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Broader Impact
We propose new techniques to test the robustness of seg-
mentation models to adversarial attacks. While we consider
it important to estimate the vulnerability of existing systems,
such methods might potentially be used by malicious actors.
However, we also provide insights on how to obtain, at lim-
ited computational cost, models which are robust to such
perturbations.

A. Proof of the Property of the
Jensen-Shannon-Divergence

The Jensen-Shannon-divergence between the predicted dis-
tribution p and the label distribution q is given by

DJS(p ∥ q) = (DKL(p ∥m) +DKL(q ∥m)) /2,

with m = (p+ q)/2

Assuming that we have a one-hot label encoding q = ey
(where ey is the y-th cartesian coordinate vector), one gets
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Given the logits u we use the softmax function

pr =
eur∑K
t=1 e

ut

, r = 1, . . . ,K,

to obtain the predicted probability distribution p. One can
compute:
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Noting that limx→0 x log(x) = 0 we get the result that:
lim

py→0

∂DJS(p ∥ ey)
∂ut

= 0. We note that this is in contrast to the

cross-entropy loss where, LCE(p, ey) = − log py , and

∂LCE(p, ey)

∂ut
= −δyt + pt

and thus lim
py→0

∂LCE(p,ey)
∂ut

̸= 0. In particular, this implies

that when optimizing the sum of the cross-entropy loss over
all pixels, even pixels which are already successfully at-
tacked will still influence the gradient. In contrast, for the
Jensen-Shannon-divergence the pixels which are already
successfully attacked (py is small) do not contribute any-
more significantly to the gradient and thus the attack can
focus on the pixels which are not yet successfully attacked
without the need of masking.

B. Experimental Details
We here provide additional details about both attacks and
training scheme used in the experiments in the main part.

B.1. Attacks for semantic segmentation

Baselines. Since Gu et al. (2022); Agnihotri and Keu-
per (2023) do not provide code for their methods, we re-
implement both SegPGD and CosPGD following the indica-
tions in the respective papers and personal communication
with the authors of CosPGD. In the comparison in Table 4,
we use PGD with step size 0.011 for ℓ∞-bound ϵ, and 100
iterations. Moreover, we select for each image the iterate
with highest loss.

APGD with masked losses. Since APGD relies on the
progression of the objective function value to e.g. select
the step size, using losses which mask the misclassified
pixels might be problematic, since the loss is not necessarily

1For CosPGD, the authors suggested a step-size of 0.03, but
we found 0.01 to yield a stronger attack.
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monotonic. Then, in practice we only apply the mask when
computing the gradient at each iteration.

B.2. Training robust models

In the following, we detail the employed network archi-
tectures, as well as our training procedure for the utilized
datasets. All experiments are conducted in multi-GPU set-
ting with PyTorch library.

Model architectures. Semantic segmentation model ar-
chitectures have adapted to use image classifiers in their
backbone. Given UPerNet coupled with ConvNeXt (Liu
et al., 2022) and/or transformer models like Swin (Liu et al.,
2021) achieves art segmentation results, we use UPerNet as
the base architecture for our experiments with ConvNeXt as
the backbone. For both clean and robust initialization setups,
we use the IMAGENET-1k pre-trained weights2 from Singh
et al. (2023). (Singh et al., 2023) achieve art robustness
for ℓ∞-threat model at ϵ = 4/255 on the IMAGENET-1k
dataset. They propose some architectural changes, notably
replacing PatchStem with a ConvStem in their most robust
ConvNeXt models, and we keep these changes intact in our
backbone models. We highlight that ConvNeXt-T, when ad-
versarially trained for classification on IMAGENET, attains
significantly higher robustness than ResNet-50 at a similar
parameter and FLOPs count. For example, at ϵ∞ = 4/255,
the ConvNeXt-T we use has 49.5% of robust accuracy, while
ResNet-50 is reported to achieve around 35% (Bai et al.,
2021; Singh et al., 2023). This supports choosing ConvNeXt
as backbone for obtaining robust segmentation models.

