, but at
a high level the algorithm of Balseiro et al. [2019] requires computing a certain expectation over
ν when computing low-variance unbiased loss estimates. In particular, this expectation appears in
the denominator of these estimates, meaning tiny errors in evaluating it can lead to large changes
in algorithm behavior. Even worse, the quantity we need to take the expectation of depends on the
previous contexts and therefore can be correlated with our empirical estimate of ν, preventing us
from applying standard concentration bounds.

We develop new techniques to handle both of these challenges. First, we present a new method of
analysis that sidesteps the necessity of proving high probability bounds on each of the denominators
individually, instead bounding their expected sum in aggregate. Secondly, we present a method
of scheduling the learning algorithm into different epochs in a way which largely disentangles the
correlation between learning ν and solving the bandit problem.

As a final note, we remark that dealing with unknown context distributions is a surprising challenge
in many other contextual learning problems. For example, Neu and Olkhovskaya [2020] study a
variant of linear contextual bandits where they can only prove their strongest regret bounds in the
setting where they know the distribution over contexts. It would be interesting to see if the techniques
we develop in this paper provide a general method for handling such issues – we leave this as an
interesting future direction.

1.1 Applications

As an immediate consequence of our bounds for Algorithm 1, we obtain nearly tight regret bounds
for a number of problems of interest. We focus on two such applications in this paper: bidding in
first-price auctions, and sleeping bandits with stochastic action sets.

Learning to bid in first-price auctions [Balseiro et al., 2019, Han et al., 2020b,a, Zhang et al.,
2021, 2022, Badanidiyuru et al., 2023]. In a first-price auction, an item is put up for sale. Simulta-
neously, several bidders each submit a hidden bid for the item. The bidder with the highest bid wins
the item and pays the value of their bid. Over the last few years, first-price auctions have become an
increasingly popular format for a variety of large-scale advertising auctions [Chen, 2017].

Unlike second-price auctions (where the winning bidder pays the second-highest bid), first-price
auctions are non-truthful, meaning that it is not the incentive of the bidder to bid their true value
for the item – indeed, doing so guarantees the bidder will gain no utility from winning the auction.
Instead, the optimal bidding strategy in a first-price auction is complex and depends on the bidders
estimation of the other players’ values and bids. As such, it is a natural candidate for learning over
time (especially since advertising platforms run these auctions millions of times a day).

This problem was a motivating application for Balseiro et al. [2019], who proved an O(T 3/4) regret
bound for bidders with an unknown (but stochastic iid and bounded) value distribution participating
in adversarial first-price auctions with no feedback aside from whether they won the item. Later,
several works studied variants of this problem under more relaxed feedback models (for example,
Han et al. [2020b] introduced “winning-bid” feedback, where the bidder can always see the winning
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Algorithm Regret Computation
Exp4 Auer et al. [2002] K

√
T 2K

Saha et al. [2020]
√

2dT (K2
√
T ) KT

Algorithm 1
√
KT K

Table 1: Related works in the sleeping bandits framework ignoring all logarithmic terms. The
improved regret bound of Saha et al. [2020] is restricted to problem instances where availability of
all arms are independent.

bid, and Zhang et al. [2022] study this problem in the presence of machine-learned advice), but none
improve over the O(T 3/4) bound in the binary feedback setting.

In Section 4.1, we show that Algorithm 1 leads to an efficient Õ(T 2/3) regret algorithm for the setting
of Balseiro et al. [2019]. This nearly (up to logarithmic factors) matches an Ω(T 2/3) lower bound
proved by Balseiro et al. [2019].

Sleeping bandits [Kanade et al., 2009, Kleinberg et al., 2010, Neu and Valko, 2014, Kanade and
Steinke, 2014, Kale et al., 2016, Saha et al., 2020]. Sleeping bandits are a variant of the classical
multi-armed bandit problem, motivated by settings where some actions or experts might not be
available in every round. For instance, some items in retail stores might be out of stock, or certain
servers in load balancing might be under maintenance. When both losses and arm availabilities
are adversarial, the problem is known to be NP-hard [Kleinberg et al., 2010] and EXP4 obtains
the optimal Õ(K

√
T ) regret. However, when losses are adversarial but availabilities are stochastic,

it is unknown what the minimax optimal K-dependency is and whether it can be obtained by a
computationally efficient algorithm. The state of the art for efficient algorithm is either O((KT )

2
3 )

[Neu and Valko, 2014] or O(
√

2KT ) [Saha et al., 2020]. The latter work provides an improved
algorithm with O(K2

√
T ) regret when the arm availabilities are independent, however, in the general

case, the computational complexity scales with T .

In Section 4.2, we show that Algorithm 1 leads to an efficient (O(K) time per round) Õ(
√
KT )

regret algorithm for the sleeping bandits problem with arbitrary stochastic arm availabilities. Again,
this nearly matches the Ω(

√
KT ) lower bound inherited from standard bandits.

Other applications. Finally, we briefly point out that our algorithm extends to the other applications
mentioned in Balseiro et al. [2019], including multi-armed bandits with exogenous costs, dynamic
pricing with variable costs, and learning to play in Bayesian games. In all cases, applying Algorithm 1
allows us to get nearly the same regret bounds in the unknown context distribution setting as Balseiro
et al. [2019] can obtain in the known distribution setting.

2 Preliminaries

Notation For any natural number N , we use [N ] = {1, 2, . . . , N}.
We study a contextual K-armed bandit problem over T rounds, with contexts belonging to some set
C. At the start of the problem, an oblivious adversary selects a bounded loss function `tk : C → [0, 1]
for every round t ∈ [T ] and every arm k ∈ [K]. In each round t, then we begin by sampling a context
ct ∼ ν i.i.d. from an unknown distribution ν over C, and we reveal this context to the learner. Based
on this context, the learner selects an arm At ∈ [K] to play. The adversary then reveals the function
`t,At , and the learner suffers loss `t,At(ct). Notably, the learner observes the loss for every context
c ∈ C, but only for the arm At they actually played.

We would like to design learning algorithms that minimize the expected regret of the learner with
respect to the best fixed mapping from contexts to actions. In particular, letting Π = {π : [C]→ [K]},
we define

Reg = max
π∗∈Π

E

[
T∑
t=1

`t,At
(ct)− `t,π∗(ct)(ct)

]
.
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Note that here, the expectation is defined both over the randomness of the algorithm and the random-
ness of the contexts.

