
Supplimentary Document: Structural Concept
Learning via Graph Attention for Multi-Level

Rearrangement Planning

Anonymous Author(s)
Affiliation
Address
email

1 Data Generation1

The basics of data generation are 8 possible object primitives to construct structures. All objects2

may be present in the top layer in any valid orientation, but middle (or supporting) layers may only3

contain certain objects in certain orientations conducive to stable structures. For example, an upright4

pyramid would only provide a top surface of a single line and a cylinder that is not upright would be5

likely to roll and collapse the whole structure so these are not allowed. Overall, we initially generated6

8000 scenes for training and 2000 scenes for evaluation. Our generator was also used to create7

upwards of 10000 on-the-fly target structures for the evaluation of our pipeline. A rough pseudo8

code for the structure generation algorithm is specified in Algorithm 1, but the generation heuristic9

will be open-sourced with the final manuscript. Note that there are some implementation details10

regarding the algorithm not specified here, like how the placement criteria has a metric involving the11

area of the top surface of objects, placement pose of objects is found by fitting a plane to sampled12

points from the top surface of the supporting objects in the lower level, validation of orientation for13

placement in layers is an exhaustive search, etc.14

2 Model Architecture Details and Training15

All graph neural networks were implemented using PyTorch Geometric (PyG) [1], and all conven-16

tional neural networks were implemented using PyTorch [2].17

2.1 Positional Encoding18

We utilized the positional encoding implementation specified in [3]. Specifically, the positional19

encodings boT for some object instance o in the target scene are given by20

boT = ⟨sin(20Axo), cos(2
0Axo), . . . , sin(2

LAxo), cos(2
LAxo)⟩ (1)

where xo is the 3D position vector, the position associated with o (which we get by calculating21

the centroid of the point cloud obtained from sampling the known default position, transformed to22

the target orientation), and the rows of A are the outwards facing unit-norm vertices of a twice-23

tessellated icosahedron. We use no offset, a scale of 1, a min degree of 0, and a max degree of 5 to24

calculate L, which results in an encoding of size 511. For more details, please refer to [3].25

2.2 PoinNet++ based segmentation26

We used PyTorch Geometric’s [1] example model for segmentation, as is, without significant27

changes. The input point clouds from each scene were downsampled to have 1024 points using28

random sampling, and training was done in a supervised manner using negative log-likelihood loss29

calculated from the output and the ground truth point identities extracted from the simulation. We30

trained on a set of 8000 scenes and validated performance on 2000 scenes before use.31

Submitted to the 7th Conference on Robot Learning (CoRL 2023). Do not distribute.

Algorithm 1: Generation-Algorithm(B,L{K},O). B are the bounds for the scene, L{K} spec-
ifies the maximum number of objects on each level, K specifies the number of levels, and O are
all possible object instances that can be placed.

1 OS ← ValidSubLevelObjects(O)
2 c0 ← 0 ▷ number of objects placed on level 0
3 O ← ∅ ▷ objects placed
4 A{K} ← ∅ ▷ Ai contains all objects available for placement in level i
5 while c0 < L0 do
6 o← RandomlyPick(OS)
7 if o ∈ B and NotInCollision(o,O) then
8 PlaceObject(o)
9 O ← O ∪ {o}

10 A0 ← A0 ∪ {o}
11 c0 ← c0 + 1

12 c{N} ← 0 ▷ ci is the number of objects placed on level i
13 i← 1
14 while i ⩽ K do
15 for (a, b) ∈ Ai−1 do
16 v ← ValidPlacementObjects(a, b,O,O) ▷ obj instances that can be supported by a, b
17 v ← CollisionFree(v,O) ▷ filters to give only collision free placements
18 for o ∈ v do
19 PlaceOnObjects(o, a, b) ▷ places o to be supported by a, b
20 Ai ← Ai ∪ {o}
21 O ← O ∪ {o}
22 ci ← ci + 1
23 if ci < Li then
24 break

25 if ci < Li then
26 break

27 for a ∈ Ai−1 do
28 v ← ValidPlacementObjects(a,O,O) ▷ object instances that can be supported by a
29 v ← CollisionFree(v,O) ▷ filters to give only collision free placements
30 for o ∈ v do
31 PlaceObject(o, a) ▷ places o to be supported by a
32 Ai ← Ai ∪ {o}
33 O ← O ∪ {o}
34 ci ← ci + 1
35 if ci < Li then
36 break