Training setup for PASCAL-VOC. For training on the
PASCAL-VOC dataset, we use the augmentation setup
from Hariharan et al. (2011). Our training set comprises
of 8498 images and we validate on the original PASCAL-
VOC validation set of 1449 images. For both training and
testing the image is cropped from a base size of 512x512
to 473x473, we employ random horizontal flip and Gaus-
sian Blur as the only two augmentations on top as done by
(Zhao et al., 2017). We use the auxiliary head, with a loss
coefficient of 0.4 in training the model. We train robust-
initialized models only for 50 epochs whereas for clean
initialized models we have other configurations as well. Ad-
versarial training is done with either 2 or 5 steps of PGD
on the cross-entropy loss. Throughout all experiments the
base learning rate (LR) of 1e-3 with AdamW (Loshchilov
and Hutter, 2019) optimizer and a weight decay factor of
1e-2 is used. We employ linear LR decay with a warm-up
of 10 epochs for 50 epoch runs. Wherever we train for more
than 50 epochs we linearly scale the warm-up epochs as
well. For testing, we keep the same resolution resizing as
for training without the augmentations and use the single-
scale approach. Unlike most other works in literature, we

2https://github.com/nmndeep/revisiting-at

train for 21 classes (including the background class).

Training setup for ADE20K. We use the full standard
training and validation sets from Zhou et al. (2019). For
both training and testing the image is resized to 520x520,
then cropped to 512x512, keeping the same augmentations
as for PASCAL-VOC. We train for 128 epochs (for clean and
adversarial training) with a base LR of 1e-4 with AdamW
optimizer and a weight decay factor of 5e-2, as used for the
original ConvNeXt backbone UPerNet by Liu et al. (2022).
We employ linear LR decay with a warm-up of 20 epochs
and use stochastic depth coefficient of 0.4 or 0.3 depending
on the backbone, same as the original work.3 We do not use
heavier augmentations and LayerDecay (Bao et al., 2021)
optimizer as done by Liu et al. (2022). For the 32 epoch
run in Table 3, we do a warm-up of 5 epochs, while the
other parameters are the same as for 128 epochs. Unlike
the original work we train with 151 classes (including the
background class).

C. Additional Experiments
We present additional studies of the properties of our SEA
scheme and of the robust models.

C.1. APGD for semantic segmentation attacks

Projected gradient descent (PGD) (Madry et al., 2018) uses
the following iterative scheme for minimizing an objective
function g in the set S = {z ∈ Rd : ∥z − x∥∞ ≤ ϵ, z ∈
[0, 1]d}, i.e. an ℓ∞-ball around a given point x intersected
with the image box, denoting by PS the projection onto S:

x(t+1) = PS

(
x(t) − α(t) sign(∇g(x(t)))

)
.

APGD has been introduced in Croce and Hein (2020) as
an improved version of standard PGD which does not re-
quire parameter tuning e.g. selection of the step size α(t).
While it has been used in attacks for image classification, it
can be more generally applied as optimizer for constrained
problems. We show in Table 4 that simply replacing PGD
with APGD for two previously proposed losses consistently
improves their performance on a robust model from Sec. 4
(both PGD and APGD use 100 iterations, see App. B for
details). The two attacks we consider are: i) SegPGD (Gu
et al., 2022), an attack which optimizes LBal-CE with PGD,
and ii) CosPGD (Agnihotri and Keuper, 2023), an attack
which optimizes LCosSim-CE with PGD. We observe that for
both attacks and all values of the radius ϵ, APGD yields
lower average pixel accuracy and mIOU (in grey), without
imposing extra costs during optimization. Note that for high
values of ϵ the improvements are quite large. Thus we use

3https://github.com/facebookresearch/
ConvNeXt/blob/main/semantic_segmentation/
configs/convnext

https://github.com/nmndeep/revisiting-at
https://github.com/facebookresearch/ConvNeXt/blob/main/semantic_segmentation/configs/convnext
https://github.com/facebookresearch/ConvNeXt/blob/main/semantic_segmentation/configs/convnext
https://github.com/facebookresearch/ConvNeXt/blob/main/semantic_segmentation/configs/convnext
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Table 4: APGD consistently outperforms PGD for two existing attacks, SegPGD (Gu et al., 2022) and CosPGD (Agnihotri
and Keuper, 2023), on semantic segmentation. We report average pixel accuracy and mIOU after the adversarial attack, at
various strengths of ϵ∞.