Non-uniform action sets For some applications (specifically, for sleeping bandits), we will find it
useful to restrict the action set of the learner as a function of the context. To do so, we associate every
context c ∈ C with a fixed non-empty set of active arms Ac ⊆ [K]. In round t, we then restrict the
learner to playing an action At in Act and measure the regret with respect to policies in the restricted
class Π = {π : [K]→ [C] ; π(c) ∈ Ac}. All the analysis we present later in the paper will apply to
the non-uniform action set case (which includes the full action set case above as a special case).

2.1 Challenges to extending existing algorithms

It is not a priori obvious that any learning algorithm in this setting can obtain regret independent of the
size of C. Indeed, without the ability to cross-learn between contexts (i.e., only observing the loss for
the current action and the current context), one can easily prove a lower bound of Ω(

√
|C|KT logK)

by choosing an independent hard bandits instance for each of the contexts in C. With the ability
to cross-learn between contexts, we side-step this lower bound by being able to gain a little bit of
information about each context in each round – however, this information may not be equally useful
for every context (e.g., it may be the case that arm 1 is a useful arm to explore for context c1, but is
already known to be very sub-optimal in context c2).

In Balseiro et al. [2019], the authors provide an Õ(
√
KT ) regret algorithm for this problem in the

setting where the learner is aware of the context distribution ν. This algorithm essentially runs one
copy of EXP3 per context using the following unbiased estimator of the loss (which takes advantage
of the cross-learning between contexts):

̂̀
tk(c) =

`tk(c)

Ec∼ν [ptk(c)]
I(At = k), (1)

where in this expression, ptk(c) is the probability that the algorithm would choose arm k in round t if
the context was c. A straightforward analysis of this algorithm (following the analysis of EXP3, but
using the reduced variance of this estimator) shows that it obtains Õ(

√
KT ) regret.

The only place knowledge of ν is required in this algorithm is in computing the denominator
ftk(p) = Ec∼ν [ptk(c)] of our estimator. It is natural, then, to attempt to extend this algorithm to
work in the unknown distribution setting by replacing the distribution ν with the empirical observed
distribution of contexts so far; that is, replacing ftk(p) with f̂tk(p) = 1

t

∑t
s=1 psk(cs). Unfortunately,

this approach runs into the following two challenges.

First, since this quantity appears in the denominator, small differences between ftk(p) and f̂tk(p)
can lead to big differences in the estimated losses. This can be partially handled by replacing the
denominator with a high probability upper bound f̂tk(p) + Ct for some confidence constant Ct.
However, doing so also introduces a bias penalty of O(CTT ) into the analysis. Tuning this constant
leads to another T 2/3 algorithm.

Secondly, when we compute the estimator f̂tk(p) = 1
t

∑t
s=1 psk(cs), we have the issue that ptk is

not independent from the previous contexts ct. This can cause the gap between f̂tk(p) and ftk(p) to
be larger than what we would expect via concentration inequalities. Avoiding this issue via union
bounds leads to a polynomial dependency on |C|.

2.2 Our techniques

Avoiding high-probability bounds. While prior work ensured that f̂t,k(p) + Ct ≥ ft,k(p) with
high probability, the analysis only requires this to hold in expectation. The following lemma shows
that this relaxation allows for smaller confidence intervals. While we don’t use this specific lemma in
our later proofs, we believe that this result might be of independent interest.
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Lemma 1. Let X1, . . . , Xt be i.i.d. samples from a distribution ν over [0, 1] with mean µ, and let
µ̂ = 1

t

∑t
s=1Xs denote the empirical mean. Then

E
[

1

µ̂+ 16/t

]
≤ E

[
1

µ

]
.

This implies that we only need order
√
T many i.i.d. samples for estimating ft,k(p) with sufficient

precision.

Increasing the number of i.i.d. samples. In order for us to use samples from the context distribu-
tion in theorems like Lemma 1, these samples must be independent and must not have already been
used by the algorithm to compute the current policy. We increase the number of independent samples
via the idea of decoupling the estimation distribution from the playing distribution.

To elaborate, consider the setting of a slightly different environment that helps us in the following
way: instead of observing the loss of the action we played from our distribution pt, the environment
instead reveals to us the loss of a fresh “exploration action” sampled from a snapshot s of our action
distribution from a previous round. If the environment takes a new snapshot of our policy every L
rounds (i.e., s = peL for some integer e) then this reduces the number of times we need to estimate the
importance weighting factor in the denominator of (1) to once in every epoch, since the importance
weighting factor stays the same throughout the epoch. At the same time, we have L fresh i.i.d.
samples of the context distribution available at the start of every new epoch.

We present a technique to operate in the same way without such a change in the environment. Instead
of the environment taking snapshots of our policy, the algorithm will be responsible for taking
snapshots s itself. In order to generate unbiased samples from s (while actually playing pt in round
t), we decompose the desired action distribution pt into an equal mixture of the snapshot s and an
exploitation policy qt: pt = 1

2 (s+ qt). We implement this mixture by tossing a fair coin of whether
to sample from s or qt, and only create a loss estimation for when we sample from s. This approach
fails when qt is not a valid distribution over arms, but we show that this is a low probability failure
event by ensuring stability in the policy pt.

Equipped with these two high level ideas, we now drill down into the technical details of our
algorithm.

3 Main result and analysis

3.1 The algorithm

We will now present an efficient algorithm for the unknown distribution setting which achieves
Õ(
√
KT ) regret. We begin by describing this algorithm, which is written out in Algorithm 1.

At the core of our algorithm is an instance of the Follow the Regularized Leader (FTRL) algorithm
with entropy regularization (i.e., EXP3). In each each round t, we will generate a distribution over
actions pt,ct for the current context ct via

pt,ct = arg minx∈∆([K])

〈
x,

t−1∑
s=1

̂̀
s(ct)

〉
− η−1F (x) ,

where F (x) =
∑K
i=1 xi log(xi) is the unnormalized neg-entropy, η is a learning rate and the ̂̀are

loss estimates to be defined later.

We will not sample the action At we play in round t directly from pt. Instead, we will sample our
action from a modified distribution qt that we will construct in a such way so that the probability
qt,i of playing a specific action is not correlated with every single previous context cs (for s < t).
This will then allow us to construct loss estimates in a way that bypasses the second obstacle in
Section 2.1.

