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SPEECH ROBUST BENCH: A ROBUSTNESS BENCH-
MARK FOR SPEECH RECOGNITION
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ABSTRACT

As Automatic Speech Recognition (ASR) models become ever more pervasive, it is
important to ensure that they make reliable predictions under corruptions present in
the physical and digital world. We propose Speech Robust Bench (SRB), a
comprehensive benchmark for evaluating the robustness of ASR models to diverse
corruptions. SRB is composed of 114 challenging speech recognition scenarios
which largely cover the range of corruptions that ASR models may encounter when
deployed in the wild. We use SRB to evaluate the robustness of several state-of-the-
art ASR models and observe that model size and certain modeling choices such
as the use of discrete representations, or self-training appear to be conducive to
robustness. We extend this analysis to measure the robustness of ASR models on
data from various demographic subgroups, namely English and Spanish speakers,
and males and females. Our results revealed noticeable disparities in the model’s
robustness across subgroups. We believe that SRB will significantly facilitate future
research towards robust ASR models, by making it easier to conduct comprehensive
and comparable robustness evaluations.

1 INTRODUCTION

As novel ML models continue to be developed and deployed at an ever-increasing rate, it has become
crucial to ensure their robustness to challenging real-world scenarios, where corruptions arising from
a myriad of sources, including the environment, sensing apparatus, and even malicious actors are
present. To this end, prior works have developed comprehensive robustness benchmarks, particularly
for vision (Hendrycks & Dietterich, 2019; Hendrycks et al., 2021a;b; Croce et al., 2020) and natural
language processing models (Wang et al., 2021a; 2022b), that evaluate a model’s performance under a
variety of challenging scenarios. These benchmarks have proven to be invaluable to the advancement
of research into more robust models because (1) they unify robustness evaluations, thus enabling
meaningful comparisons across models and allowing progress to be accurately tracked, and (2)
they make it easier for researchers to comprehensively evaluate the robustness of their models by
aggregating a diverse and representative set of scenarios, and methods of simulating them, in a single
benchmark.

While several robustness benchmark datasets exist for Automatic Speech Recognition (ASR) mod-
els (Barker et al., 2017; Kraaij et al., 2005; Wichern et al., 2019; Reddy et al., 2020; Cosentino et al.,
2020; Hershey et al., 2016; Chen et al., 2020; Snyder et al., 2015; Kinoshita et al., 2013; Ko et al.,
2017; Nakamura et al., 2000; Jeub et al., 2009), none of the currently existing ones are in any sense
comprehensive, because each benchmark measures the model’s robustness w.r.t. to one or a few
specific types of corruptions or scenarios, which puts the onus on model developers to find and collect
all the relevant benchmarks to evaluate their model comprehensively. This has often resulted in model
developers evaluating their models on disparate benchmarks (Radford et al., 2023; Wen et al., 2016;
Chen et al., 2022; Likhomanenko et al., 2020), which makes it hard to reliably compare performance
and robustness across models. Recently, Huggingface Open ASR Leaderboard (Srivastav et al.,
2023) has sought to unify ASR model evaluations by developing a benchmark consisting of several
real-world speech datasets. Although evaluating models on exclusively natural data may accurately
reflect average case real-world performance, it is generally not informative about the specific types of
corruptions the models are weak against, because the noise sources present in these datasets are not
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controlled or even fully known. For example, the crowdsourced recordings in Common Voice (Ardila
et al., 2019) contain a variety of distortions including sensor noise from low-quality equipment,
background noise, and mispronunciation by non-native speakers. Furthermore, digital perturbations
like special effects, computer-generated speech, and adversarial examples, that may be prevalent in
digital content are largely overlooked by existing benchmarks.

In this paper, we propose Speech Robust Bench (SRB), a benchmark for comprehensively
evaluating the robustness of ASR models to input perturbations and corruptions. SRB is designed to
address the aforementioned major shortcomings of existing ASR robustness benchmarks, i.e., that (1)
they are often specialized and thus are not individually comprehensive, (2) even taken together, they
overlook important challenging scenarios, like special effects and adversarial attacks, and (3) may
not reveal the specific weaknesses of the models. SRB addresses these shortcomings by evaluating
ASR models under a comprehensive set of challenging scenarios, using recordings that are either are
recorded under specific scenarios, and thus are inherently “noisy”, or recordings that are digitally
perturbed to simulate the various scenarios. SRB uses real recordings of accented speech and inter-
personal conversations to evaluate robustness to articulatory and lexical variability. We take care
to ensure that the recordings are clean and do not have any other corruption that may confound the
results. To digitally simulate challenging scenarios, we curate a large comprehensive bank of 114
perturbations that represent common distortions arising from the environment, recording equipment,
special effects, computer-generated speech, and adversarial attacks that are often overlooked by
existing benchmarks.

To highlight the need for and the benefits of doing systematic and comprehensive robustness assess-
ment, we evaluate the robustness of several popular ASR models (§4.1) using SRB. We observe that
Whisper (Radford et al., 2023) is the most robust on average among the models we tested, even
outperforming the more recent Canary (NVIDIA). We conduct further analyses to disentangle the
effects of model and training data size, revealing that larger models tend to be more robust than
smaller models, even if the latter are trained on significantly more data. We further extend our analysis
by evaluating the models’ robustness for the various population sub-groups, namely, English and
non-English (Spanish) speakers, and male and female speakers. We find that significant disparities
exist across these sub-groups, thus identifying issues with fairness of the models and highlighting
areas where future work could provide clear improvements. Besides pinpointing robustness issues,
this demonstrates the utility of SRB for fairness evaluations that consider robustness disparities across
models as well.

To summarize we make the following contributions:

• We present SRB, a comprehensive robustness benchmark for ASR models, enabling direct
and easy comparison of robustness evaluations between models to facilitate progress.

• We demonstrate the use of SRB by conducting a fine-grained robustness analysis for several
popular models. We extend our analysis by using SRB to uncover disparities in the robust-
ness of ASR for various sub-groups of speakers. This highlights the broad utility of this
benchmark to the field of trustworthy AI.

• To facilitate out-of-the-box robustness evaluations for the community, we have publicly re-
leased a large dataset 1 containing perturbed versions of LibriSpeech (Panayotov et al., 2015)
test-clean, Spanish, and French and German test sets of Multilingual LibriSpeech (Pratap
et al., 2020), as well as accented speech from common voice, and segemented near- and
far-field audios from CHiME-6 (Reddy et al., 2020) and AMI(Kraaij et al., 2005).

• We release our code with clear documentation to enable reproducibility and extensibility. 2

2 RELATED WORK

2.1 ROBUST AUTOMATIC SPEECH RECOGNITION

Several techniques have been proposed for making Automatic Speech Recognition (ASR) models
robust to input perturbations, such as noise and other signal corruptions (Li et al., 2014). We can
divide these techniques into two high-level categories: i) model-based and ii) feature-based. Model-

1data: https://huggingface.co/datasets/mshah1/speech_robust_bench_public
2code:https://github.com/ahmedshah1494/speech_robust_bench
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based techniques modify the models to make them more robust. Examples of such approaches include
adapting pre-trained models (Yu et al., 2009; Juang & Rahim, 1996), de-noising the audio before
processing (Mohammadiha et al., 2013; Wilson et al., 2008), and training ASR models on noisy
data (Likhomanenko et al., 2020). Since model-based strategies generally require access to noisy
data (Li et al., 2014), they are most effective if the sources of noise, and/or the exact environment
in which the ASR model will be deployed in are known, and one can gather data to represent those.
Feature-based approaches, on the other hand, involve developing handcrafted features, invariant to
noise and corruptions in the signal (Li et al., 2014). Several of these features are inspired by biological
audition (Kim & Stern, 2016; Hermansky et al., 1991; Hermansky & Sharma, 1998), while others
use signal processing techniques (Li et al., 2014). Generally, these methods are designed to extract
the components of the audio signal salient for speech production and perception, while discarding
irrelevant components (Stern & Morgan, 2012). Consequently, they do not require precise knowledge
of the environment and noise distributions. Recently, however, handcrafted features have fallen out of
favor, and have been replaced by features learned via end-to-end training of deep learning models on
large amounts of data (Baevski et al., 2020; Hsu et al., 2021a; Likhomanenko et al., 2020; Radford
et al., 2023). Proponents of these techniques posit that models trained on larger datasets become
more robust. Our evaluations in § 4 reveal that there are several input perturbations against which
smaller models trained on less data outperform larger models trained on more data.

2.2 ADVERSARIAL ROBUSTNESS

Adversarial perturbations can change the response of a model when added to their inputs, but are
either imperceptible to humans or perceptually and semantically irrelevant enough to be ignored by
them (Szegedy et al., 2014; Goodfellow et al., 2014). Adversarially perturbed inputs are known as
adversarial attacks. They can be targeted (aiming to change a prediction to a specific incorrect class),
or un-targeted (aiming to change a prediction to any incorrect class (Akhtar et al., 2021)). The design
of adversarial attacks is determined by the level of knowledge the attacker is assumed to have about
the target model. Attacks that assume full knowledge of the target model’s architecture and weights
(white-box threat model) often use gradient-based optimization techniques (Szegedy et al., 2014;
Goodfellow et al., 2014; Madry et al., 2018; Laidlaw et al., 2021; Akhtar et al., 2021). Attackers
who do not have any knowledge of the target model’s architecture and only have query access to
it (black-box threat model) typically use gradient-free optimization methods (Wang et al., 2022a;
Andriushchenko et al., 2020; Wicker et al., 2018; Chen et al., 2017; Zhao et al., 2020; Vo et al., 2022).
An intriguing property of adversarial perturbations is that they transfer between models (Papernot
et al., 2016), and inputs (Akhtar et al., 2021; Neekhara et al., 2019), i.e. perturbations designed for
one model/input may be effective against others as well. Our SRB includes two types of white box
adversarial attacks; those that generate perturbations: 1) specific to each input (Madry et al., 2018),
2) that cause models to mis-transcribe multiple inputs (Neekhara et al., 2019).

