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A PROOFS

A.1 PROOF OF THEOREM 1

According to (8), the update of ⌧(�̃[k]) for k-th frequency component of l2 norm FGM adversarial
perturbation at the (t+ 1)-th step is proportional to
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A.2 PROOF OF THEOREM 2

We provide the proof for ReLU activation function. The update rules of Rk at the (t+1)-th step are
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A.3 PROOF OF THEOREM 3

We consider the case for l2 FGM perturbations, the case for PGD perturbations is similar. If the
condition in Eq.(11) is satisfied, then at the (t+ 1)-th step,
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B PGD PERTURBATIONS

B.1 l2-PGD PERTURBATIONS

The PGD update rule for finding perturbations of x with learning rate ⇠ at step j + 1 is:
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where B(0, ✏) is a ball centered at 0 with radius ✏ in Euclidean space and P is the projection operator
defined as
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are changed amounts of LFC and HFC of ||2 at the (j+1)-th step
of PGD iteration. We provide below our result on frequency spectrum of l2-norm PGD perturbations.

Theorem 4 (The spectral trajectory of l2 PGD perturbation) Iteration of the (j + 1)-th step of
PGD will change the ratio of LFC of l2 norm PGD adversarial perturbation for a neural network
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Remark If the two-layer neural network in (1) is trained with at least t � t0 steps (t0 determined
by theorem 1) such that ⌧(frf 2 Sl) > ⌧(frf 2 Sh), then, according to theorem 4, there exists
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B.1.1 PROOF OF THEOREM 4

At the (j + 1)-th step of PGD update for (j+1), if
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Lemma 1 (Dynamics of l2 Norm PGD in the Frequency Domain) If the initialization of l2 norm
PGD adversarial perturbation satisfies @`

@f
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Similar to Eq.(15), one can derive the changed amount of ⌧(�̃ 2 Sl) in theorem 4 at the (j + 1)-th
step and find the condition of increasing.

B.2 l1-PERTURBATIONS

We now dive into the case for l1 PGD perturbations. The PGD update rule at step j now becomes
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Let µ 2 {0, 1, ..., d} and recall our definition that @µf refers to the µ-th component of rxf , we
have for the µ-th component of � that
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l1 norm PGD adversarial perturbations for the two-layer neural network will have similar frequency
spectrum to FGSM adversarial perturbations as stated below by theorem 5.

3A similar conclusion exists when @`
@f + �(0) ·rxf < 0.
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Theorem 5 l1 norm adversarial perturbations generated by PGD for a well normally trained neu-
ral network (1) will end up with forms of l1 FGSM perturbations after at most 2✏/⇠ steps.

For a simple neural network (e.g. our model), the above theorem claims that FGSM and PGD with
enough iterations are in fact equivalent to generate a l1-norm adversarial perturbation. Therefore it
is possible to explore frequency spectrum of FGSM adversarial perturbations to provide insights on
l1 PGD perturbations.

B.2.1 PROOF OF THEOREM 5

For convenience, we explore the case when @`/@f + �(0) · rxf > 0. In the PGD pro-
cess, we first randomly find a �(0). The probability that its components satisfy the condition
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The above three sets of relations will be true for any other j—PGD does not reduce the number of
components which are sgn(@µf)✏ at every iteration. For any randomly chosen �

(0), based on the
above lemma, if there exists at least one component �(0)µ such that

�
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= �sgn(@µf)✏,

it will then move towards the direction of +sgn(@µf)⇠ at every iteration j and finally become
sgn(@µf)✏ after 2✏/⇠ steps. This is the longest step for any component to move to sgn(@µf)✏ after
which will it remain unchanged. Therefore, a PGD perturbation now has the form

� = ✏ · sgn (rxf)

which is identical to a l1 norm FGSM perturbation for @`
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C SUPPLEMENTARY EXPERIMENT

in this part, we use MSE loss and remain other conditions unchanged in Section 4.

C.1 SUPPLEMENTARY EXPERIMENT OF CONTRIBUTION 1

We show the supplementary experiment of Section 4.1 in Fig. 7 and Fig. 8. They have similar results
to show that the spectrum of adversarial perturbations are more concentrated in the low-frequency
domain after a sufficient training.

Figure 7: The difference of the spectrum between original and adversarial examples. The model are
trained with MSE loss.
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Figure 8: The expectation of the spectrum of adversarial perturbations. The model are trained with
MSE loss.

C.2 SUPPLEMENTARY EXPERIMENT OF CONTRIBUTION 2

We show the supplementary experiment of Section 4.2 in Fig. 9 and Fig. 10. They have simi-
lar results to show the log-spectrum difference of adversarial examples is generally concentrated
around.

In general, there is little empirical gap between MSE loss and CrossEntropy loss.

Figure 9: The difference of the log-spectrum between original and adversarial examples. The model
are trained with MSE loss.

Figure 10: The expectation of the log-spectrum of adversarial perturbations. The model are trained
with MSE loss.

D PERTURBATIONS OF PGD-ATTACK ADVERSARIAL TRAINED MODEL ARE
MORE CONCENTRATED IN LFC

We do use the same setup in Section 4, and the PGD-attack adversarial training is also PGD-attack
with ✏ = 8/255, 40 iterations and step size ⇠ = 4/255 in each training step. Then we test the
ratio of LFC of original images, perturbations in a normally trained model and perturbations in a
PGD-attack adversarially trained model. The results are shown in Fig. 11.
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Figure 11: the ratio of LFC of original images, perturbations in a normally trained model and per-
turbations in a PGD-attack adversarially trained model.
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