To do so, we will divide the time horizon into epochs of equal length L (where L = Θ̃(
√
KT ), to

be specified exactly later). Without loss of generality, we assume L is even and that T is an integer
multiple of L. We let Te to denote the set of rounds in the e-th epoch.
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1, . . . , L

T 1 fix s3
compute f̂2

, L+ 1, . . . , 2L

T 2 fix s4
compute f̂3

apply f̂2
sample with s2

, 2L+ 1, . . . , 3L

T 3 fix s5
compute f̂4

apply f̂3
sample with s3

, 3L+ 1, . . . , 4L

T 4 fix s6
compute f̂5

apply f̂4
sample with s4

, 4L+ 1, . . . , 5L

T 5 fix s7
compute f̂6

apply f̂5
sample with s5

, . . . , T

Figure 1: Illustration of the timeline of Algorithm 1. At the end of epoch T e, the snapshot se+2 is
fixed. The contexts within epoch T e are used to compute loss estimators for epoch T e+1, which are
fed to the FTRL sub-algorithm.

At the end of each epoch, we take a single snapshot of the underlying FTRL distribution pt for each
context and arm; that is, we let

se+2,c,k = peL,c,k , where s1,c,k = s2,c,k =

{
1
|Ac| if k ∈ Ac
0 otherwise.

During epoch e, the learner has two somewhat competing goals. First, they would like to play actions
drawn from a distribution close to pt,ct (as this allows us to bound the learner’s regret from the
guarantees of FTRL). But secondly, the learner would also like to compute estimators of the true
losses `t,k with small variance and sufficiently small bias. To do this, the learner requires a good
estimation of the probability of observing each loss (which in turn depends on both the context
distribution and the distribution of actions they are playing).

We avoid the problems inherent in estimating a changing distribution by committing to observe the
loss function of arm k with probability fek = Ec∼ν [seck/2] for any t ∈ T e. This is guaranteed by
the following rejection sampling procedure: we first play an arm according to the distribution

qt,ct =

{
pt,ct if ∀ k ∈ [K] : pt,ct,k ≥ se,ct,k/2
se,ct otherwise.

After playing arm k according to qt,ct , the learner samples a Bernoulli random variable St probability
sectk
2qtctk

. If St = 0, they ignore the feedback from this round; otherwise, they use this loss. This
subsampling ensures that the probability of observing the loss for a given arm is constant over each
epoch. To address the first goal and avoid paying large regret due to the mismatch of pt and qt, we
tune the FTRL algorithm to satisfy pt = qt with high probability at all times.

To actually construct these loss estimates, we need accurate estimates of the fek. To do this we
use contexts from epoch e − 1 that were not used to compute sec, and are thus free of potential
correlations. For similar technical reasons, we will also want to use different sets of rounds for
computing estimators f̂ek of fek and estimators ̂̀tk of the losses `tk. To achieve this, we group all
timesteps into consecutive pairs. In each pair of consecutive timesteps, we play the same distribution
and randomly use one to calculate a loss estimate, and the other to estimate the sampling frequency.

To be precise, let T fe denote the time-steps selected for estimation the sampling frequency and T `e
the time-steps to estimate the losses. Then we have

f̂ek =
1∣∣∣T fe−1

∣∣∣
∑

t∈T f
e−1

sectk
2

,

which is an unbiased estimator of fek. The loss estimators are

̂̀
tk =

2`tk

f̂ek + 3
2γ

I
(
At = k ∧ St ∧ t ∈ T `e

)
,

where γ is a confidence parameter (which again, we will specify later).

This concludes our description of the algorithm. In the remainder of this section, we will show that
for appropriate settings of the parameters η, γ, and L, Algorithm 1 achieves Õ(

√
KT ) regret (the

parameter ι in the following theorem is a parameter solely of the analysis and determines the failure
probabilities of various concentration inequalities).
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Algorithm 1 Contextual cross-learning algorithm for the unknown distribution setting.
Input: Parameters η, γ > 0 and L < T .
f̂2 ← 0
for t = 1, . . . , L do

Observe ct
Play At ∼ s1,ct

f̂2 ← f̂2 +
s2,ct
2L

for e = 2, . . . , T/L do
f̂e+1 ← 0
for t = (e− 1)L+ 1, t = (e− 1)L+ 3, . . . , eL− 1 do

Set pt,c = arg minx∈∆([K])

(〈
x,
∑t−1
s=1

̂̀
s(c)

〉
− η−1F (x)

)
for t′ = t, t+ 1 do

Observe ct′
if pt,ct′ ,k ≥ se,ct′ ,k/2 for all k ∈ [K] then

Set qt′,ct′ = pt,ct′

else
Set qt′,ct′ = se,ct′

Play At′ ∼ qt′,ct′
Observe `t′,At′

tf , t` ← RandPerm(t, t+ 1)

f̂e+1 ← f̂e+1 +
se+1,ctf

2(L/2)

Sample St ∼ B
(
se,ct` ,At`

2qt,ct` ,At`

)
Set ̂̀t`,k,c =

2`t`,k,c

f̂e,k+ 3
2γ

I (At = k, St = 1)

se+2 ← pt

Theorem 1. For any η ≤ γ
2(2Lγ+ι) , γ ≥ 16ι

L , ι ≥ log(8K/γ), Algorithm 1 satisfies

Reg = O

((
γ +

ι

L
+
γ2L

ι
+ η + exp(−ι)T

L

)
KT +

log(K)

η
+ L

)
.

Tuning ι = 2 log(8KT ), L =
√

ιKT
log(K) = Θ̃(

√
KT ), γ = 16ι

L = Θ̃(1/
√
KT ), and η = γ

2(2Lγ+ι) =

Θ̃(1/
√
KT ) yields a regret bound of

Reg = Õ
(√

KT
)
.

Computational efficiency. In general, the computational complexity is min{tK, |C|} and the
memory complexity min{t, |C|K}, where the agent is either keeping a table of all K × |C| losses
in memory, which are updated for all contexts in every round, or the agent keeps all previous loss
functions in memory and recomputes the losses of all actions for the context they observe. (This
is assuming that we can store and evaluate the loss function with O(1) memory and compute.) In
special cases, this can be significantly more efficient. In both sleeping bandits as well as bidding in
first-price auctions, we can store the accumulated loss functions in O(1), which means that we have
a total per-step runtime and memory complexity of O(K). This is on par with the O(T 2/3) regret
algorithm of Balseiro et al. [2019], which also has a per-step runtime and memory complexity of
O(K).
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3.2 Analysis overview

We begin with a high-level overview of the analysis. Fix any π : [C]→ [K], and let for each c ∈ C,
let uc = ek ∈ ∆([K]). We can then write the regret induced by this policy π in the form

Reg(u) = E

[
T∑
t=1

〈qt,ct − uct , `t,ct〉

]
. (2)

We would like to upper bound this quantity (for an arbitrary u). To do so, we would like to relate it
to E

[∑T
t=1〈pt,ct − uct , ̂̀t,ct〉], which we can bound through the guarantees of FTRL. To do so, we

will introduce two new proxy random variables ˜̀tc ∈ RK and p̃tc ∈ ∆([K]) which have the property
that they are independent of f̂e conditioned on the snapshot at the end of epoch e− 2.