2.3 ROBUSTNESS BENCHMARKS FOR SPEECH

While several robustness benchmark datasets exist for ASR models, they, unfortunately, suffer from
three major shortcomings that make it difficult to perform robustness evaluations in a way that is
comprehensive, sufficiently fine-grained, and comparable across models.

Firstly, we find that existing benchmarks do not comprehensively evaluate robustness. While past
works such as (Pearce & Picone, 2002) did indeed propose benchmarks containing diverse perturba-
tions, they were limited to relatively simple data unsuitable for modern ASR models. However, many
recently proposed benchmarks measure the robustness in one or a few specific types of scenarios.
For example, some datasets (Kinoshita et al., 2013; Nakamura et al., 2000; Jeub et al., 2009; Ko
et al., 2017) focus exclusively on reverberant speech, while others focus only on multi-speaker sce-
narios (Kraaij et al., 2005; Barker et al., 2017), environmental noise (Snyder et al., 2015; Reddy et al.,
2020; Wichern et al., 2019; Hirsch & Pearce, 2000), or accented speech (Lander, 2022; Shi et al.,
2021). Furthermore, certain types of digital perturbations, like special effects, computer-generated
speech, and adversarial examples, which humans are usually invariant to (and thus ASR models are
expected to be as well) are largely overlooked by existing benchmarks. SRB evaluates robustness
under a wide range of scenarios, including those represented in prior works, and novel ones that
have not yet received due attention, thus enabling comprehensive robustness evaluations via a single
benchmark.
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Secondly, since there are several robustness benchmarks that researchers can choose from, the
onus is on model developers to collect all relevant benchmarks and comprehensively evaluate their
model. This has often resulted in model developers evaluating their models on disparate benchmarks
(Radford et al., 2023; Wen et al., 2016; Chen et al., 2022; Likhomanenko et al., 2020), which makes
it hard to reliably compare performance and robustness across models. For example, several works
have used subsets of existing benchmarks to evaluate the model robustness (Radford et al., 2023;
Wen et al., 2016; Chen et al., 2022), or have evaluated the robustness of models by computing their
transcription accuracy on multiple natural speech datasets (Likhomanenko et al., 2020; Radford
et al., 2023; Hsu et al., 2021b). SRB covers a wide range of challenging ASR scenarios in a single
benchmark, it obviates the need to select from various benchmarks, and, thus, can unify robustness
evaluations across studies and make them comparable.

Finally, robustness benchmarks that try to mitigate the above two shortcomings are often too coarse to
reveal the specific scenarios and corruptions the model(s) struggle against. For example, Huggingface
Open ASR Leaderboard(OAL, Srivastav et al. 2023) evaluates models on several real-world speech
datasets, which may accurately reflect their average-case real-world performance, it may not inform
about the specific type of perturbations the models are weak against. This is because noise sources
present in these datasets are not controlled or even fully known. For example, the crowdsourced
recordings in Common Voice (Ardila et al., 2019) contain a variety of distortions including sensor
noise from low-quality equipment, background noise, and mispronunciation by non-native speakers.
If a model struggles with Common Voice, identifying the specific types of noise it is sensitive to
is not a straightforward task. In the design of SRB, we have ensured that the sources of noise (and
variance, in general) in each utterance are limited and known, which allows users to pinpoint specific
scenarios and/or perturbations under which their models struggle (e.g. Fig. 3 and § 4).

3 SPEECH ROBUST BENCH

Figure 1: An illustration of the processes involved
in using our benchmark to evaluate the robustness
of ASR models.

Speech Robust Bench (SRB) evaluates the
robustness of ASR models by a three-step pro-
cess consisting of (1) scenario simulation, (2)
transcription, and (3) metrics computation, as
shown in Fig. 1: first, various challenging speech
recognition scenarios are simulated by applying
a large bank of synthetic perturbations to clean
speech datasets (§ 3.1), as well as by using in-
herently noisy speech datasets with limited and
known sources of real noise and variations that
are difficult to simulate. Next, the perturbed recordings, the original clean recordings, and the
recordings with inherent noise are transcribed using the target ASR model. Finally, the predicted and
reference transcripts are compared, and the accuracy and robustness of each model in each setting is
captured with various metrics (§ 3.2). To account for the differences in the level of difficulty between
scenarios, we also estimate speech quality scores using appropriate models and use them to calculate
normalized metrics.

3.1 SCENARIO SIMULATION

Figure 2: Taxonomy of scenarios currently repre-
sented in SRB. Scenarios in dashed boxes have real-
world recordings, while scenarios in solid boxes
are simulated by digitally adding perturbations.

The various speech recognition scenarios sim-
ulated by SRB are taxonomized in Fig. 2, and
can be divided into six high-level categories,
namely (1) clean speech, (2) social gatherings,
(3) speech variations, (4) environmental effects,
(5) digital augmentations, and (6) adversarial at-
tacks. The scenarios are described briefly below,
while more details are given in Appendix A.

(1) Clean speech: SRB uses clean speech for
two purposes: to benchmark the baseline accu-
racy of ASR models, and to simulate various
challenging scenarios by perturbing it. Clean
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speech is drawn from Librispeech (Panayotov et al., 2015) test-clean, TEDLIUM (Hernandez et al.,
2018) release 3 test and MultiLingual LibriSpeech (MLS) (Pratap et al., 2020) test. LibriSpeech con-
tains professional recordings of English audio books. Meanwhile, TEDLIUM contains professional
recordings of English TED talks and provides lexical and phonetic diversity which LibriSpeech may
lack. To increase the applicability of SRB to non-English and multi-lingual models we also include
Spanish speech from MLS, which contains professionally recorded audio books in several languages.

(2) Social Gatherings: The ability to transcribe speech from semi-formal or informal settings, as
well as far-field audio is useful for models used in meeting rooms, smart homes, and even subtitle
generation, thus SRB includes English speech from dinner parties and meetings recorded by (2.1)
near- and (2.2) far-field mics from CHiME-6 (Barker et al., 2017) and AMI (Kraaij et al., 2005).

(3) Speech Variations: ASR models must remain accurate under variations in pronunciation and
prosody to serve diverse speakers. We therefore include (3.1) clean accented speech3 from English
and Spanish subsets of Common Voice 17 (CV17, Ardila et al. 2019) in SRB. To provide additional
prosodic variability and to represent the increasing pervasiveness of generative AI, we also include
synthetic speech generated by YourTTS (Casanova et al., 2022) (English) and Bark Suno (b) (Spanish)
from transcripts of the three clean datasets from scenario (1) in the voices of English and Spanish
speakers from VCTK (Yamagishi et al., 2019) and Bark Speaker Library (v2, Suno a), respectively.

The following scenarios involve synthetic perturbation of all three clean datasets from scenario (1).

(4) Environmental Effects: While noisy real speech datasets like CommonVoice (Ardila et al., 2019)
and Switchboard (Godfrey et al., 1992) exist, the noise in them is not controlled or even known. Thus
in SRB, we perturb clean speech to simulate (4.1) environmental noise, and (4.2) spatial acoustics.
Concretely, we add real environmental noise from ESC-50 (Piczak, 2015), MS-SNSD (Reddy et al.,
2019), MUSAN (Snyder et al., 2015) and WHAM! (Wichern et al., 2019) at Signal-to-Noise Ratios
(SNR) of 10, 20, 30 and 40 dB. To simulate spatial acoustics, we add echo via SoX4 and simulate
Room Impulse Response (RIR) via convolution with real and simulated RIRs from Ko et al. (2017).

(5) Digital Augmentations: Digital media often undergoes processing and contains special effects,
which are therefore included in SRB. Specifically, we include standard audio processing operations
like amplitude gain, resampling, lowpass, and highpass filtering, (2.2) special effects like bass gain,
treble gain, tempo increase, tempo decrease, speed increase, speed decrease, pitch increase, pitch
decrease, chorus, tremolo, and phaser, and (2.3) Gaussian white noise.

(6) Adversarial Attacks: Models used in high-stakes settings are prime targets for adversaries and
thus must resist attempts to compromise their accuracy. We use two types of adversarial attacks
in SRB: (2.1) utterance-specific and (2.2) utterance-agnostic attacks. The utterance-specific attack
searches for a perturbation δ, for a given speech recording x, such that a given model maximally
mistranscribes it. To find δ, we follow Madry et al. (2018) and use projected gradient descent to solve
maxδ:SNR(δ,x)≤ϵ L(M(x), y∗), where L is a differentiable loss function, like CTC-Loss, between the
model’s output M(x) and the true transcript y∗, with ϵ ∈ [10, 40]. The utterance-agnostic attack
is similar to the utterance-specific attack, except δ is optimized over a held-out set, X dev, instead
of each test utterance. This represents a more realistic scenario where an attacker tries to mount
a denial-of-service attack against an ASR model by introducing utterance-agnostic perturbation
at some point in the transcription pipeline. We use the method of Neekhara et al. (2019) to find
δ : Ex∈X dev SNR(δ, x) ≤ ϵ ∈ [10, 40] such that CER({x + δ|x ∈ X dev}) > τ (see Alg. 1), where
X dev is the dev split of LibriSpeech, TEDLIUM and MLS.