ϵ∞

LBal-CE LCosSim-CE

SegPGD SegAPGD CosPGD CosAPGD

ACC mIOU ACC mIOU ACC mIOU ACC mIOU

4/255 88.6 65.0 88.7 64.8 89.0 65.5 88.9 65.4
8/255 74.6 39.4 74.2 41.3 78.2 47.5 77.8 47.3
12/255 45.8 15.0 43.3 14.9 58.2 28.3 56.2 26.4
16/255 26.2 7.1 20.7 5.7 38.0 17.2 34.0 15.3

APGD for the optimization of all losses in this paper.

C.2. Analysis of SEA

Selection of losses. In Table 1 we have shown the perfor-
mance of the attacks (APGD with 100 iterations) with six
loss functions, and their worst-case. We then selected the
best four of those (LMask-CE,LBal-CE,LJS,LMask-Sph.) to be
included in SEA. In Table 5 we additionally compare the
robustness computed as worst-case of either all attacks (six
runs, one per loss) or the four attacks with objective func-
tions included in SEA. For both clean and robust models,
using the two additional losses does not significantly im-
prove performance of the ensemble attack, while increasing
runtime. Moreover, we show below that each of the remain-
ing four losses positively contributes to the results of SEA,
which justifies the choice of including them.

Effect of reducing the radius. We complement the compar-
ison of const-ϵ and red-ϵ schemes provided in Sec. 3.3 by
showing the different robust mIOU achieved by the various
algorithms. In Fig. 3 one can observe that, consistently with
what reported for average accuracy in Fig. 2, reducing the
value of ϵ (red-ϵ APGD) outperforms in most cases the other
schemes.

Contribution of individual components in SEA. To assess
how much each loss contributes to the final performance of
SEA, we report the individual performance (as average pixel
accuracy after attack) at different ϵ∞ in Table 6, using ro-
bust models on PASCAL-VOC and ADE20K. We recall that
each loss is optimized with 300 iterations of red-ϵ APGD.
Additionally, we report the worst-case average pixel accu-
racy over subgroups of 3 out of 4 losses, and the worst-case
of all 4, i.e. SEA. Although subset A works well for both
datasets at ϵ∞ ∈ {4/255, 8/255}, it is not as effective as
subsets B and C for higher ϵ∞, and vice-versa. Interestingly,
LMask-Sph. does not yield the best individual results in any
case, but the excluding it from the worst-case computation
(subset A) significantly degrades the performance. Hence,
the four losses have complementary properties, as observed

in Sec. 3.2, which allows us to have effective attacks across
the entire range of ϵ∞.

More iterations. We explore the effect of different number
of iterations in SEA. In Fig. 4 we show the performance
(measured by robust accuracy and mIOU) of SEA with 50,
100, 300 and 500 iterations. The performance at 0 iterations
is the clean performance of this model. There is a substantial
improvement on going from 50 to 300 iterations in all cases.
On further increasing the number of attack iterations to 500,
the drop in robust accuracy is around 0.1% for ℓ∞ radius of
4/255 and none for 8/255. Also, there is no drop in mIOU
for 4/255 whereas 8/255 sees a 0.1% decrease. Since going
beyond 300 iterations gives no or minimal improvement for
significantly higher computational cost, we fix the number
of iterations to 300.

Effect of random seed. Table 7 shows that the proposed
SEA is very stable across all perturbation strengths. It is also
interesting to note that all individual loss have negligible
variance across 5 different runs.