Specifically, recall that se is the snapshot determined at the end of e− 2. Then, conditioned on se
(and in particular, writing Ee[·] to denote E[· | se]), we define:

• fe = Ec∼ν [sec/2]. Note that the f̂e used by Algorithm 1 is an unbiased estimator of fe.

• βek = fek+γ

f̂ek+ 3
2γ

is a deterministic function of f̂ek.

• For each t ∈ T e, we let ˜̀tck =
̂̀
tck

βek
= 2`tck

fek+γ I
(
At = k ∧ St ∧ t ∈ T `e

)
. ˜̀tck is a loss

estimator independent of f̂e such that Ee[˜̀tck] = fek
fek+γ `tck ≤ 1. Since fek is a determistic

function of se, ˜̀is independent of f̂ek conditioned on se.

• For each t ∈ T e, we let p̃tc = arg minx∈∆([K])

〈
x,
∑e−1
e′=1

∑
s∈T e′

̂̀
sc +

∑
t′∈T e,t′<t

˜̀
t′c

〉
−

η−1F (x) ∝ se+1,c ◦ exp(−η
∑
t′∈T e,t′<t

˜̀
t′c). p̃ can be thought of as the action played by

an FTRL algorithm which consumes the loss estimators ̂̀up through epoch e− 1, but uses
our new pseudo-estimators ˜̀during epoch e. Like ˜̀, p̃ is independent of f̂ek conditioned on
se.

We perform all our analysis conditioned on the following two events occurring with high probability.
First, that our context frequency estimators f̂ek concentrate – i.e., that |f̂ek − fek| is small w.h.p.
Second, that our loss proxies ˜̀concentrate in aggregate over epochs, i.e. that

∑
t∈T e

˜̀
tck is never

too large. Both conditions together are sufficient to guarantee that the aggregation of
∑
t∈T e

̂̀
tck is

also never too large, which is crucial in guaranteeing qt = pt.

Conditioned on these two concentration events holding, we can strongly bound many of the quantities.
Most notably, we can show that, with high probability, qt,ct = pt,ct for all rounds t. This allows us
to replace the qt,ct terms in (2) with pt,ct . We then split Reg(u) into four terms and label them as
follows:

Reg(u) = E

[
T∑
t=1

〈
pt,ct − uct , `t,ct − ˜̀t,ct〉

]
︸ ︷︷ ︸

bias1

+E

[
T∑
t=1

〈
p̃t,ct − uct , ˜̀t,ct − ̂̀t,ct〉

]
︸ ︷︷ ︸

bias2

+ E

[
T∑
t=1

〈
pt,ct − p̃t,ct , ˜̀t,ct − ̂̀t,ct〉

]
︸ ︷︷ ︸

bias3

+E

[
T∑
t=1

〈
pt,ct − uct , ̂̀t,ct〉

]
︸ ︷︷ ︸

ftrl

.

We then show (again, subject to these concentration bounds holding) that each of these terms is at
most Õ(

√
KT ). Very briefly, this is for the following reasons:

• bias1 and bias2: Here we use the independence structure we introduce by defining ˜̀and p̃
(along with scheduling the different pieces of the algorithm across different epochs). For
example, conditioned on se, we know that ˜̀t is independent of pt, so we can safely replace
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the ˜̀t in bias1 with its expectation. Similarly, p̃t is independent of both ˜̀t and ̂̀t conditioned
on se.

• bias3: Here we do not have independence between the two sides of the inner product. But
fortunately, we can directly bound the magnitude of the summands in this case, since we
can show that |p̃tc − ptc| and |˜̀tc − ̂̀tc| are both small with high probability (in fact, for all
c ∈ C simultaneously).

• ftrl: Finally, this term is bounded from the standard analysis of FTRL.

The full proof of Theorem 1 can be found in the Appendix (Section C) of the Supplementary Material.

4 Applications

4.1 Bidding in first-price auctions with unknown value distribution

We formally model the first-price auction bidding problem as follows. A bidder participates in T
repeated auctions. In auction t, they have a value vt ∈ [0, 1] for the current item being sold, with
vt being drawn i.i.d. from some unknown distribution ν supported on [0, 1]. They submit a bid
bt ∈ [0, 1] into the auction. We let mt ∈ [0, 1] denote the highest other bid of any other bidder
into this auction (and allow the adversary to choose the sequence of mt obliviously in advance). If
bt ≥ mt, the bidder wins the auction and receives the item (and net utility vt − bt); otherwise, the
bidder loses the auction and receives nothing. In both cases, the bidder only observes the binary
feedback of whether or not they won the item – they do not observe the other bids or mt.

The bidder would like to minimize their regret with respect to the best fixed mapping b∗ : [0, 1]→
[0, 1] from values to bids, i.e.,

Reg = max
b∗

T∑
t=1

(vt − b∗(vt))I(b∗(vt) ≥ mt)−
T∑
t=1

(vt − bt)I(bt ≥ mt).

In [Balseiro et al., 2019], the authors prove a lower bound of Ω(T 2/3) for this problem (based on
a related pricing lower bound of Kleinberg and Leighton [2003]). By applying their algorithm for
cross-learning between contexts, they show that it is possible to match this in the case where the
buyer knows their value distribution ν, but only achieve an upper bound of Õ(T 3/4) in the unknown
distribution case. By applying Algorithm 1, we show that it is possible to achieve a regret bound of
Õ(T 2/3) in this setting, nearly (up to logarithmic factors in T ) matching the lower bound.

Corollary 1. There exists an efficient learning algorithm that achieves a regret bound of Õ(T 2/3)
for the problem of learning to bid in a first-price auction with an unknown value distribution.