Note of Extensibility and Usage: We have released our source code with instructions for recon-
structing the data in SRB, and reproducing the results of this paper ( § 1). SRB can easily be extended
to other languages and speech datasets using the provided scripts for extracting accented speech from
any language in CV17, and for simulating scenarios 3.2-6 on any speech recording or dataset.

We have also publicly released the data for all the above scenarios, except adversarial attacks and
perturbed TEDLIUM recordings, on Huggingface Hub (see footnote 1). We made these exceptions
because TEDLIUM’s license prohibits the distribution of derivatives, and the adversarial attacks must
be computed separately for each target ASR model. To the extent possible, we encourage users to
evaluate their models on the publicly released data to ensure reproducibility.

3Accent annotations (excluding US English), and a DNSMOS score ≥ 3.4 (Reddy et al., 2020).
4Available from https://sourceforge.net/projects/sox/.
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3.2 METRICS

SRB measures the utility of the model with the widely used Word Error Rate. WER is computed
as the word-level edit distance between the reference and the predicted transcripts, normalized by
the length of the reference (see Appendix B for formal definitions). To measure the robustness
of the model under challenging scenarios, we use WER Degradation (WERD), computed as
WER(Xs) −WER(X ), where X and Xs are datasets containing clean speech and speech from
scenario s, respectively. For scenarios (1)-(3.1) (see § 3.1), Xs is an inherently noisy dataset, and X
will be LibriSpeech for English and Multi-Lingual LibriSpeech for Spanish. For scenarios (3.2)-(6),
X is a clean dataset, and Xs is a perturbed version of X .

When aggregating metrics (WER/WERD) over multiple scenarios, we follow the practice
of Hendrycks & Dietterich (2019) and divide the metric by a measure of difficulty, i.e., by the
(estimated) speech quality degradation. This adds weight to errors on “easy” scenarios (less qual-
ity degradation) and underweights errors on “harder” scenarios (more quality degradation) when
computing averages. We refer to the difficulty normalized versions of WER/WERD as Normalized
WER/WERD (NWER/NWERD). We estimate speech quality using DNSMOS (Reddy et al., 2019)
and PESQ(Rix et al., 2001; Miao Wang & ananda seelan, 2022), which are models of human judg-
ments of speech quality and predict Mean Opinion Scores (MOS, Rec 2018). PESQ uses various
signal processing methods to predict MOS, while DNSMOS uses DNNs to do the same. To compute
speech quality degradation we compute PESQ and DNSMOS for each clean and noisy recording
multiplied by -1 (lower values indicate less degradation). Since we are only interested in the relative
degradation between scenarios, we normalize the scores to have mean 50 and standard deviation 25.

Note on usage: We use NWERD for non-adversarial scenarios (1-5) but WERD for adversarial attacks
because adversarial attacks are model-specific and thus DNSMOS/PESQ scores for adversarially
perturbed audio will be different for each model, which will lead to a different normalization during
NWERD computation and make comparisons difficult.

4 EVALUATION

We evaluate several recent ASR DNNs (§4.1) using SRB and analyze the results to uncover fine-
grained differences in their robustness in various challenging scenarios. We further extend our
analysis by measuring ASR model robustness for various sub-groups, namely English speech and
non-English (Spanish) speech, and male and female speakers. Prior works (Liu et al., 2022; Veliche &
Fung, 2023) observe that there is a disparity in transcription quality between subgroups. Our analysis
augments these observations by showing that inter-group disparities in robustness may also exist,
thus demonstrating the utility of SRB in the broader field of trustworthy AI.

4.1 MODELS

For English, we evaluate Whisper (Radford et al., 2023) large-v2, base, medium, small, and tiny (wsp-
{lg,bs,md,sm,tn}), Wav2Vec-2.0 (Baevski et al., 2020) base, large, self-trained large (Xu et al., 2021),
and Robust Wav2Vec (Likhomanenko et al., 2020) (w2v2-{bs,lg,lg-slf,lg-rob}), HuBERT (Hsu et al.,
2021a) large and XL (hubt-{lg,xl}), Nvidia Canary (NVIDIA) (cnry-1b), Nvidia Parakeet RNN-T
and CTC (NVIDIA) with 0.6B and 1.1B parameters (prkt-rnnt-{0.6,1.1}b, prkt-ctc-{0.6,1.1}b),
MMS (Pratap et al., 2020) (mms-1b), Speech-T5 (Ao et al., 2022) (spch-t5), DeepSpeech (Amodei
et al., 2016) (ds), and Speechbrain (Ravanelli et al., 2024) models with Conformer encoders, and
transformer and RNN-T decoders. For Spanish speech, we evaluate mono-lingual Wav2Vec base
Spanish (Wang et al., 2021b) (w2v2-bs-es), Wav2Vec XLSR Spanish (Conneau et al., 2020)
(w2v2-lg-es), wsp-{lg,bs,tn}, and mms-1b. We used the Huggingface implementations where
available, except ds (https://github.com/SeanNaren/deepspeech.pytorch). More
details about the models are in Table 5.

4.2 ROBUSTNESS OF ASR MODELS

Table 1 presents the utility and robustness of a subset of English and Spanish ASR models under
non-adversarial and adversarial scenarios. The subset was selected to exclude small and/or less
accurate models. The results of the excluded models, however, are used in § 4.3.
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clean accent audio
proc

noise
(env)

noise
(white)

sFX social
(FF)

social
(NF)

spatial synth
speech

AVG Adv
(UA)

Adv
(US)

AVG

Lang Model (WER) (NWERD) (WERD)

EN

wsp-lg 8.0 11.2 12.7 3.1 2.9 2.8 40.9 34.9 4.5 4.4 13.0 6.2 53.6 29.9
prkt-rnnt-1.1b 5.9 11.6 8.7 4.2 1.6 6.4 48.3 39.8 11.8 3.0 15.0 10.9 69.1 40.0
wsp-md 7.9 12.4 27.8 2.8 3.3 3.5 41.8 35.5 5.2 6.1 15.4 3.7 56.6 30.1
prkt-ctc-1.1b 6.0 16.9 10.3 4.2 3.2 9.6 44.6 35.0 13.5 5.9 15.9 8.4 71.2 39.8
cnry-1b 6.0 13.9 18.2 4.4 2.7 15.0 45.7 36.7 15.3 5.7 17.5 14.8 61.7 38.3
w2v2-lg-slf 7.7 41.0 30.7 13.1 17.6 20.3 69.5 67.6 26.3 15.2 33.5 7.0 41.0 24.0
hubt-xl 8.4 38.9 29.1 15.5 16.2 20.8 69.5 71.2 26.4 13.5 33.5 13.9 36.8 25.3
wsp-bs 9.6 30.1 88.8 8.7 9.6 22.5 63.9 47.8 17.9 12.6 33.6 2.7 88.5 45.6
w2v2-lg 9.7 60.6 39.5 19.0 26.0 24.1 77.3 79.9 37.3 17.7 42.4 16.6 31.1 23.8

ES
cnry-1b 3.2 699.9 21.7 17.4 7.6 30.5 - - 36.3 28.6 120.3 26.1 84.3 55.2
wsp-lg 5.8 6.8 19.4 12.3 5.5 9.2 - - 5.5 24.6 11.9 13.7 65.0 39.4
w2v2-lg-es 6.8 31.6 31.8 30.1 20.5 40.7 - - 89.0 104.1 49.7 33.9 71.0 52.4
wsp-bs 14.8 62.0 133.2 43.1 25.8 60.4 - - 58.1 87.8 67.2 19.5 159.5 89.5
mms-1b 15.7 26.3 27.9 32.7 9.3 43.3 - - 47.3 49.9 33.8 7.4 53.8 30.6
w2v2-bs-es 25.7 45.6 55.9 44.9 25.0 58.4 - - 103.3 152.7 69.4 10.0 33.8 21.9

Table 1: The utility and robustness of selected English and Spanish models (see Table 7 for more
results). Utility is measured by WER of the models on clean speech. Robustness is measured by
the NWERD on non-adversarially perturbed speech and WERD on adversarially perturbed speech.
Adv (UA) refers to utterance agnostic attacks, while Adv (US) refers to utterance specific ones. The
metrics are averaged over all datasets, perturbations, and severities in each category.

4.2.1 ROBUSTNESS IN NON-ADVERSARIAL SCENARIOS

English Models:In terms of average NWERD, we observe that wsp-lg emerges as the most robust
model for non-adversarial scenarios, followed by prkt-rnnt-1.1b and wsp-md. Interestingly, cnry-1b,
which is the top model on the Open ASR Leaderboard (OAL, Srivastav et al. 2023), ranks 5th on SRB.
This result highlights the fact that SRB provides a more rigorous assessment of a model’s robustness
than existing benchmarks like OAL. We also see that SRB reveals subtle weaknesses and strengths of
various models.

For instance, we see that wsp-lg and wsp-md are significantly more robust to
special effects (sFX) and spatial acoustics than other models, including cnry-1b.

Figure 3: WERD of cnry-1b, wsp-md
and wsp-lg on perturbations in the spa-
tial acoustics and special effects cate-
gories.