C.3. Larger backbone for robust models

We test in this section the effect of using ConvNeXt-S,
which is nearly 1.7x larger in terms of number of parame-
ters than ConvNeXt-T considered until now, as backbone in
UPerNet. We again take the ℓ∞ = 4/255 robust ConvNeXt-
S pre-trained on IMAGENET from (Singh et al., 2023) as
initialization for our models. We note that this increases the
size of the networks by only 1.4 times, since the backbone
constitutes around 45% of it, while the FLOPs (in Giga) in-
crease negligibly from 939 GFLOPs to 1027 GFLOPs. We
keep the training setting consistent to ConvNeXt-T back-
bone models from the main text, see App. B.

In Table 8 we see that for PASCAL-VOC the clean per-
formance (ϵ∞ = 0) of ConvNeXt-S backbone is better
than ConvNeXt-T backbone models with the same training
setup. The robustness for the model with AT2 in mIOU is
better by 2% on average, with smaller radii seeing larger
improvements. For AT5, the increase of robust mIOU at



Robust Semantic Segmentation: Strong Adversarial Attacks and Fast Training of Robust Models

Table 5: Loss selection for SEA. We compare taking the worst-case over all six losses from Table 1 APGD with 100
iterations versus using only the subset of the four losses part of SEA (average accuracy and mIOU are shown). The models
are clean or adversarially trained for PASCAL-VOC. Leaving out two losses does not substantially impact the performance
while considerably reduces the computational cost.

Subset ϵ∞ → 4/255 8/255 12/255 16/255

model: clean, 50 epochs

all losses 71.1 39.9 32.5 12.1 5.3 1.2 0.1 0.0
four losses 71.2 40.0 32.6 12.1 5.3 1.2 0.1 0.0

model: AT5, robust init., 50 epochs

all losses 88.3 64.4 72.3 38.4 31.9 8.4 6.4 1.1
four losses 88.3 64.6 72.3 38.4 31.9 9.0 6.4 1.2
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Figure 2: Testing difference between const-ϵ and red-ϵ schemes. Under the same iteration budget for the robust init. AT5

model, across different losses we see radius reduction (red-ϵ) scheme leads to most drop in robust ACC. Specifically for
worst-case over all losses, red-ϵ leads to the best attack across different perturbation strengths. The same trend holds for
mIOU, see Fig. 3 in App. C.2
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Figure 3: Testing difference between const-ϵ and red-ϵ schemes. Under the same iteration budget for the robust init. AT5

model, across different losses we see red-ϵ scheme leads to most drop in robust mIOU. Specifically for worst-case over all
losses, red-ϵ leads to the best attack across different perturbation strengths.
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Table 6: Component analysis for SEA. We show the individual performance of the runs of APGD with each loss in SEA.
Additionally we include the worst-case over subsets of 3 out of 4 losses. We report robust average accuracy for robust
models on both the datasets. The best results, among either individual runs or subgroups, are highlighted.

A: LMask-CE + LBal-CE + LJS B: LMask-CE + LBal-CE + LMask-Sph. C: LMask-CE + LJS + LMask-Sph.

ϵ∞
individual losses subsets of three losses all

LMask-CE LBal-CE LJS LMask-Sph. A B C (SEA)

model: AT5, robust init., 50 epochs, PASCAL-VOC

4/255 89.0 88.5 88.4 90.5 88.3 88.5 88.4 88.3
8/255 73.7 72.9 73.8 80.7 71.6 71.7 71.8 71.3
12/255 31.6 35.9 38.6 38.1 29.4 27.4 27.8 27.3
16/255 6.7 11.9 12.5 6.8 5.8 4.3 4.3 4.2

model: AT5, robust init., 50 epochs, ADE20K

4/255 57.1 56.0 55.9 63.0 55.6 55.9 55.7 55.6
8/255 28.6 28.6 28.7 39.6 26.5 27.1 26.7 26.4
12/255 4.2 4.4 4.5 4.3 3.8 3.5 3.5 3.3
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Figure 4: Influence of number of iterations in SEA. We show robust average accuracy (left) and mIOU (right) varying the
number of iterations in our attack: 300 iterations give the best compute-effectiveness trade-off. We use the AT5 ConvNeXt-T
backbone model with robust initialization for PASCAL-VOC.
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Table 7: Stability of SEA across different runs. We report ACC computed on PASCAL-VOC with the AT5 model. The
mean across 5 runs is shown along with the standard deviation. Across all its components and perturbation strengths, SEA
has a very low variance over random seeds.