Proof. Let K = T 1/3. We first discretize the set of possible bids to multiples of 1/K = T−1/3.
Note that this increases the overall regret by at most T/K = T 2/3; in particular, if bidding b results
in expected utility U for a bidder with some fixed value v, bidding any b′ > b results in utility at least
u− (b′ − b).

Now, we have an instance of the contextual bandits problem with cross-learning where C = [0, 1],
ν is the distribution over contexts, the arms correspond to the K possible bids, and `tb(v) =
1 − (v − b)I(b ≥ mt). This setting naturally has cross-learning; after bidding into an auction and
receiving (or not receiving) the item, the agent can figure out what net utility they would have received
under any value they could possibly have for the item. From Theorem 1, this implies there is an
algorithm which gets Õ(

√
TK) = Õ(T 2/3) regret.

4.2 Sleeping bandits with stochastic action set

In the sleeping bandits problem, there are K arms. Each round t (for T rounds), a non-empty subset
St ⊆ [K] of the arms is declared to be “active”. The learner must select one of the active arms k ∈ St,
upon which they receive some loss `tk. We assume here that the losses are chosen by an oblivious
adversary, but the St are sampled independently every round from an unknown distribution ν. The

9



learner would like low regret compared to the best fixed policy π : [2K ] → [K] mapping St to an
action π(St) to play.

Note that this fits precisely within the contextual bandits with cross-learning framework, where the
contexts ct are the sets St, we have non-uniform action sets Ac = S ⊆ [K], and cross-learning is
possible since the loss `tck of arm k in context c in round t does not depend on c as long as k belongs
to the set corresponding to the context (and if k does not, we cannot even play k).

Corollary 2. There exists an efficient learning algorithm that achieves a regret bound of Õ(
√
KT )

for the sleeping bandits problem with stochastic action sets drawn from an unknown distribution.

5 Conclusion

We resolved the open problem of Balseiro et al. [2019] with respect to optimal cross-context learning
when the distribution of contexts is stochastic but unknown. As a side result, we obtained an almost
optimal solution for adversarial sleeping bandits with stochastic arm-availabilities. Not only is this
algorithm the first to obtain optimal polynomial dependencies in the number of arms and the time
horizon, it is also the first computationally efficient algorithm obtaining a reasonable bound. Finally,
we closed the gap between upper and lower bounds for bidding in first-price auctions.
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A Auxiliary lemmas

We will make use of following existing results from the literature in our proof of Theorem 1. First,
we present two concentration results (one for negatively correlated random variables that show up in
the analysis of bandit algorithms, and a slight generalization of the standard Bernstein inequality).

Lemma 2 (Lemma 12.2 [Lattimore and Szepesvári, 2020]). Let F = (Ft)Tt=0 be a filtration and for
i ∈ [K] let (Ỹti)t be F-adapted such that:

1. for any S ⊂ [k] with |S| > 1, E
[
Πi∈S Ỹti | Ft−1

]
≤ 0; and

2. E
[
Ỹti | Ft−1

]
= yti for all t ∈ [T ] and i ∈ [k].

Furthermore, let (αti)ti and (λti)ti be real-valued F-predictable random sequences such that for all
t, i it holds that 0 ≤ αtiỸti ≤ 2λti. Then, for all δ ∈ (0, 1),

P

(
T∑
t=1

K∑
i=1

αti

(
Ỹti

1 + λti
− yti

)
≥ log(

1

δ
)

)
≤ δ .

Lemma 3 (Bernstein type inequality [Lattimore and Szepesvári, 2020] exercise 5.15). Let
X1, X2, . . . , Xn be a sequence of random variables adapted to the filtration F = (Ft)t. Abbreviate
Et[·] = E[· | Ft] and define µt = Et−1[Xt]. If ζ > 0 and ζ(Xt − µt) ≤ 1 almost surely, then for all
δ ∈ (0, 1)

P

(
n∑
t=1

(Xt − µt) ≥ ζ
n∑
t=1

Et−1[(Xt − µt)2] +
1

ζ
log(

1

δ
)

)
≤ δ .

We will also need the following regret guarantee for FTRL / multiplicative weights.

Lemma 4 ([Hazan et al., 2016], Theorem 1.5). Let `1, `2, . . . , `T be a sequence of losses in RK≥0,
and fix an η > 0. Then, if we let

pt = arg minx∈∆([K])

〈
x,

t−1∑
s=1

`s

〉
− η−1F (x)

(where F (x) is the unnormalized neg-entropy function), then we have that

T∑
t=1

〈pt, `t〉 − min
x∗∈∆([K])

T∑
t=1

〈x∗, `t〉 ≤
logK

η
+ η

T∑
t=1

〈
pt, `

2
t

〉
.

Here `2t denotes the vector formed by squaring each component of `t.

Lemma 5. For any k ≥ 16:

f(k) =

bk/4c∑
i=bk/16c

i+ 1

(1− 2
√

(i+ 1)/k)+ + 16/(k + 1)
· e−i ≤ 2 .

Proof. For any k > 200, we have

bk/4c∑
i=bk/16c

i+ 1

(1− 2
√

(i+ 1)/k)+ + 16/(k + 1)
· e−i ≤ (k + 1)3

64
e−k/16 < 2 ,

where this statement can be verified by showing that the derivative is negative for k ≥ 200 and
numerically computing the value. Finally to show the original claim, it is sufficient to compute the
function values for k ∈ [16, 200], which are all below 2.
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B Proof of Lemma 1

Proof. Let d = 16
t , then

E
[

1

µ̂+ d

]
=

1

µ+ d
+ E

[
µ− µ̂

(µ+ d)2

]
︸ ︷︷ ︸

=0

+E
[

(µ− µ̂)2

(µ̂+ d)(µ+ d)2

]
.

To bound the quadratic term, let k = bµ/( 1
t )c (we can assume k ≥ 16 or the Lemma holds by d ≥ µ),

then for any i ∈ [0, k] by Lemma 3 using ζ =
√
i 1
µt , we have

P

(
µ̂ ≤ µ

(
1− 2

√
i

k

))
≤ P

(
µ̂ ≤ µ− 2

√
iµ

t

)
≤ e−i .