To identify the specific types of sFX and spatial acous-
tic perturbations against which cnry-1b lacks robustness,
we plot the WERD on each perturbation within these cate-
gories (Fig. 3) we find that cnry-1b is much more sensitive
than its peers to echo, real room impulse responses, and
speed and pitch modifications. This analysis demonstrates
that SRB can evaluate the robustness of ASR models at
multiple granularities and can pinpoint the weaknesses of
a given model. Detailed results can be found in Figs. 9 and
11 in the appendix. Given that no data augmentation, other
than SpecAugment (Park et al., 2019), was used to train
Whisper (Radford et al., 2023), this indicates that Whisper
was trained on data that may have included digital media
like music or movie soundtracks, and speech recorded in
diverse acoustic environments – settings that may not be
sufficiently represented in public data sources. Curating such diverse datasets is a promising direction
for future work.

We also note that despite being pre-trained on 60K hours of speech, Wav2Vec and Hubert models
severely lack robustness. Particularly concerning is their weak performance on accented speech,
social scenarios and spatial acoustics, which models are very likely to encounter in the real world.

Takeaways: (1) Despite topping the Open ASR Leaderboard, cnry-1b is significantly less robust than
wsp-lg, which is ranked 10 on OAL. cnry-1b particularly lacks robustness to special effects and
spatial acoustics. (2) Wav2Vec variants struggle against accented speech and social settings, thus,
may not be suitable when users have diverse accents.

7



Published as a conference paper at ICLR 2025

Spanish Models:We observe that wsp-lg is the most robust model against non-adversarial perturba-
tions by some margin. We notice that all models, except wsp-lg, struggle against accented speech
and yield high NWERS. cnry-1b is particularly, weak against accented speech with an NWERD of
700% (WERD=205%). Apart from accented speech, cnry-1b is quite robust on all other categories
of non-adversarial perturbations. mms-1b is also fairly robust and, unlike other models, its NWERD
does not vary erratically from one category to another.

4.2.2 ROBUSTNESS IN ADVERSARIAL SCENARIOS

English models:We observe that w2v2-lg achieves the lowest WERD and thus is the most robust
model against utterance-specific adversarial attacks. Interestingly, while Wav2Vec models exhibited
mediocre robustness to non-adversarial perturbations, they are more robust to utterance-specific
attacks, than Whisper, Canary, and Parakeet, which were the most robust on non-adversarial pertur-
bations. We also note from Fig. 8 (in Appendix) that most Wav2Vec models are considerably more
robust to attacks against TEDLIUM than against LibriSpeech, and the opposite is true for whisper
and Canary models. Under utterance-agnostic attacks, the most robust models are mms-1b, wsp-bs,
and wsp-sm. It is interesting to note that the smaller variants of Whisper limit the generalizability
across utterances of the adversarial perturbations to a greater extent than their larger counterparts.

Takeaway: Wav2Vec models are most robust to adversarial attacks; Models that are most robust to
non-adversarial perturbations, are mediocre against adversarial perturbations; Canary and Parakeet
models are highly vulnerable to utterance specific attacks.

Spanish models:On Spanish, w2v2-bs-es is the most adversarially robust model. Generally, we
observe that Wav2Vec models exhibit better robustness than Whisper and Canary under both utterance-
agnostic and utterance-specific perturbations. This is similar to the trends observed in English speech
(Fig. 8c). Detailed results can be found in Fig. 10 in the appendix.

Takeaway: General trends similar to English but WERD is higher when Spanish speech is attacked.

4.3 CORRELATES OF ROBUSTNESS

To glean insights that can inform future work, we have conducted the following analysis to model
attributes that yield robust models. Specifically, we examine the impact of model size, architecture
and accuracy, as well as training dataset size on robustness.

To determine if the prevailing practice of training DNNs with more parameters on larger datasets
is yielding improvements in robustness, we use robust linear regression to fit a line to WERD
vs. number of model parameters/size of the training data for the candidate models in Figs. 5a
and 5b, respectively. Increasing model size is correlated with improved robustness (lower WERD).

Figure 4: NWERD lineplot with non-
adversarial and adversarial perturbations,
three families of models.

To further isolate the impact of the model size we plot
the NWERD of models from the same family in Fig. 4,
which have similar architectures and training datasets. We
note that larger models are more robust in the Whisper,
Parakeet and Wav2Vec-2.0 families, but, surprisingly, not
in the HuBert family.

Next, we consider the model architectures. The architec-
tures of the models used in this paper can be divided in to
three categories: sequence-to-sequence (seq2seq) models
like Whisper and Canary, encoder only models trained
with CTC loss (Graves et al., 2006) like the Wav2Vec fam-
ily, and RNN-T models which are capable of streaming
such as some variants of Parakeet. From Fig. 5e we see that in terms of non adversarial robustness
RNN-T models outperform seq2seq and CTC models, but in terms of adversarial robustness CTC
models achieve the lowest WERD.

We also measure the robustness-utility trade-off by plotting WERD and NWERD for adversarial
and non-adversarial perturbations, respectively, against WER on clean data in Figs. 5c and 5d. We
observe that in both cases the relationship is positive, i.e. more accurate models tend to be more
robust, however, the relationship between WERD on adversarial perturbations and clean WER is
much weaker.
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(a) (b) (c) (d) (e)

Figure 5: (a & b) WERD for all models with robust regression fitted line on non-adversarial (blue)
and adversarial (orange) perturbations, plotted against (a) number of parameters, and (b) hours of
training data. (c % d) WERD and NWER on adversarial and non-adversarial perturbations are plotted
against WER to illustrate the robustness-utility trade off. Pareto optimal points are highlighted. (e)
Boxplot of WERD for models having various architectures.

Finally, we measure the impact of training data size and, find that increasing training data appears to
have only a minor influence on robustness (Fig. 5b).

Takeaway: (1) Larger models tend to be more robust, while smaller models, even if they are trained
on large datasets, are less robust. This runs somewhat counter to the prevailing wisdom (Radford
et al., 2023; Likhomanenko et al., 2020). (2) CTC models are more robust than seq2seq models to
adversarial attack, but less robust than seq2seq and RNN-T models on non-adversarial perturba-
tions. (3) Utility and robustness are positively correlated, but correlation is weaker for adversarial
robustness.

4.4 DISPARITY IN ROBUSTNESS ACROSS POPULATION SUB-GROUPS

In the preceding analysis, we considered robustness aggregated over the entire population
(i.e., dataset). However, populations are generally not homogeneous, and, thus, the robustness
of the model may differ on various population sub-groups. Prior works have commonly analyzed
sub-group fairness of ASR models by comparing the overall WER for each sub-group on a benchmark
dataset (Koenecke et al., 2020). It is possible that models that are fair on average, may not be fair
under certain conditions. In the following, we use SRB to uncover and analyze the disparities in
the models’ robustness across four sub-groups: English and Spanish speech, and male and female
speakers. We find that disparities indeed exist, with multi-lingual models generally being more robust
for English than Spanish (Fig. 6), and most models being less robust for females than males.

4.4.1 DISPARITY IN ROBUSTNESS ACROSS LANGUAGES IN MULTI-LINGUAL MODELS

Figure 6: Comparing the robustness
of multi-lingual on English (solid)
and Spanish (hatched).

We compare the robustness exhibited by multi-lingual models,
wsp-lg, wsp-bs, cnry-1b and mms-1b on English and Spanish.
The WERD of these models on both languages is presented in
Fig. 6. We observe that Whisper models achieve lower WERD
on English speech than on Spanish on almost all perturbation
categories, while cnry-1b and mms-1b achieve similar WERD
on some categories. We also note that the difference in WERD
on some common perturbation categories, like environmental
noise, and spatial acoustics, is much greater for wsp-lg than for
cnry-1b.

Takeaway: Multilingual models are more robust on English
than Spanish; cnry-1b and wsp-lg most robust on both lan-
guages; adversarial robustness results follow the same trend as
English.

4.4.2 DISPARITY IN ROBUSTNESS ACROSS GENDERS

To measure the disparity in transcription quality across genders (males/females), we compute the log
of the ratio of the WERs of the ASR model on female and male speakers. We call this measure the
Log WER Ratio (LWERR). A positive value of LWERR indicates that the model is biased against
females and a negative value indicates that the model is biased against males.
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Figure 7: Log WER Ratio for various TEDLIUM, LibriSpeech, Common Voice (CV) and AMI,
and Spanish Multilingual Librispeech (MLS (ES)). WERs are averaged across severity levels and
individual augmentations within each category before computing the Log WER Ratio.

The LWERR for each dataset is shown in Fig. 7. We note that, on average, the models are biased
against females on LibriSpeech and Spanish Multilingual Librispeech (MLS-ES), and against males
on TEDLIUM, Common Voice and AMI. The bias is most prominent in MLS-ES, where cnry-1b
seems to be yielding the highest disparities among genders. We also note that adversarial perturbations
cause the WER of wsp-lg to increase significantly more for females than males in LibriSpeech. This
is interesting because adversarial perturbations do not target a specific part of the spectrum and thus
should not impact one gender more than the other.

Takeaway: Models are more robust for males on some datasets, and females on other datasets
suggesting that used data require further examination; adversarial attacks increase WER of Whisper
variants for females more than males; multilingual models, particularly cnry-1b, are more biased
against females when transcribing Spanish.

