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A PROOFS

A.1 PROOF OF THEOREM 1]

According to , the update of 7(8[k]) for k-th frequency component of I, norm FGM adversarial
perturbation at the (¢ + 1)-th step is proportional to
A (N
(1= 2091 WP — 2 R (K] cos (A60) (13)

We adopt the following representations to see trends of cos (Acpg)) through the training process:

ﬂ(t)[kz] D= CT> = (leqy| cos b, || sin 6)

&k] : = T = (lz | cos ¢, [z |sin ),

then |W(t+1) [k]||z[k]| cos (Agp,&”) will have the form of

(), ) = (1= 1) (e, 7f) = 1w [* + O ()
at the (¢ + 1)-th step. At the (¢ + 1)-th step, we have

AT ALY — (1= Oy (ar® — A 4+ 5L, - H), (14)

which means that if ATl(t) > AT}(Lt) then we must have Arl(tl) > AT}?/) for all ¢ > t¢. Besides,
there must be a step which leads to this condition since L, > H,. Let L(*) = EZ;O |V f[k]|* and
H® = Z,(Cd k?ﬁ |V f[k]|2. At the (¢ + 1)-th step, the changed amount of 7(d € S;) is

(127 L® 4 5 A7 LW
(1= 27MW)(LO + HO) + 50 (A7) + APy L0 + HO)
ATl(t)T (S(t) € Sh> — AT,(:)T <S(t) € Sl)

1
(@72 G g2

=" (15)

If ATl(t) > AT}?) and T (5@ S Sh) > T (S(t) € 51) then the above changed amount will be

positive and gradient descent will increase 7 6c Sl) at this step.

A.2  PROOF OF THEOREM 2]
We provide the proof for ReLU activation function. The update rules of Ry, at the (¢ + 1)-th step are
R,(:Hﬂ = R,(f)z — Zﬁ(t)R,(f) cos (A(p,@)
R,(f)cos (A(p,(f)) = R,(ctfl) cos (Acpffﬁl)) — ﬁ(t_l).
For any k& > k' > 0 with R( ) > R§§), we have

R{TDR - REFD? = RO? - RD? - 2[R cos (86" = RYY cos (267

= RI(CO)Q - R,(C(,J)2 -2 i 7 {R,(CO) cos (Ago(o)> R,(c, cos (Ag@k, )}
t'=0

at the (¢ 4+ 1)-th step. Considering the case when cos (Acp,(co)) = —cos (Agagf)) =land 7)) =
Timax and the condition that the left L.H.S of the above equation is larger than 0 gives us Eq.(I0). On
the other hand, if R,& ) cos (Aga(o)) R(, cos (Ago(o)) < 0, then R,(f) > R,(f,)2 forallt > 0.
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A.3 PROOF OF THEOREM 3]

We consider the case for [ FGM perturbations, the case for PGD perturbations is similar. If the
condition in Eq.(11) is satisfied, then at the (¢ + 1)-th step,
ATl(t)T (S(t) € Sh> — AT(t)T (5“) € Sl)

() = r(& € §) — ¢ +7™ )
[k][?

s <7(& € S). (16)

B PGD PERTURBATIONS

B.1 [3-PGD PERTURBATIONS

The PGD update rule for finding perturbations of  with learning rate £ at step j + 1 is:

§UTD — 7)3(076)

4 ) ,
5V +£§—J€ wam] , (17)

where B(0, ¢) is a ball centered at 0 with radius ¢ in Euclidean space and P is the projection operator
defined as

Pr(0.c) [6] = argmin [|6" — &%,
8 €B(0,¢)

Note that in this part quantities removing the step script j (e.g. ap and V, f) refers to not involving

perturbations. For convenience, we use the same learning rate § for all steps j and instead explore
the update of
) = ﬁ

KV = € (18)
to the order of ¢ to see trends of PGD perturbations in frequency domain alongside PGD iterations
since 7(8[k]) = 7(&[k]). For ease of notation, we adopt the following representations: Let A(b,(f )
denote the difference of phases between ﬂ[k] and £V (k] ; let BY) = 9¢/Df + 8U) -V, f where
5 > 0 and one can drive similar result for 3(°) < 0; we denote

-1)/2
(j) £ QZWO) va[ || cos (Aqu) and Aﬂ(bj) 29 Z ||Vf[ ]| cos (MEZ’),

k=k.+

where 30 A7) and B A7) are changed amounts of LFC and HFC of |k|? at the (j + 1)-th step
of PGD iteration. We provide below our result on frequency spectrum of /o-norm PGD perturbations.