Decomposing the quadratic terms yields

E
[

(µ− µ̂)2

(µ̂+ d)(µ+ d)2

]
≤ E

[
I (µ̂ ≥ µ/2)

4(µ− µ̂)2

µ(µ+ d)2

]

+

bk/4c∑
i=bk/16c

E

[
I

(
1− 2

√
i

k
≤ µ̂

µ
≤ 1− 2

√
i+ 1

k

)
(µ− µ̂)2

(µ̂+ d)(µ+ d)2

]

≤ E
[

4(µ− µ̂)2

µ(µ+ d)2

]
+

4

k(µ+ d)2

bk/4c∑
i=bk/16c

i+ 1

(1− 2
√

(i+ 1)/k)+ + 16/(k + 1)
· e−i

≤ 4µ

(µ+ d)2t
+

8

k(µ+ d)2
≤ 16µ

(µ+ d)2t
. (Lemma 5)

Combining everything

E
[

1

µ̂+ d

]
≤ 1

µ+ d
+

16µ

(µ+ d)2t
=

1

µ
− d

µ(µ+ d)
+

16µ/t

(µ+ d)2
≤ 1

µ
. (d = 16µ/t)

C Detailed proof of Theorem 1

C.1 High probability events

We begin our proof by establishing two sequences of events (one per epoch e) that will hold with
high probability, representing that our estimation of context frequencies and losses both “concentrate”
in an appropriate sense.

The first we event we define Fe, represents the event that our estimator f̂ek diverges greatly from its
expectation fek.
Definition 1. Let Fe be the indicator of the event such that at episode e the following inequality
holds for all k ∈ [K]

|f̂ek − fek| ≤ 2 max

{√
fekι

L
,
ι

L

}
.

The second event we define, Le, represents the event that the average “proxy” loss ˜̀is much larger
than 1. Note that since E[˜̀tck] = fek

fek+γ `tck ≤ 1, we expect this not to be the case.

Definition 2. Le is the event such that

max
c∈[C],k∈[K]

∑
t∈Te

˜̀
tck ≤ L+

ι

γ
.
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We present the two concentration arguments below in Lemma 6 and Lemma 7.
Lemma 6. For any e ∈ [T/L], e > 1, event Fe holds with probability at least 1− 2K exp(−ι).

Proof. Fix a k ∈ [K]. Consider a random variable X defined via X = se,c,k where c ∼ ν (so
E[X] = fek). Note that f̂ek is distributed according to

∑L/2
i=1

Xi

L/2 , where the Xi are i.i.d. copies of

X . Then
∑L/2
i=1 E[(Xi − fek)2] ≤ L

2 ·
fek
2 , since (Xi − fek) ∈ [−1/2, 1/2].

Now, for any ζ ≤ 2, we have by Lemma 3 with probability at least 1− exp(−ι)
L/2∑
i=1

Xi

L/2
− fek <

ζfek
2

+
2ι

ζL
.

Set ζ = min
{

2, 2
√

ι
fekL

}
, which shows that with probability at least 1− exp(−ι)

f̂ek − fek ≤ 2 max

{√
fekι

L
,
ι

L

}
.

Repeating the same argument for
∑
i−Xi and taking a union bound completes the proof.

Lemma 7. For any e ∈ [T/L], e > 1, event Le holds with probability at least 1−K exp(−ι) .

Proof. We have

max
c∈[C]

∑
t∈Te

˜̀
tck ≤

∑
t∈Te

2I
(
At = k, St = 1, t ∈ T `e

)
/fek

1 + γ/fek
.

The random variable Ztk =
2I(At=k,St=1,t∈T `

e )
fek

satisfies the conditions of Lemma 2 and
E[Ztk | Ft−1] = 1. Setting αtk = γ and λtk = γ

fek
, Lemma 2 implies that with probability

1− exp(−ι), we have ∑
t∈Te

˜̀
t ≤ L+

ι

γ
.

Taking a union bound over k ∈ [K] completes the proof.

We will want to condition on the event that all the events Fe and Le hold. To do so, we introduce a
combined indicator variable G.
Definition 3. We define the indicator that all concentrations Fe and Le hold by

G = Π
T/L
e=1FeLe .

Note that by Lemma 6 and Lemma 7, the event G occurs with probability at least 1 −
3K(T/L) exp(−ι). Since we will eventually take ι ≥ 2 log(KT ), the probability that G = 0
will be negligible.

C.2 Implications of G

We now explore some of the implications of conditioning on all of our concentration bounds holding.
We start by showing that this allows us to bound the range of ptck and p̃tck, and as a consequence,
show that qt = pt for all rounds t. To do so, it will be helpful to first use our concentration of f̂ (i.e.,
the event Fe) to bound the range of βek = (fek + γ)/(f̂ek + 3

2γ).

Lemma 8. Let γ ≥ 4ι
L , then under event G, we have that

1

2
≤ βek ≤ 2

and

|1− βek| ≤ 3

√
ι

fekL
+

γ
√
L

4
√
ιfek

for all t ∈ Te, k ∈ [K] simultaneously.
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Proof. The first statement is equivalent to showing that 1
βek
− 1 ∈ [− 1

2 , 1]. Using the facts that

2 max

{√
fekι
L , 2ι

L

}
≤ f

2 + 2ι
L , Fe = 1 and γ ≥ 4ι

L , we have

1

βek
− 1 =

f̂ek − fek + 1
2γ

f + γ
≥
− 1

2f −
2ι
L + 1

2γ

f + γ
≥ −1

2

1

βek
− 1 =

f̂ek − fek + 1
2γ

f + γ
≤
f + 2ι

L + 1
2γ

f + γ
≤ 1 ,

which proves that βek ∈ [1/2, 2]. If fek ≤ ι
L , then the second condition follows directly from the

first. Otherwise we have

βek − 1 ≤
2
√

fekι
L −

1
2γ

fek − 2
√

fekι
L + 3

2γ
≤

2
√

fekι
L

fek − 2
√

fekι
L + 2γ

≤
4
√

fekι
L

7
8fek

≤ 3

√
ι

fekL

1− βek ≤
2
√

fekι
L + 1

2γ

fek + 2
√

fekι
L + 3

2γ
≤
√

ι

fekL
+

γ
√
L

4
√
ιfek

.

We now apply Lemma 8 to bound the range of x and x̃.

Lemma 9. If γ ≥ 4ι
L and η ≤ log(2)

5L , then under event G, we have for all t ∈ Te, k ∈ [K], c ∈ [C]
simultaneously

2seck ≥ ptck ≥ seck/2 and 2seck ≥ p̃tck ≥ seck/2 .
This implies that

Ec∼ν [ptck] ≤ 4fek and Ec∼ν [p̃tck] ≤ 4fek .

In addition, this implies that qt = pt for all t ∈ Te.