5 LIMITATIONS

Despite the comprehensive design of SRB, there are limitations to consider. Firstly, while SRB
includes a diverse set of datasets, distortions and adversarial attacks, it may not encompass all
possible real-world scenarios. Additionally, the benchmark has been tested for now on English and
Spanish languages, which may not capture the robustness challenges faced by ASR models in other
languages and dialects. While these limitations potentially affect the generalizability of the results
obtained with SRB, it extensibility allows users to easily incorporate additional datasets and models.

6 CONCLUSION

We propose SRB, a comprehensive benchmark designed to standardize the robustness evaluations
of Automatic Speech Recognition (ASR) models. We demonstrate the utility of SRB in evaluating
the robustness of ASR models via several concrete examples, as well as its potential to facilitate
evaluations of other aspects of trustworthy AI, like fairness. We believe that SRB will enable rigorous
robustness evaluations of ASR models in a highly standardized manner, allowing easy comparisons
between existing and new approaches. To further facilitate robustness evaluations for researchers
and model developers, we release transformed test sets in English and Spanish. We anticipate that
this will make robustness evaluations more prevalent and encourage model developers to consider
robustness as a key metric for improvement.
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A PERTURBATION GENERATION/APPLICATION PROCEDURE

Below, we provide further details the perturbations that make up Speech Robust Bench. Table 2
shows the parameters for each perturbation and Table 3 shows the normalized DNSMOS and PESQ
scores for each perturbation.

GAUSSIAN NOISE: A noise vector of the same length as the audio signal is sample from a standard
normal distribution, scaled such that its magnitude corresponds to a specific SNR, and then added to
the audio signal. We use torchaudio.function.add_noise to add the noise to the speech
at a given SNR.

ENVIRONMENTAL NOISE: We use the recordings of environmental noises from the test/eval
subsets of ESC-50 (Piczak, 2015), MS-SNSD (Reddy et al., 2019), MUSAN (Snyder et al., 2015)
and WHAM (Wichern et al., 2019). We create a separate perturbed version of the clean data using
each of these noise datasets. To do so, for each test utterance we sample a random environmental noise
and add it to the audio signal at the specified SNR. We clip the noise if it is longer than the speech,
and repeat it if it is shorter than the speech. We use torchaudio.function.add_noise to
add the noise to the speech at a given SNR.

ROOM IMPULSE RESPONSE: The simulated and real RIRs from (Ko et al., 2017) are applied
to clean recordings. As a measure of intensity, RT60 is estimated for the simulated RIRs using
Sabine’s formula with the room dimensions and absorption coefficient provided in the dataset. For
the real RIRs, we compute the SRMR (Santos & Falk, 2014) using the implementation from https:
//github.com/aliutkus/speechmetrics/tree/master. The severity is defined in
increasing RT60s for the synthetic RIRs, and decreasing SRMR for the real RIRs. Table 2 shows
the average RT60/SRMS in each severity level. During evaluation, a random RIR having the given
severity level is sampled for each test recording.

RESAMPLING, SPEED, PITCH, AND GAIN PERTURBATIONS: The resampling speed, pitch, and
gain perturbations were applied using the Resample Speed, PitchShift and Vol transforms
from torchaudio.
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Category Perturbation Sev 1 Sev 2 Sev 3 Sev 4

Gaussian Noise 30 dB 20 dB 10 dB 0 dB

Environment
Environmental Noise 30 dB 20 dB 10 dB 0 dB
Music 30 dB 20 dB 10 dB 0 dB
Crosstalk 30 dB 20 dB 10 dB 0 dB

Spatial Acoustics
RIR 0.27s 0.58s 0.99s 1.33s
Real RIR 9.1 7.1 4.1 1.8
Echo (delay) 125 ms 250 ms 500 ms 1000 ms

Special Effects

Bass (gain) 20 30 40 50
Treble (gain) 10 23 36 50
Phaser (decay) 0.3 s 0.5 s 0.7 s 0.9 s
tempo-up 1.25x 1.5x 1.75x 2x
tempo-down 0.875x 0.75 0.625x 0.5x
Speed-up 1.25x 1.5x 1.75x 2x
Slow-down 0.875x 0.75 0.625x 0.5x
Pitch Step-up 0.25 oct 0.5 oct 0.75 oct 1 oct
Pitch Step-down 0.25 oct 0.5 oct 0.75 oct 1 oct
Chorus (delay) 30 50 70 90
tremolo (depth) 50 66 83 100

Audio Processing

Resampling 0.75x 0.5x 0.25x 0.125x
Gain (factor) 10x 20x 30x 40x
Low-pass filter 4 kHz 2833 kHz 1666 kHz 500 kHz
High-pass filter 500 kHz 1333 kHz 2166 kHz 3000 kHz

Adversarial PGD Attack 40 dB 30 dB 20 dB 10dB
Utterance Agnostic Attack 40 dB 30 dB 20 dB 10dB

Table 2: The parameters defining the various severity levels of the perturbations used in the proposed
benchmark.

OTHER SPECIAL EFFECTS: These effects are applied via SoX filters of the same name. We used
torchaudio.sox_effects.apply_effects_tensor to apply these filters to the audio.
The args for each filter are as follows:

• echo 0.8 0.9 <delay> 0.3

• phaser 0.6 0.8 3 <decay> 2 "-t"

• Tempo <factor> 30

• sinc <lo-freq>

• sinc 0-<hi-freq>

• tremolo 20 <depth>

• treble <gain>

• bass <gain>

• chorus 0.9 0.9 <delay> 0.4 0.25 2 -t {<delay>+10} 0.3 0.4 2
-s

VOICE CONVERSION We use use YourTTS (Casanova et al., 2022) from Coqui.ai5 to synthesize
audio from textual transcripts in a given speaker’s style. The transcripts from the test clean subset of
LibriSpeech are used. The target speakers are drawn from the VCTK corpus (Yamagishi et al., 2019),
which contains accented speech from 12 accents. For each transcript a random speaker is chosen to
synthesize the audio.

5https://github.com/coqui-ai/TTS

17

https://github.com/coqui-ai/TTS


Published as a conference paper at ICLR 2025

Metric→ AVG normalized DNSMOS normalized PESQ
Scenario

clean 23.1 23.1
accent (en) 33.1 33.1
accent (es) 29.3 29.3
social (chime, FF) 102.2 102.2
social (ami, FF) 85.9 85.9
social (chime, NF) 80.1 80.1
social (ami, NF) 37.3 37.3

Augmentation/Severity 1 2 3 4 1 2 3 4 1 2 3 4

bass 19.1 23.9 36.0 56.4 23.9 28.9 39.6 58.4 11.4 14.3 30.3 54.6
chorus 40.1 49.3 55.5 57.0 31.3 41.3 48.7 49.9 63.8 71.2 74.3 75.8
crosstalk 22.9 38.9 53.1 59.9 24.7 33.1 38.2 41.0 22.2 46.1 70.1 81.6
echo 54.9 54.2 53.6 51.4 40.6 37.8 37.6 36.5 71.3 72.7 71.7 67.9
env noise (MS-SNSD) 51.4 62.4 77.0 89.6 53.5 61.0 74.6 93.5 39.6 58.7 76.7 84.2
env noise (ESC50) 26.7 41.7 58.4 73.8 39.2 45.3 55.0 73.2 20.0 43.1 66.0 79.8
env noise (MUSAN) 24.9 43.0 63.0 76.4 26.3 38.7 57.1 73.1 24.8 48.7 70.4 81.0
env noise (WHAM) 23.0 46.2 74.2 93.3 23.7 41.2 72.3 101.7 23.1 52.0 76.6 85.4
gain 50.8 69.9 77.6 81.8 46.7 67.8 78.3 84.6 61.3 76.0 80.0 81.7
gaussian noise 53.2 76.6 91.7 82.7 72.1 89.5 103.8 119.6 42.1 69.2 83.0 66.0
highpass 40.9 56.2 68.5 78.5 35.8 45.1 66.7 83.0 46.1 68.3 71.6 74.9
lowpass 33.8 37.9 51.6 79.1 48.9 48.4 64.3 100.1 20.3 29.2 40.4 58.4
music 22.9 43.8 66.7 79.9 26.9 43.0 64.0 78.6 20.0 45.3 70.1 81.9
phaser 15.6 32.9 60.7 80.6 22.8 36.2 59.8 78.6 10.6 31.9 63.6 83.5
pitch down 61.8 68.2 63.8 84.4 39.6 50.9 67.3 82.8 85.9 86.5 68.1 86.7
pitch up 58.9 62.1 65.2 66.0 33.7 39.6 45.7 47.5 85.9 86.4 86.5 86.4
real rir 39.4 54.6 69.9 85.3 35.7 46.5 61.7 89.2 43.1 62.7 78.0 81.4
resample 14.9 28.0 49.9 64.2 25.2 43.7 63.3 77.4 6.7 18.0 38.1 52.5
rir 51.1 64.0 69.3 68.9 42.0 58.1 66.2 66.5 65.0 74.6 78.1 78.1
slowdown 51.4 57.8 65.2 74.0 18.9 31.2 45.3 68.6 85.9 86.1 86.0 86.3
speedup 52.2 59.6 67.2 73.8 23.1 37.6 52.6 65.5 83.7 83.6 83.3 83.0
tempo down 49.4 52.6 55.3 51.2 19.8 23.0 28.2 36.7 81.4 84.7 85.3 85.6
tempo up 51.0 57.9 64.1 70.6 25.7 36.1 47.8 60.1 79.0 82.2 82.4 82.4
treble 12.4 22.4 41.6 63.6 20.8 31.2 44.8 62.3 2.1 12.1 42.2 72.5
tremolo 17.7 29.9 60.2 100.2 24.5 38.8 73.9 113.7 9.6 17.6 36.9 75.6
synthetic (es, Bark) 30.7 - - - 30.7 - - - - - - -
synthetic (en, yourTTS) 50.3 - - - 17.1 - - - 83.6 - - -

Table 3: Normalized DNSMOS and PESQ score for each perturbation.