Theorem 4 (The spectral trajectory of [» PGD perturbation) Iteration of the (j + 1)-th step of
PGD will change the ratio of LFC of lo norm PGD adversarial perturbation for a neural network
which satisfies |00/0f| = €17V with 0 < v < 1 as follows,

AFD; (5(j> € Sh) - ardr (5(j) < Sl)

d€S) 7108 +pY
ress ey SRR

19)

Remark If the two-layer neural network in ([I]) is trained with at least ¢ > g steps (¢ determined
by theorem 1) such that T(V f€8)>7(VfeSy),then, according to theorem , there exists
A0 — A7

B (b IVHIRIP = i 2 IV F Ikl 2)

where 3 = max;c(o j, 3, such that 7(8U+D) € S;) > 7(8U) € ) forall j > jo if 7(6V) €
Sp) < T((s(j) € Sh).

Jo = max ¢ 0, (20)
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B.1.1 PROOF OF THEOREM [4]

At the (j + 1)-th step of PGD update for k1) if

G _ T
L Pgo.e = I
w0t — 0 4 Xy f+%2a 0”39 W, W, + 89 .V, fV,f+O(8);
8f T 8f - r or or T T )
o) P(j) 7&].
© 7 B(0,¢) .
)
Gy ¢ 5 9 ()
K ||I<.‘,(j) n me(J)H (H + 8f V:cf > .

In either case, the quantity 7(&[k]) is proportional to

) FYAS )
() ()
(w0 2. 10)

2

2
_ ‘; <n<j> + %{vm f4 s -meme>

since the term §0¢/0f < §2 and can be dropped. Therefore, we now consider

, . Y 4 __

RUTD[E] = &Y [k] + (gf +60). sz> V £[k] 21)

at the (j + 1)-th step of PGD in the frequency domain to explore ratio of frequency k to the whole
frequency spectrum of perturbations

r (8UI) o< RO +2 (8 + 89 - Vol ) RO WV ]| cos(Ao).  22)

Lemma 1 (Dynamics of [ Norm PGD in the Frequency Domain) [f the initialization of lo norm
PGD adversarial perturbation satisfies g—ﬁ +8©). Vo f > 0, then it will be positive at every iteration

of PGD. In this case, W will increase its k-th amplitude after

0 if cos(AqﬁéO)) >0,
J= RO k]| cos(py”) . (0)
- (,8'+6<°>»vmf)|€kf[kﬂ if cos(Ag;7) <0

(23)

iterations of PGD

Similar to Eq., one can derive the changed amount of 7(§ € S)) in theorem at the (j + 1)-th
step and find the condition of increasing.

B.2 [, -PERTURBATIONS

We now dive into the case for [, PGD perturbations. The PGD update rule at step 7 now becomes
) o0 ) ]
6U) 4 ¢ sgn <8f me(1)>] .

Let € {0,1,...,d} and recall our definition that J,, f refers to the p-th component of V f, we
have for the u-th component of 4 that

U+ — Clip,_,

871 = Clip_,

()
5 + Esgn (gﬁ ’ 8Mf<j)>] . (24)

oo norm PGD adversarial perturbations for the two-layer neural network will have similar frequency
spectrum to FGSM adversarial perturbations as stated below by theorem

3A similar conclusion exists when % +6© . Vaf <0.
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Theorem 5 [, norm adversarial perturbations generated by PGD for a well normally trained neu-
ral network (1) will end up with forms of |, FGSM perturbations after at most 2¢/€ steps.

For a simple neural network (e.g. our model), the above theorem claims that FGSM and PGD with
enough iterations are in fact equivalent to generate a [,-norm adversarial perturbation. Therefore it
is possible to explore frequency spectrum of FGSM adversarial perturbations to provide insights on
loo PGD perturbations.