Proof. We have that ptck ∝ exp(−η(
∑
t′∈Te−1∪Te,t′<t

̂̀
t′ck))seck, and p̃tck ∝

exp(−η(
∑
t′∈Te−1

̂̀
t′ck +

∑
t′∈Te,t′<t

˜̀
t′c))seck. By definition, G = 1 implies that Le−1 = Le = 1.

Hence for any k ∈ [K], c ∈ [C], ∑
t′∈Te−1∪Te

˜̀
tck ≤ 2(L+

ι

γ
) ≤ 5

2
L .

Furthermore, by Lemma 8, we can bound sums of ̂̀via∑
t′∈Te−1∪Te

̂̀
tck =

∑
t′∈Te−1

βe−1,k
˜̀
tck +

∑
t′∈Te

βek ˜̀tck ≤ 5L

∑
t′∈Te−1

̂̀
tck +

∑
t′∈Te

˜̀
tck ≤ 5L .

Finally, this implies for any k that

exp (−5ηL) sek ≤ ptck ≤ exp (5ηL) sek

and for p̃tck accordingly. Using η ≤ log(2)
5L completes the first part of the proof. The second statement

follows directly from the definition of fek. Finally, the last statement follows from the definition of
qt since qtc = ptc whenever ptck ≥ seck/2 for all k ∈ [K].

We now bound two additional quantities. We start with proving an upper bound on Ee[1− βek]. This
is helpful as it is a quantity which naturally appears as we try to bound the bias2 term; in particular,
since Ee[˜̀t,ct,k − ̂̀t,ct,k] = Ee[(1 − βek)˜̀t,ct,k] = Ee[1 − βek]Ee[˜̀t,c,k] (with the last inequality
holding since βek is independent from ˜̀

t,c,k conditioned on se).
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Lemma 10. If γ ≥ 16ι
L and exp(−ι) ≤ γ

8K , then

0 ≤ Ee [(1− βek)Fe] ≤
γ

fek

Proof. Since Fe ∈ {0, 1}, we have

(1− βek)Fe =

(
1− fek + γ

f̂ek + 3
2γ

)
Fe =

(f̂ek − fek)Fe + 1
2γ

fek + (f̂ek − fek)Fe + 3
2γ
− (1− Fe)

γ

2fek + 3γ
.

The second term is in expectation bounded by

Ee
[
(1− Fe)

γ

2fek + 3γ

]
≤ 2K exp(−ι) γ

2fek + 3γ
≤ γ2

4(2fek + 3γ)
.

It remains to bound the first term. Denote Cek = 2 max{
√

fekι
L , ιL}. The random variable (f̂ek −

fek)Fe is bounded in {−Cek, Cek} due to the indicator Fe. Let µ = Ee[(f̂ek − fek)Fe] and assume
for now that µ ∈ [− 1

4γ,
1
4γ] which we show later. By Jensen’s inequality we have

Ee

[
(f̂ek − fek)Fe + 1

2γ

fek + (f̂ek − fek)Fe + 3
2γ

]
≤

µ+ 1
2γ

fek + µ+ 3
2γ
≤ γ

fek
.

On the other hand, again due to convexity, the smallest expected value is obtained for the distribution
that takes values in {−Cek, Cek} such that it conforms with mean µ. Hence

Ee

[
(f̂ek − fek)Fe + 1

2γ

fek + (f̂ek − fek)Fe + 3
2γ

]
≥
(
Cek + µ

2Cek

)
Cek + 1

2γ

fek + Cek + 3
2γ

+

(
Cek − µ

2Cek

) −Cek + 1
2γ

fek − Cek + 3
2γ

=
(fek + 3

2γ)(γ + 2µ)− (γµ+ 2C2
ek)

2(fek + Cek + 3
2γ)(fek − Cek + 3

2γ)

≥
1
2γfek + γ2 − 2C2

ek

2(fek + 3
2γ)2 − 2C2

ek

≥
1
2γ

2

2(fek + 3
2 )2

,

where the last inequality uses the fact that 1
2γfek + 1

2γ
2 ≥ 2C2

ek, since γ ≥ 16ι
L .

Finally we need to verify µ ∈ [−γ2 ,
γ
2 ]. We begin by bounding the expectation of

Ee
[
(f̂ek − fek)(1− Fe)

]
. By construction f̂ek − fek ∈ [− 1

2 ,
1
2 ] and Ee−1[(1 − Fe)] ≤

2K exp(−ι) ≤ γ/2. Hence due to Ee[f̂ek − fek] = 0, we have µ = −Ee
[
(f̂ek − fek)(1− Fe)

]
∈

[−γ4 ,
γ
4 ].

The last quantity we would like to bound is
∑
k |p̃tck−ptck| · |1−βek| (simultaneously for all c ∈ C).

This is a quantity which arises when handling bias3. We begin by proving the following auxiliary
lemma bounding the coordinate-wise change in x under a multiplicative weights update.
Lemma 11. Let z ∈ [− 1

2 ,
1
2 ]K , x ∈ ∆([K]) and x̃ ∝ x ◦ exp(z). Then for all k ∈ [K]:

xk exp(zk − 2 〈x, |z|〉) ≤ x̃k ≤ xk exp(zk + 〈x, |z|〉) .

Proof. We have

x̃k = xk exp(zk) exp(− log(

K∑
k′=1

xk′ exp(zk′))) .

We only need to bound the last factor. Note that by Jensen’s inequality, we have
K∑
k′=1

xk′ exp(zk′) ≥ exp(〈x, z〉) ,
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hence

exp(− log(

K∑
k′=1

xk′ exp(zk′))) ≤ exp(−〈x, z〉)

In the other direction, we have by |z| ≤ 1
2 :

K∑
k′=1

xk′ exp(zk′) ≤ 1 + 〈x, z〉+
〈
x, z2

〉
,

hence

− log(1 + 〈x, z〉+
〈
x, z2

〉
) ≥ −〈x, z〉 −

〈
x, z2

〉
.

Lemma 12. Assume η ≤ γ
2(2Lγ+ι) . Then under event G, for all t ∈ Te and c ∈ C, we have that

K∑
k=1

|p̃t,c,k − pt,c,k| · |1− βek| ≤ 3

K∑
k=1

p̃t,c,k(1− βek)2 .

Proof. By definition, ptck ∝ p̃tck exp(−η
∑
t′∈Te,t′<t

(̂̀tck − ˜̀tck)). We can simplify the argument
of the exponential via

−
∑

t′∈Te,t′<t

(̂̀t′ck − ˜̀t′ck)) = (1− βek)
∑

t′∈Te,t′<t

˜̀
t′ck.