A: LMask-CE + LBal-CE + LJS B: LMask-CE + LBal-CE + LMask-Sph. C: LMask-CE + LJS + LMask-Sph.

ϵ∞
individual losses subsets of three losses all

LMask-CE LBal-CE LJS LMask-Sph. A B C (SEA)

model: AT5, robust init., 50 epochs, PASCAL-VOC

4/255 89.0 ± 0.1 88.5 ± 0.1 88.4 ± 0.1 90.5 ± 0.0 88.4 ± 0.1 88.5 ± 0.0 88.4 ± 0.0 88.3 ± 0.0
8/255 73.6 ± 0.2 73.0 ± 0.3 73.7 ± 0.1 80.6 ± 0.2 71.5 ± 0.1 71.7 ± 0.0 71.7 ± 0.1 71.2 ± 0.1
12/255 31.4 ± 0.4 35.9 ± 0.2 38.2 ± 0.4 38.1 ± 0.1 29.3 ± 0.2 27.6 ± 0.2 27.9 ± 0.1 27.3 ± 0.1
16/255 6.6 ± 0.1 11.9 ± 0.3 12.3 ± 0.2 6.9 ± 0.1 5.7 ± 0.1 4.3 ± 0.1 4.3 ± 0.1 4.2 ± 0.1

Table 8: Comparison of training schemes for PASCAL-VOC and ADE20K with larger models. In continuation of Table 2
and Table 3, we show the effect of using a larger (robust) backbone, i.e. ConvNeXt-S, as initialization. The improvement in
robustness (accuracy and mIOU) over ConvNeXt-T backbone for PASCAL-VOC is marginal for small perturbations, whereas
significant benefit can be seen for ADE20K across all perturbation strengths.

Training scheme 0 4/255 8/255 12/255 16/255

PASCAL-VOC

ConvNeXt-T backbone

AT2 robust init. 50 ep. 92.9 75.9 86.7 60.8 50.2 21.0 9.3 2.4 0.8 0.3
AT5 robust init. 50 ep. 92.7 75.2 88.3 63.8 71.2 37.0 27.4 8.1 4.2 0.9

ConvNeXt-S backbone

AT2 robust init. 50 ep. 93.4 77.2 87.8 63.2 53.5 23.0 10.3 2.7 0.9 0.4
AT5 robust init. 50 ep. 93.1 76.6 89.2 66.2 70.8 38.0 27.0 8.6 3.9 1.0

ADE20K
ConvNeXt-T backbone

AT2 clean init. 128 ep. 73.4 36.4 0.2 0.0 0.0 0.0 0.0 0.0 – –
AT2 robust init. 128 ep. 72.0 34.7 46.0 15.4 6.0 1.8 0.0 0.0 – –
AT5 robust init. 128 ep. 70.5 31.7 55.6 18.6 26.4 6.7 3.3 0.8 – –

ConvNeXt-S backbone

AT5 robust init. 128 ep. 71.3 32.1 57.2 19.2 28.8 7.2 3.9 0.9 – –
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ϵ∞ = 4/255 is 3%, but for higher radii the improvement is
only marginal if at all any. We hypothesize that the improve-
ment could be much more if one increases the number of
training epochs for these bigger models, as higher capacity
needs more time to approach a better (robust) solution.

For ADE20K, clean performance gets slightly higher with
the larger architectures. The improvement in robustness is
around 2% (mIOU) for both ϵ∞ = 4/255 and ϵ∞ = 8/255,
and around 0.6% for the largest radius. These results are
consistent to what the original work introducing ConvNeXt
showed when transitioning from ConvNeXt-T to ConvNeXt-
S backbone. In fact, Liu et al. (2022) had a gain of 2.7%
in clean mIOU which here translates to a slightly smaller
improvement given we do adversarial training on top. In a
similar vein, even large backbones could be tried and the
increase in robustness would be tantamount to the increase
from ConvNeXt-T to ConvNeXt-S, and we leave this to
future work.