37 if ci < Li then
38 break

39 i← i+ 1

40 return O

2.3 PointNet++ based feature extraction32

This utilized PyTorch Geometric’s [1] implementation of PointNet++ with an MLP attached at the33

end to do classification on our set of 8 object primitives. Our MLP used had 3 layers. The first layer34

had an input size of 1024 and an output size of 512, the second layer had an input size of 512 and an35

output size of 256, and the final layer had an input size of 256 and an output size of 8. To obtain the36

object level features w{N}
T for each object in the target scene, we remove the final layer and take the37

256-sized output to use as the object’s latent features. The network was trained using a classification38

2

task for objects in over 800 scenes (each containing an average of 9 objects) and evaluated on objects39

in over 200 scenes before use.40

2.4 GAT Graph Encoder41

Our graph encoder gΦ contains 2 graph attention convolution layers, each of which convolves around42

every node i in the graph using its neighbor set N (i). The exact node feature update done by the43

convolutional layer is given by44

n′
i = αi,iΦni +

∑
j∈N (i)

αi,jΦni (2)

where Φ is the learnable parameter for the update mechanism and the attention coefficients α, which45

quantifies the importance of neighboring nodes, is given by46

αi,j =
exp(aTσ(Φ[ni || nj]))∑

k∈N (i)∪N (j) exp(aTσ(Φ[ni || nk]))
(3)

where σ is the non-linear activation LeakyReLU with a slope parameter of 0.2. Each of the graph47

convolution layers had 16 attention heads with averaging used as the aggregation function. The first48

graph attention layer has an input size of 511 and an output size of 256 whereas the other graph49

attention layer has an input size of 256 and an output size of 128. Training was done in a supervised50

manner with51

2.5 MLP Edge Decoder52

The edge decoder hΨ can be queried with a pair of high-level features zi, zj , resulting from the graph53

network encoder, and will decode them into the structural relationship between them. This relation-54

ship of dependence is asymmetric, and the decoder is used to query every ordered pair of nodes in55

the graph to obtain the respective dependence probabilities ρ{N×N} where ρi,j = h([zi||zj]; Ψ). hΨ56

has 2 fully connected layers and uses LeakyReLU as its non-linear activation function after the first57

layer only. The first layer has an input size of 2 · 128 = 256 and an output size of 128, whereas58

the second layer has an input size of 128 and an output size of 1. We apply SoftMax to get the as-59

sociated probabilities for training with binary cross-entropy loss. The reason for the input layer for60

hΨ being twice the output size for gΦ is because finding the existence probability for the edge (i, j)61

involves concatenating the high-level node features zi, zj before inputting them into the edge de-62

coder. The graph encoder gΦ and edge decoder hΨ were trained together in a supervised manner to63

minimize the binary cross entropy loss between the adjacency matrices of the predicted and ground64

truth dependency graphs, which, in turn, was obtained from simulation information (specifically, the65

y-components of the contact force vectors on each pair of objects).66

3

Figure 1: Our approach performing progressive pick-and-place (with all steps shown) actions based
on its multi-level rearrangement plan to achieve (top left) a target arrangement (middle left).

4

References67

[1] M. Fey and J. E. Lenssen. Fast graph representation learning with pytorch geometric. Interna-68

tional Conference on Learning Representations (ICLR), 2019.69

[2] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison,70

L. Antiga, and A. Lerer. Automatic differentiation in pytorch. Conference on Neural Infor-71

mation Processing Systems (NIPS), 2017.72

[3] J. Ortiz, A. Clegg, J. Dong, E. Sucar, D. Novotny, M. Zollhoefer, and M. Mukadam. isdf: Real-73

time neural signed distance fields for robot perception. Robotics: Science and Systems (RSS),74

2022.75

5

	Data Generation
	Model Architecture Details and Training
	Positional Encoding
	PoinNet++ based segmentation
	PointNet++ based feature extraction
	GAT Graph Encoder
	MLP Edge Decoder