By Lemma 8 and the definition of Le, we have

η

∣∣∣∣∣∣
∑

t′∈Te,t′<t

(̂̀t′ck − ˜̀t′ck)

∣∣∣∣∣∣ = η(1− βek)
∑

t′∈Te,t′<t

˜̀
t′ck ≤ η(L+

ι

2γ
) ≤ 1

2
.

Lemma 11 now implies that

|ptck − p̃tck| ≤ ep̃tckη

(
|1− βek|+

K∑
i=1

p̃tci|1− βik|

)(
L+

2ι

γ

)

≤ e

2
p̃tck

(
|1− βek|+

K∑
i=1

p̃tci|1− βik|

)
.

Hence

K∑
k=1

|p̃t,c,k − pt,c,k| · |1− βek| ≤
e

2

 K∑
k=1

p̃tck(1− βek)2 +

(
K∑
k=1

p̃tck(1− βek

)2


≤ e
K∑
k=1

p̃tck(1− βek)2. (Jensen’s inequality)
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C.3 Combining the pieces

Proof. We begin by decomposing the regret similarly to the high level overview (but explicitly
showing the dependence on the indicator G).

Reg(u) = E

[
T∑
t=1

〈qt,ct − uct , `t,ct〉

]

≤ E

T/L∑
e=2

∑
t∈Te

〈pt,ct − uct , `t,ct〉G

+ E [1−G]KT + L

≤ E

T/L∑
e=2

∑
t∈Te

〈
pt,ct − uct , `t,ct − ˜̀t,ct〉G


︸ ︷︷ ︸

bias1

+E

T/L∑
e=2

∑
t∈Te

〈
p̃t,ct − uct , ˜̀t,ct − ̂̀t,ct〉G


︸ ︷︷ ︸

bias2

+ E

T/L∑
e=2

∑
t∈Te

〈
pt,ct − p̃t,ct , ˜̀t,ct − ̂̀t,ct〉G


︸ ︷︷ ︸

bias3

+E

T/L∑
e=2

∑
t∈Te

〈
pt,ct − uct , ̂̀t,ct〉G


︸ ︷︷ ︸

ftrl

+ Pr[G = 0]KT + L.

Note that the first inequality follows in part from Lemma 9, since when G = 1, pt,ct = qt,ct . We
now bound the remaining four terms individually. We start with bias1. Since ˜̀t is conditionally
independent of pt, by the tower rule of expectation

bias1 = E

T/L∑
e=2

∑
t∈Te

〈
pt,ct − uct , `t,ct − Ee[˜̀t,ct ]〉G


= E

T/L∑
e=2

∑
t∈Te

K∑
k=1

(pt,ct,k − uct,k)
γ`t,ct,k
fek + γ

G


≤ E

T/L∑
e=2

∑
t∈Te

C∑
c=1

K∑
k=1

νc
pt,c,kγ

fe,k + γ
G

 (0 ≤ `t ≤ 1)

≤ 4KγT . (Lemma 9)

Similarly, in bias2, ˜̀t and ̂̀t are independent of p̃t conditioned on episode e. We thus have

bias2 = E

T/L∑
e=2

∑
t∈Te

〈
p̃t,ct − uct ,Ee[˜̀t,ct − ̂̀t,ct ]〉G


= E

T/L∑
e=2

∑
t∈Te

K∑
k=1

(p̃t,ct,k − uct,k)
(
Ee[(1− βek)Fe]Ee[˜̀t,ct,k]

)
G


≤ E

T/L∑
e=2

∑
t∈Te

C∑
c=1

K∑
k=1

νc
p̃t,c,kγ

fe,k
G

 (Lemma 10 and 0 ≤ Ee[˜̀t] ≤ 1)

≤ E

T/L∑
e=2

∑
t∈Te

K∑
k=1

2
∑C
c=1 νcse,c,kγ

fe,k
G

 (Lemma 9)

≤ 4KγT ,

Finally, the last term needs to be bounded differently, because pt is not independent of βe. Instead, we
will expand out the inner product and directly bound the maximum value of

∑
k(ptck− p̃tck)(1−βek)
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over all c via Lemma 12.

bias3 = E

T/L∑
e=2

∑
t∈Te

〈
pt,ct − p̃t,ct ,Ee[˜̀t,ct − ̂̀t,c]〉G


= E

T/L∑
e=2

∑
t∈Te

K∑
k=1

(pt,ct,k − p̃t,ct,k)(1− βek)Ee[˜̀t,ct,k]G


≤ E

T/L∑
e=2

∑
t∈Te

K∑
k=1

|pt,ct,k − p̃t,ct,k| · |1− βek|G


≤ E

T/L∑
e=2

∑
t∈Te

C∑
c=1

K∑
k=1

3νcp̃t,c,k(1− βek)2G

 (Lemma 12)

=
98KTι

L
+
γ2LKT

ι
(Lemma 8 and Lemma 9)

Finally the ftrl term is bounded according to Lemma 4

ftrl = E

T/L∑
e=2

∑
t∈Te

〈
pt,ct − uct , ̂̀t,ct〉


≤ log(K)

η
+ η E

∑
c∈[C]

νc

T/L∑
e=2

∑
t∈Te

∑
k∈[K]

ptck ̂̀2tckG
 (Lemma 4)

≤ log(K)

η
+ η E

T/L∑
e=2

∑
t∈T ′e

∑
k∈[K]

∑
c∈[C]

νcptck
fek

(f̂ek + 3
2γ)2

G


≤ log(K)

η
+ 4η E

T/L∑
e=2

∑
t∈Te

∑
k∈[K]

β2
ekG

 (Lemma 9)

≤ log(K)

η
+ 16ηKT . (Lemma 8)

Combining everything, we have that

Reg(u) = O

((
γ +

ι

L
+
γ2L

ι
+ η

)
KT +

log(K)

η
+ L

)
.

19


	Introduction
	Applications

	Preliminaries
	Challenges to extending existing algorithms
	Our techniques

	Main result and analysis
	The algorithm
	Analysis overview

	Applications
	Bidding in first-price auctions with unknown value distribution
	Sleeping bandits with stochastic action set

	Conclusion
	Auxiliary lemmas
	Proof of Lemma 1
	Detailed proof of Theorem 1
	High probability events
	Implications of G
	Combining the pieces