C.4. Excluding the background class from evaluation

For ADE20K, we train clean models in two settings, i.e.
either ignoring the background class (150 possible classes),
which is the standard practice while training clean semantic
segmentation models, or to predict it (151 classes). To
measure the effect of the additional background class, we
can evaluate the performance of both models with only
150 classes (for the one trained on 151 classes, we can
exclude the score of the background class when computing
the predictions). Training on 150 classes achieves (ACC,
mIOU) of (80.4%, 43.8%), compared to (80.2%, 43.8%)
for 151. This shows that we do not lose any performance
when training with the background class, and the apparent
lower results reported e.g. in Table 3, (ACC, mIOU) of
(75.5%, 41.1%) are due to including the background class
when computing the statistics. This also translates to the
robust models trained in the AT2 setting. For the robust
model, the two settings have (76.6%, 37.8%) and (76.4%,
37.5%) (ACC, mIOU) respectively.

D. Related Work
Adversarial attacks for semantic segmentation. ℓ∞-
bounded attacks on segmentation models have been first
proposed by Hendrik Metzen et al. (2017), which focus
on targeted (universal) attacks, and Arnab et al. (2018),
using FGSM (Goodfellow et al., 2015) or PGD on the cross-
entropy loss. Recently, Gu et al. (2022); Agnihotri and
Keuper (2023) revisited the objective function used by PGD
to improve the effectiveness of ℓ∞-bounded attacks, and
are closest in spirit to our work. Additionally, there exist
a few works presenting algorithms for other threat models,
including unconstrained, universal and patch attacks (Xie
et al., 2017; Cisse et al., 2017; Mopuri et al., 2018; Shen

et al., 2019; Kang et al., 2020; Nesti et al., 2022).

Robust segmentation models. As mentioned above, lim-
ited attention has been paid to developing defenses for seg-
mentation models. First, Xiao et al. (2018a) propose a
method to detect attacks, while stating adversarial training
is hard to adapt for semantic segmentation. Later, DDC-
AT (Xu et al., 2021) attempts to integrate adversarial points
during training exploiting additional branches to the net-
works, but such models are shown to be not robust by Gu
et al. (2022), who also propose to use their version of PGD,
named SegPGD, for adversarial training. Finally, Cho et al.
(2020); Kapoor et al. (2021) present defenses based on de-
noising, with either Autoencoders or Wiener filters, the
input to remove the adversarial perturbations before feeding
it to clean models. However these methods do not provide
standalone robust models. Moreover, they are tested only
via attacks with limited budget, while similar techniques
for protecting image classifiers have been shown ineffective
once evaluated with adaptive attacks (Athalye et al., 2018;
Tramèr et al., 2020).

E. Threat model, metrics
Threat model. In this work we focus on the ℓ∞-threat
model, which means that every pixel of an input image can
be modified independently. It is common practice for seman-
tic segmentation tasks to exclude the pixels belonging to the
background class, which means that those are not accounted
for when minimizing the training loss or computing the test
performance of a model. However, it is unrealistic that an
attacker only modifies non-background pixels and thus we
want models which are robust for all pixels independently
of how they are classified or what their ground-truth label
is. Thus, we train all our models with an additional back-
ground class. Note that this does not significantly influence
the clean segmentation performance, but allows us to use
a realistic definition of adversarial robustness for semantic
segmentation, see App. C.4.

Metrics. For image classification the 0-1 loss is the estab-
lished metric for measuring the performance of a model.
Then an attacker has the clear goal of maximizing it, equiv-
alent to reducing the classification accuracy of the model,
and many techniques have been developed for this purpose
(Carlini and Wagner, 2017; Madry et al., 2018). In the case
of semantic segmentation, while it is possible to measure
the classification accuracy averaged over pixels (ACC), it is
common to use other performance metrics like Intersection
over Union (IoU), averaged over classes (mIOU).