Name Subset Hours Utterances Speakers Male/Female

LibriSpeech test-clean 5.4 2620 40 20/20
TEDLIUM 3 test 3.76 1155 16 10/6
Multi-Lingual LibriSpeech (es) test 10 2385 20 10/10
CHiME-6 eval 5.25 13000 8 -
AMI test 7.35 13168 16 8/8

ESC-50 - 2.78 2000 - -
MUSAN - 108.5 2016 - -
WHAM! noise-test 9 3000 - -
MS-SNSD noise-test 0.7 51 - -

Table 4: Distributional statistics of speech (top) and noise (bottom) datasets used in SRB.

CROSSTALK AND MUSIC We use crosstalk and music audios from MUSAN (Snyder et al., 2015).
We use torchaudio.function.add_noise to add the noise to the speech at a given SNR.
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ACCENTS We select a subset of audios from the test set of Common Voice 17. The selected audios
satisfied the following criteria: (1) the speaker’s accent must be present in the metadata, (2) the accent
must not be American, (3) should be clean. The last criterion is satisfied if the DNSMOS (Reddy
et al., 2020) score of the recording is at least 3.4. The resulting subset contains 640 recordings. The
most popular accent in this set is South Asian (India, Pakistan, Sri Lanka) (2̃5%), followed by British
English (2̃5%).

INTER-PERSONAL COMMUNICATIONS We CHiME-6 (Barker et al., 2017) and AMI (Kraaij et al.,
2005) to obtain recordings of people in social scenarios (dinner party and meetings). In both these
datasets, the speakers are recorded through lapel microphone and a room microphone resulting in
near and far field recordings. We use both types of recordings and show separate results for them. We
remove recordings that contain less than three words since they are often fillers.

UTTARANCE SPECIFIC ADVERSARIAL ATTACK: The utterance specific adversarial perturbations
are computed using the untargeted PGD adversarial attack implemented in robust_speech
package (Olivier & Raj, 2022). The attack is computed as follows. First, the maximum possible L2
norm of the noise is determined by solving the equation for SNR for the norm of the noise as follows.

SNR = 20 log10

(
||x||2
||δ||2

)
(1)

ϵSNR = ||δ||2 = 10−
SNR
20 ||x||2, (2)

where δ is the noise, x is the audio signal and SNR is the upper bound on the SNR in the final
signal. Then, we follow the approach of (Madry et al., 2018) and optimize δ using Projected Gradient
Descent (PGD) to maximize the divergence between the true and predicted transcriptions. Formally
stated, the attack performs the following optimization:

δ = max
δ̂:∥δ̂∥

2
≤ϵSNR

LM (x+ δ̂, y), (3)

where LM is the loss function used to train the ASR model, M , such as CTCLoss or NLLLoss.

UTTERANCE AGNOSTIC ADVERSARIAL ATTACK: We use the method of (Neekhara et al., 2019),
as implemented in robust_speech package (Olivier & Raj, 2022), to compute utterance agnostic
adversarial perturbations. The main difference between the universal attack and the PGD attack is
that the latter computes a perturbation vector for each input, whereas the former computes a single
perturbation that is expected to successfully attack any input to the model.

Formally, given a ASR model, M , and a development speech dataset, X dev let X dev
δ = {x+ δ|x ∈

X dev} be the same dataset under additive perturbation δ, and let M(X dev) and M(X dev
δ be the

transcripts predicted by M for X dev and X dev
δ . The utterance agnostic attack uses PGD to optimize δ

such that ∥δ∥∞ ≤ ϵ and the Character-Error Rate (CER) (see § B) between M(X dev) and M(X dev
δ )

is at least t, i.e. CERM (X dev
δ ,M(X dev)) ≥ t (using the notation from § B). Similar to the utterance-

specific attack, the value of ϵ is determined by the maximum allowable SNR using eq.(2), except that
ℓ∞ norms are used instead of ℓ2 norms. The full algorithm is described in Algorith 1.

Once we compute the perturbation we add it to the test audios (X test) at the specified SNR using
torchaudio.function.add_noise. For LibriSpeech, we use 500 utterances from test-dev
as X dev and test-clean as X dev. For TEDLIUM, we use the full dev and test sets as X dev and X test.
For Multi-Lingual LibriSpeech, we use 500 utterances from the dev set in the relevant language as
X dev and the full test set of the same language as X test.

B ADDITIONAL DEFINITIONS

WORD ERROR RATE: As noted in the main text, we use word error rate (WER) as a basic measure
for quantifying performance of the models. Following the common practice from ASR literature, the
WER is computed as the word-level edit distance between the reference and the predicted transcripts,
normalized by the length of the reference. The edit distance is computed as the total number of word
substitutions, deletions, and additions required to transform the reference transcript into the predicted
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Algorithm 1 Utterance Agnostic Attack Algorithm

Require: Speech data X dev and , ASR model M and its loss function, LM (e.g. CTCLoss, NLLLoss,
etc.), allowed SNR s, learning rate, α, max epochs emax, max iterations per sample imax, target
attack success rate, tsr, target Character-Error Rate (CER) (see § B), tcer
procedure CER(a, b)

return EditDistance(a, b)/len(b) ▷ a and b are character sequences
end procedure
procedure SUCCESSRATE(X )

return
∑

x∈X I[CER(M(x+ v),M(x)) > tcer]
end procedure
procedure SNRTONORM(x, SNR)

return 10−
SNR
20 ||x||∞

end procedure
ϵ←

∑
x∈X dev SNRToNorm(x, s)/|X dev|

v ← 0
e← 0
while SuccessRate < tsr and e < emax do

for (x, y) ∈ X dev do ▷ x is the audio, y is the transcript
i← 0
r ← 0
while CER(M(x+ v + r),M(x)) > tcer and i < imax do

∆r ← αsign(∇r0.5 ∥r∥2 − LM (x+ v + r, y))
r ← clipϵ{r −∆r + v} − v
i← i+ 1

end while
v ← clipϵ{r + v}

end for
e← e+ 1

end while
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transcript. We remove all punctuation from both the reference and predicted transcripts, and convert
to lower case before computing WER.

When WER is computed over multiple pairs of predicted and reference transcripts, it is common
practice to sum the number of substitutions, deletions, and additions for all the pairs, and divide by
the sum of the lengths of the reference transcripts. Formally, this can be written as:

WERM (X ,R) := 100

∑
x∈X ,r∈R ED(M(x), r)∑

r∈R |r|
%, (4)

where ED computes the edit distance.

The Character Error Rate (CER) can also be defined similarly, by using the character-level edit
distance in the above equation.

For quantifying differences between (binary) genders, we measure the disparity in prediction accuracy
across males and females by the Log WER Ratio (LWERR). Formally,

LWERR := log2
WERM (Xf ,Rf )

WERM (Xm,Rm)
, (5)

where the (Xf ,Rf ) and (Xm,Rm) represent the subsets of utterances by females and males respec-
tively.

FAIRNESS THROUGH ROBUSTNESS: In this work, we use SRB to conduct a fairness assessment
based on robustness disparities across population subgroups (English vs. Spanish speech; male vs.
female speakers). Most of the state of the art quantifies fairness in terms of predictive performance
disparities. This occurs in the domain of fairness in ASR systems (Liu et al., 2022; Veliche &
Fung, 2023; Koenecke et al., 2020) and similar prevalence is found in other domains (Julia Angwin;
Solans Noguero et al., 2023). However, previous work in the domain of ASR also considered
robustness disparities as an alternative fairness notion (Nanda et al., 2021).

Moreover, we argue that considering the dimension of robustness could give better sense of the
expected disparities that could be observed when deployed in the wild, in the presence of diverse
noisy conditions.

C MODELS

Table 5 provides a summary of the models used in our evaluations. The model names correspond to
the names of their pretrained checkpoints in the Huggingface library (https://huggingface.
co/models). The abbreviations of these names are in the parentheses after them. Some of the
unilingual models are pre-trained on multilingual data but are fine-tuned on only one language and
thus can not transcribe any other language. Multilingual models have been pre-trained and fine-tuned
on multiple languages so the same DNN can transcribe several languages. The WER of multilingual
models is presented as English/Spanish.

D FINE GRAINED ANALYSES

The following figures present fine-grained analyses of robustness. These figures may be referenced
by the main text but were not included in the main body in the interest of space. Figure 8 provides
an overview of the accuracy and robustness of the various models. Figures 9, and 10 present the
breakdown by perturbation of the robustness of models on English and Spanish, respectively. Figure
11 presents a breakdown of robustness by severity.