B.2.1 PROOF OF THEOREM[3]

For convenience, we explore the case when 9¢/0f + 6 - V,f > 0. In the PGD pro-

cess, we first randomly find a 6(°). The probability that its components satisfy the condition
Op€lry—(e—=&),x,+ (e—=¢]forall p € {0,1,...,d}

e—¢& d
€
will be little when d is large, thus we expect that there will be at least some components y € C’{O)
such that

e—¢< 6&0) <e
and at least some other 1 € 02(0) such that
—e< 5,1(1,0) < —e+¢&.

Moreover, we let CljE © denote

C (i sgn(0,f) = 1}
and let C;E © denote

O ({p : sgn(0,.f) = %1}
If00/0f 4+ 6 -V, f > 0, the update rule of PGD at the first step will be

5&1) = Clip_ ¢ {5&0) + Esgn (3uf)]

€ ,LLGCT(O),

—e pecy

o ve pec®ucy®,
0 0 —(0
e

where d = |C7| 4+ |C8| + 1€ +|C| and i € CY)(CY)) denotes 67 € [~ + &, € — €] with
duf > 0(< 0). Specifically, §V) - V, f can be bounded by §(*) - V, f as the following way:

S0 Vaf=e| 3 - Y af|re| X af- Y f

PECT(O) pecg(o) pecéo) U C;(O) PECA(LO) U C;(O)

+ > 5o, f

(iU, )

=60 Vaf+ > (e=Maf— D (e+50)0,f

peCH© pecs ©

+¢ Yoo %f— Y O

pecéo) U C;(O) PGCQO) ucey (0)
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=60 Vo f < (80 +¢-sen(Vaf)) - Vaf
6 v, f>60.v,7.

Following the iteration at step 2,

5 = Clip_ {5&1) + Esgn (8Mf)]

€ MGCT(U,

—¢ e 02—(1),

o+ pecgtycs
Vg wecuer,

where
0 1 —(0 —1
ClJF()CclJF( )702()C02()
oy =0,c5" =9

ot c (e ™). e e (e Jer ).

The above three sets of relations will be true for any other j—PGD does not reduce the number of
components which are sgn(d,, f)e at every iteration. For any randomly chosen § (0), based on the

above lemma, if there exists at least one component § ,(40) such that
6&0) = —sgn(0,f)e,
it will then move towards the direction of +sgn(0, f)¢ at every iteration j and finally become

sgn(d,, f)e after 2¢/¢ steps. This is the longest step for any component to move to sgn(d,, f)e after
which will it remain unchanged. Therefore, a PGD perturbation now has the form

6= 6~sgn(wa)

which is identical to a [, norm FGSM perturbation for > 0

OrGsm = € - sgn (8f mf)

C SUPPLEMENTARY EXPERIMENT
in this part, we use MSE loss and remain other conditions unchanged in Section [}

C.1 SUPPLEMENTARY EXPERIMENT OF CONTRIBUTION 1
We show the supplementary experiment of Section[d.T]in Fig. [7]and Fig. [8] They have similar results

to show that the spectrum of adversarial perturbations are more concentrated in the low-frequency
domain after a sufficient training.

w be e ]
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Figure 7: The difference of the spectrum between original and adversarial examples. The model are
trained with MSE loss.
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Figure 8: The expectation of the spectrum of adversarial perturbations. The model are trained with
MSE loss.

C.2 SUPPLEMENTARY EXPERIMENT OF CONTRIBUTION 2
We show the supplementary experiment of Section [4.2]in Fig. [9] and Fig. [I0] They have simi-

lar results to show the log-spectrum difference of adversarial examples is generally concentrated
around.

In general, there is little empirical gap between MSE loss and CrossEntropy loss.

ﬁ. EH

Figure 9: The difference of the log-spectrum between original and adversarial examples. The model
are trained with MSE loss.

Figure 10: The expectation of the log-spectrum of adversarial perturbations. The model are trained
with MSE loss.

D PERTURBATIONS OF PGD-ATTACK ADVERSARIAL TRAINED MODEL ARE
MORE CONCENTRATED IN LFC

We do use the same setup in Section ] and the PGD-attack adversarial training is also PGD-attack
with e = 8/255, 40 iterations and step size £ = 4/255 in each training step. Then we test the
ratio of LFC of original images, perturbations in a normally trained model and perturbations in a
PGD-attack adversarially trained model. The results are shown in Fig.
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Figure 11: the ratio of LFC of original images, perturbations in a normally trained model and per-
turbations in a PGD-attack adversarially trained model.
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