Differentiable losses which approximate mIOU exist, e.g.
the Dice loss (Sudre et al., 2017): however, mIOU is typ-
ically computed across all the images of the test set. This
means that an attacker should optimize the perturbations
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over the entire set, which is not practically possible (mini-
batches are often used). Conversely, the classification of
pixels of an image is independent of other images, and so
are the perturbations. Moreover, if an attacker is able to
get all pixels to be misclassified, then the mIOU is trivially
0%. For this reason we use average accuracy as main metric
for developing our attacks, but we always report mIOU as
well. When reporting the worst-case over multiple runs,
we select for each image the perturbation which yields the
lowest average accuracy, and use it to compute the mIOU.

F. Additional Figures
Untargeted attacks. Fig. 5 shows examples of our untar-
geted attacks at different radii ϵ∞ on the clean model for
PASCAL-VOC dataset. In particular, we use 300 iterations of
red-ϵ APGD on the LMask-CE loss. The first column presents
the original image with the ground truth segmentation mask,
The following columns contain the perturbed images and
relative predicted segmentation masks for increasing radii
(ϵ∞ = 0 is equivalent to the unperturbed image): one can
observe that the model predictions progressively become
farther away from the ground truth values. We addition-
ally report the average pixel accuracy for each image. In
Fig. 6, we repeat the same visualization for AT5 model with
robust initialization. Note that we use different values of
ϵ∞ for the two models, i.e. significantly smaller ones for
the clean model, following Table 1. Finally, the same setup
is employed on the ADE20K dataset for the illustrations in
Fig. 7 (clean model) and Fig. 8 (robust model), and we have
similar observations as for the smaller dataset. Again we
use smaller radii for the clean model, since it is significantly
less robust than the AT5 one.

Targeted attacks. In Fig. 1 we show examples of the per-
turbed images and corresponding predictions resulting from
targeted attacks. In this case, we run APGD (red-ϵ scheme
with 300 iterations) to the negative JS divergence between
the model predictions and the one-hot encoding of the target
class. In this way the algorithm optimizes the adversarial
perturbation to have all pixels classified in the target class
(e.g. “grass” or “sky” in Fig. 1). We note that other losses
like cross-entropy can be adapted to obtain a targeted ver-
sion of SEA, and we leave the exploration of this aspect of
our attacks for future work.
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original 0 0.25/255 0.5/255 1/255 2/255

ACC: 95.9% ACC: 94.8% ACC: 75.9% ACC: 48.3% ACC: 0.0%

ACC: 96.1% ACC: 61.4% ACC: 0.0% ACC: 0.0% ACC: 0.0%

Figure 5: We show the perturbed images, corresponding predicted segmentation masks and average accuracy for increasing
radii. The attacks are generated on the clean model on PASCAL-VOC with APGD on LMask-CE. We additionally present (first
column) the original image and ground truth mask.

original 0 4/255 8/255 12/255 16/255

ACC: 95.5% ACC: 94.6% ACC: 90.8% ACC: 49.2% ACC: 0.0%

ACC: 93.7% ACC: 92.7% ACC: 83.3% ACC: 6.8% ACC: 0.0%

Figure 6: Same setting as in Fig. 5 for the robust AT5 model. Note the larger radii ϵ for the attack.
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original 0 0.25/255 0.5/255 1/255 2/255

ACC: 65.9% ACC: 54.9% ACC: 4.9% ACC: 0.0% ACC: 0.0%

ACC: 81.2% ACC: 47.9% ACC: 21.9% ACC: 2.6% ACC: 0.0%

Figure 7: We show the perturbed images, corresponding predicted segmentation masks and average accuracy for increasing
radii. The attacks are generated on the clean model on ADE20K with APGD on LMask-CE. We additionally present (first
column) the original image and ground truth mask.

original 0 4/255 8/255 12/255 16/255

ACC: 61.3% ACC: 58.6% ACC: 29.7% ACC: 1.6% ACC: 0.0%

ACC: 84.4% ACC: 67.3% ACC: 32.8% ACC: 6.0% ACC: 0.0%

Figure 8: Same setting as in Fig. 7 for the robust AT5 model. Note the larger radii ϵ for the attack.