E COMPUTE RESOURCES

The experiments were performed on the Bridges-2 cluster at the Pittsburgh Supercomputing Center.
This cluster contains 200 32G and 16G Nvidia V-100, which were used for these experiments.
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Lang Model Abrv. Params (M) Data (hrs) WER

EN

canary-1b (NVIDIA) cnry-1b 1,000.0 85,000 6.0
parakeet-ctc-0.6b (NVIDIA) prkt-ctc-0.6b 600.0 64,000.0 6.1
parakeet-ctc-1.1b (NVIDIA) prkt-ctc-1.1b 1,100.0 64,000.0 6.0
parakeet-rnnt-0.6b (NVIDIA) prkt-rnnt-0.6b 600.0 64,000.0 6.0
parakeet-rnnt-1.1b (NVIDIA) prkt-rnnt-1.1b 1,100.0 64,000.0 5.9
deepspeech(Amodei et al., 2016) ds 86.0 960 26.5
hubert-large-ls960-ft(Hsu et al., 2021a) hubt-lg 317.0 60,000 8.4
hubert-xlarge-ls960-ft(Hsu et al., 2021a) hubt-xl 964.0 60,000 8.4
mms-1b-fl102 (Pratap et al., 2023) mms-1b 964.6 55,000 22.8
speecht5 asr(Ao et al., 2022) spch-t5 154.6 960 22.1
wav2vec2-base-960h (Baevski et al., 2020) w2v2-bs 95.0 960 11.3
wav2vec2-large-960h (Baevski et al., 2020) w2v2-lg 317.0 960 9.7
wav2vec2-large-960h-lv60-self (Xu et al., 2021) w2v2-lg-slf 317.0 60,000 7.7
wav2vec2-large-robust-ft-libri-960h (Hsu et al., 2021b) w2v2-lg-rob 317.0 63,000 8.9
whisper-base (Radford et al., 2023) wsp-bs 74.0 680,000 9.6
whisper-base.en (Radford et al., 2023) wsp-bs.en 74.0 563,000 5.1
whisper-large-v2 (Radford et al., 2023) wsp-lg 1,550.0 680,000 8.0
whisper-medium (Radford et al., 2023) wsp-md 769.0 680,000 7.9
whisper-medium.en (Radford et al., 2023) wsp-md.en 769.0 563,000 4.1
whisper-small (Radford et al., 2023) wsp-sm 244.0 680,000 8.3
whisper-small.en (Radford et al., 2023) wsp-sm.en 244.0 563,000 4.0
whisper-tiny (Radford et al., 2023) wsp-tn 39.0 680,000 11.3
whisper-tiny.en (Radford et al., 2023) wsp-tn.en 39.0 563,000 10.1

ES

canary-1b (NVIDIA) cnry-1b 1,000.0 85,000 3.2
mms-1b-fl102 (Pratap et al., 2023) mms-1b 964.6 55,000 15.7
wav2vec2-base-10k-voxpopuli-ft-es (Wang et al., 2021b) w2v2-bs-es 94.4 10,116 25.7
wav2vec2-large-xlsr-53-spanish (Conneau et al., 2020) w2v2-lg-es 315.4 54,350 6.8
whisper-base (Radford et al., 2023) wsp-bs 74.0 680,000 14.8
whisper-large-v2 (Radford et al., 2023) wsp-lg 1,550.0 680,000 5.8
whisper-tiny (Radford et al., 2023) wsp-tn 39.0 680,000 23.3

Table 5: Models used in our evaluations.

Dataset License

LibriSpeech CC-BY-4.0
Multilingual Librispeech CC BY 4.0
TEDLIUM CC-BY-NC-ND 3.0
AMI CC-BY-4.0
Common Voice CC0-1.0
CHiME CC BY-SA 4.0

Table 6: Licenses of each of the considered datasets in SRB

F DATASET LICENSES

The licenses of each of the considered datasets are described in Table 6.
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(a) (b) (c)

(d) (e) (f)

Figure 8: The accuracy and robustness of English (top) and Spanish (bottom) ASR models on
clean and perturbed data. Accuracy is measured by WER of the models on clean speech (a & d).
Robustness is measured by the NWERD on non-adversarially perturbed speech (b & e) and WERD
on adversarially perturbed speech (c & f). The markers indicate the dataset in (a & c), and the
perturbation category in (b & e). The x axes are in ascending order of the values on the y axes.

category clean accent audio proc noise (env) noise (white) sFX social (FF) social (NF) spatial synth speech AVG Adv (UA) Adv (US) AVG
lang dataset model (abrv) WER NWERD WERD

du MLS-DU

cnry-1b 4.0 - 15.5 5.3 6.0 12.4 - - 12.2 - 10.3 - - -
wsp-lg 7.3 - 14.3 2.6 6.5 4.1 - - 5.3 - 6.6 - - -
mms-1b 14.6 - 21.6 8.1 12.0 14.3 - - 18.9 - 15.0 - - -
wsp-bs 20.4 - 93.8 14.0 26.3 34.5 - - 24.7 - 38.6 - - -

en

LibriSpeech

prkt-rnnt-1.1b 1.6 - 5.1 2.6 1.8 3.7 - - 8.0 3.0 4.0 - - -
cnry-1b 1.7 - 12.3 3.0 2.7 12.7 - - 9.3 4.2 7.4 7.7 61.7 34.7
prkt-rnnt-0.6b 1.8 - 11.2 3.4 3.0 6.0 - - 9.4 3.8 6.1 - - -
w2v2-lg-slf 1.8 - 16.9 9.2 17.1 12.4 - - 14.4 5.5 12.6 12.5 58.0 35.2
prkt-ctc-0.6b 2.0 - 10.9 3.5 3.4 7.3 - - 10.4 4.7 6.7 - - -
prkt-ctc-1.1b 2.0 - 6.2 3.0 3.3 6.4 - - 9.1 4.4 5.4 - - -
hubt-xl 2.1 - 18.2 11.1 16.3 13.3 - - 14.7 5.5 13.2 26.7 54.4 40.5
hubt-lg 2.1 - 11.6 9.0 9.1 12.3 - - 15.0 6.5 10.6 34.9 50.0 42.5
sb-cnfmr 2.6 - 9.4 11.0 15.2 11.3 - - 19.0 7.4 12.2 - - -
w2v2-lg-rob 2.6 - 18.1 10.2 15.1 15.4 - - 16.9 5.9 13.6 45.8 61.0 53.4
sb-cnfmr-rnnt 2.7 - 15.7 9.8 17.2 9.6 - - 20.4 8.4 13.5 - - -
w2v2-lg 3.0 - 24.7 14.4 28.2 15.8 - - 21.8 8.6 18.9 29.0 44.3 36.6
w2v2-bs 3.7 - 30.6 18.9 36.4 20.3 - - 26.9 9.6 23.8 29.5 53.6 41.5
wsp-md 3.9 - 19.1 2.4 3.3 2.1 - - 3.8 5.3 6.0 1.7 51.9 26.8
wsp-lg 3.9 - 6.9 2.0 3.5 1.6 - - 3.0 4.0 3.5 3.4 43.6 23.5
wsp-sm.en 4.0 - 34.9 6.9 - 6.0 - - 3.9 6.2 11.6 - - -
wsp-md.en 4.1 - 16.0 4.9 - 2.8 - - 0.9 4.8 5.9 - - -
wsp-sm 4.3 - 27.9 4.0 5.4 4.5 - - 6.5 7.0 9.2 8.3 71.1 39.7
wsp-bs.en 5.1 - 48.0 12.4 - 17.9 - - 11.2 8.1 19.5 - - -
wsp-bs 5.9 - 63.6 6.6 11.0 14.8 - - 14.5 8.5 19.8 3.6 96.7 50.2
wsp-tn.en 6.4 - 57.2 8.6 14.0 25.8 - - 17.1 9.2 22.0 9.4 90.2 49.8
spch-t5 7.2 - 32.6 49.8 26.2 27.3 - - 67.9 64.3 44.7 52.4 106.4 79.4
sbcrdnn 7.2 - - 11.5 33.9 - - - - - 22.7 - - -
wsp-tn 8.2 - 68.4 13.8 17.4 26.1 - - 21.8 9.9 26.2 22.5 - 22.5
ds 15.1 - 37.9 26.2 28.9 32.0 - - 46.2 18.0 31.5 - 62.9 62.9
mms-1b 15.4 - 16.3 5.5 7.0 11.1 - - 11.9 8.9 10.1 6.2 44.6 25.4

TEDLIUM

cnry-1b 10.2 - 15.3 3.1 2.9 10.6 - - 11.7 1.5 7.5 21.9 - 21.9
wsp-md 12.0 - 22.9 1.7 3.5 3.1 - - 4.3 0.8 6.1 5.7 61.3 33.5
wsp-lg 12.1 - 12.5 2.5 2.6 2.3 - - 4.0 0.4 4.0 9.0 63.6 36.3
wsp-sm 12.3 - 32.0 2.3 4.9 6.1 - - 5.6 1.6 8.8 2.2 69.8 36.0
wsp-bs 13.3 - 67.6 5.8 8.8 19.2 - - 8.7 4.1 19.0 1.7 80.3 41.0
w2v2-lg-slf 13.5 - 27.6 9.5 19.3 17.2 - - 18.8 9.9 17.0 1.5 24.0 12.8
wsp-tn.en 13.7 - 50.9 7.2 10.9 29.3 - - 12.9 2.8 19.0 51.7 90.7 71.2
wsp-tn 14.4 - 59.7 11.5 15.8 29.9 - - 16.2 4.3 22.9 1.3 110.9 56.1
hubt-lg 14.7 - 19.9 9.2 12.1 16.2 - - 17.5 9.1 14.0 0.7 13.9 7.3
hubt-xl 14.7 - 24.6 11.1 17.3 16.9 - - 18.2 8.2 16.0 1.2 19.1 10.2
w2v2-lg-rob 15.2 - 24.4 8.7 15.7 18.7 - - 19.4 9.2 16.0 1.0 17.9 9.4
w2v2-lg 16.5 - 31.2 12.9 24.7 18.8 - - 25.5 9.2 20.4 4.2 17.9 11.0
w2v2-bs 18.8 - 37.0 16.5 30.0 23.3 - - 32.6 9.5 24.8 7.1 19.9 13.5
mms-1b 30.2 - 19.0 6.2 7.3 12.1 - - 11.5 0.0 9.4 0.0 53.1 26.6
spch-t5 37.0 - 48.8 31.8 15.2 27.5 - - 48.1 21.7 32.2 31.8 90.6 61.2
ds 38.0 - 40.1 16.1 24.3 30.0 - - 48.7 7.3 27.8 15.3 51.5 33.4

ami

cnry-1b - - - - - - 31.7 13.9 - - 22.8 - - -
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hubt-lg - - - - - - 51.0 27.7 - - 39.4 - - -
hubt-xl - - - - - - 51.1 27.6 - - 39.4 - - -
mms-1b - - - - - - 71.2 55.2 - - 63.2 - - -
prkt-ctc-0.6b - - - - - - 34.5 14.5 - - 24.5 - - -
prkt-ctc-1.1b - - - - - - 31.6 13.6 - - 22.6 - - -
prkt-rnnt-0.6b - - - - - - 37.0 16.7 - - 26.9 - - -
prkt-rnnt-1.1b - - - - - - 35.9 17.0 - - 26.4 - - -
sb-cnfmr - - - - - - 63.0 35.4 - - 49.2 - - -
sb-cnfmr-rnnt - - - - - - 58.6 31.6 - - 45.1 - - -
sbcrdnn - - - - - - 91.2 - - - 91.2 - - -
spch-t5 - - - - - - 304.3 221.9 - - 263.1 - - -
w2v2-bs - - - - - - 66.0 32.9 - - 49.4 - - -
w2v2-lg - - - - - - 59.6 30.8 - - 45.2 - - -
w2v2-lg-rob - - - - - - 51.1 24.7 - - 37.9 - - -
w2v2-lg-slf - - - - - - 50.6 26.2 - - 38.4 - - -
wsp-bs - - - - - - 39.5 19.1 - - 29.3 - - -
wsp-lg - - - - - - 29.3 15.9 - - 22.6 - - -
wsp-md - - - - - - 29.2 15.8 - - 22.5 - - -
wsp-sm - - - - - - 31.4 17.0 - - 24.2 - - -
wsp-tn - - - - - - 48.9 21.2 - - 35.0 - - -
wsp-tn.en - - - - - - 41.7 19.5 - - 30.6 - - -

chime

cnry-1b - - - - - - 55.6 28.8 - - 42.2 - - -
ds - - - - - - 90.6 84.0 - - 87.3 - - -
hubt-lg - - - - - - 82.1 55.2 - - 68.7 - - -
hubt-xl - - - - - - 81.1 54.6 - - 67.8 - - -
mms-1b - - - - - - 126.7 98.8 - - 112.7 - - -
prkt-ctc-0.6b - - - - - - 56.6 27.4 - - 42.0 - - -
prkt-ctc-1.1b - - - - - - 53.4 26.7 - - 40.0 - - -
prkt-rnnt-0.6b - - - - - - 60.5 28.3 - - 44.4 - - -
prkt-rnnt-1.1b - - - - - - 55.9 27.3 - - 41.6 - - -
sb-cnfmr - - - - - - 92.5 74.2 - - 83.3 - - -
sb-cnfmr-rnnt - - - - - - 84.3 60.5 - - 72.4 - - -
sbcrdnn - - - - - - 92.9 87.3 - - 90.1 - - -
spch-t5 - - - - - - 527.7 388.7 - - 458.2 - - -
w2v2-bs - - - - - - 88.7 64.6 - - 76.7 - - -
w2v2-lg - - - - - - 86.9 61.7 - - 74.3 - - -
w2v2-lg-rob - - - - - - 83.4 52.3 - - 67.8 - - -
w2v2-lg-slf - - - - - - 81.6 52.0 - - 66.8 - - -
wsp-bs - - - - - - 83.4 35.5 - - 59.4 - - -
wsp-lg - - - - - - 48.6 21.6 - - 35.1 - - -
wsp-md - - - - - - 50.6 22.8 - - 36.7 - - -
wsp-sm - - - - - - 59.2 24.9 - - 42.1 - - -
wsp-tn - - - - - - 98.6 46.3 - - 72.4 - - -
wsp-tn.en - - - - - - 80.4 35.2 - - 57.8 - - -

CV

cnry-1b - 4.6 - - - - - - - - 4.6 - - -
ds - 93.4 - - - - - - - - 93.4 - - -
hubt-lg - 14.1 - - - - - - - - 14.1 - - -
hubt-xl - 12.9 - - - - - - - - 12.9 - - -
mms-1b - 18.1 - - - - - - - - 18.1 - - -
prkt-ctc-0.6b - 5.8 - - - - - - - - 5.8 - - -
prkt-ctc-1.1b - 5.6 - - - - - - - - 5.6 - - -
prkt-rnnt-0.6b - 5.1 - - - - - - - - 5.1 - - -
prkt-rnnt-1.1b - 3.8 - - - - - - - - 3.8 - - -
sb-cnfmr - 20.3 - - - - - - - - 20.3 - - -
sb-cnfmr-rnnt - 19.1 - - - - - - - - 19.1 - - -
sbcrdnn - 44.8 - - - - - - - - 44.8 - - -
spch-t5 - 89.7 - - - - - - - - 89.7 - - -
w2v2-bs - 25.4 - - - - - - - - 25.4 - - -
w2v2-lg - 20.0 - - - - - - - - 20.0 - - -
w2v2-lg-rob - 13.9 - - - - - - - - 13.9 - - -
w2v2-lg-slf - 13.5 - - - - - - - - 13.5 - - -
wsp-bs - 10.0 - - - - - - - - 10.0 - - -
wsp-lg - 3.7 - - - - - - - - 3.7 - - -
wsp-md - 4.1 - - - - - - - - 4.1 - - -
wsp-sm - 6.5 - - - - - - - - 6.5 - - -
wsp-tn - 13.9 - - - - - - - - 13.9 - - -
wsp-tn.en - 12.7 - - - - - - - - 12.7 - - -

es

MLS-ES

cnry-1b 3.2 - 16.4 9.6 8.2 16.0 - - 10.9 - 12.2 26.1 84.3 55.2
wsp-lg 5.8 - 14.1 7.4 5.9 4.0 - - 2.0 - 6.7 13.7 65.0 39.4
w2v2-lg-es 6.8 - 21.2 14.7 22.1 19.0 - - 26.3 - 20.6 33.9 71.0 52.4
wsp-bs 14.8 - 90.9 22.7 27.3 32.5 - - 18.0 - 38.3 19.5 159.5 89.5
mms-1b 15.7 - 18.5 19.7 37.1 20.0 - - 14.9 - 22.0 7.4 53.8 30.6
wsp-tn 23.3 - 124.3 45.0 52.3 57.9 - - 41.8 - 64.3 43.1 269.9 156.5
w2v2-bs-es 25.7 - 32.4 20.4 24.2 24.1 - - 32.4 - 26.7 10.0 33.8 21.9

CV:es

cnry-1b - 205.0 - - - - - - - - 205.0 - - -
mms-1b - 7.7 - - - - - - - - 7.7 - - -
w2v2-bs-es - 13.3 - - - - - - - - 13.3 - - -
w2v2-lg-es - 9.3 - - - - - - - - 9.3 - - -
wsp-bs - 18.2 - - - - - - - - 18.2 - - -
wsp-lg - 2.0 - - - - - - - - 2.0 - - -
wsp-tn - 30.6 - - - - - - - - 30.6 - - -

fr MLS-FR

cnry-1b 6.1 - 15.2 5.2 7.3 13.0 - - 10.0 - 10.1 - - -
wsp-lg 7.7 - 15.5 3.5 8.3 5.6 - - 5.7 - 7.7 - - -
mms-1b 23.6 - 21.0 6.9 12.5 12.9 - - 15.6 - 13.8 - - -
wsp-bs 26.0 - 124.8 16.7 44.4 47.9 - - 25.9 - 51.9 - - -

Table 7: Accuracy and robustness of ASR models on all datasets
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Figure 9: NWERD of English models on different augmentations, averaged over all severities.
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Figure 10: NWERD of Spanish models on different augmentations, averaged over all severities.

Figure 11: NWERD on English data as the severity of the augmentation is increased.
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(a) (b)

Figure 12: Log WER Ratio between male and female speakers from Librispeech (English) (a) and
Spanish Multilingual Librispeech (b).

27


	Introduction
	Related Work
	Robust Automatic Speech Recognition
	Adversarial Robustness
	Robustness Benchmarks for Speech

	Speech Robust Bench
	blackScenario Simulationblack
	Metrics

	Evaluation
	Models
	Robustness of ASR Models
	Robustness in Non-Adversarial Scenarios
	Robustness in Adversarial Scenarios

	Correlates of Robustness
	Disparity in Robustness Across Population Sub-Groups
	Disparity in Robustness Across Languages in Multi-Lingual Models
	Disparity in Robustness Across Genders


	Limitations
	Conclusion
	Acknowledgments
	Perturbation Generation/Application Procedure
	Additional definitions
	Models
	Fine Grained Analyses
	Compute Resources
	Dataset Licenses

