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Abstract

Self-improvement via RL often fails on complex reasoning tasks because GRPO-
style post-training methods rely on the model’s initial ability to generate positive
samples. Without guided exploration, these approaches merely reinforce what
the model already knows (distribution-sharpening) rather than enabling the model
to solve problems where it initially generates no correct solutions. To unlock
reasoning ability in such settings, the model must explore new reasoning trajec-
tories beyond its current output distribution. Such exploration requires access to
sufficiently good positive samples to guide the learning.
While expert demonstrations seem like a natural solution, we find that they are often
ineffective in RL post-training. Instead, we identify two key properties of effective
positive samples: they should (1) be likely under the current policy, and (2) increase
the model’s likelihood of predicting the correct answer. Based on these insights, we
propose Self-Explanation Policy Optimization (ExPO)—a simple and modular
framework that generates such samples by conditioning on the ground-truth answer.
It can be integrated with popular RL training methods like GRPO and DPO.
ExPO enables efficient exploration and guides the model to produce reasoning
trajectories more aligned with its policy than expert-written CoTs, while ensuring
higher quality than its own (incorrect) samples. Experiments show that ExPO
improves both learning efficiency and final performance on reasoning benchmarks,
surpassing expert-demonstration-based methods in challenging settings such as
MATH level-5, where the model initially struggles the most. Code available in
https://github.com/HumainLab/ExPO_rl_reasoning_by_explanation.

1 Introduction
The development of reinforcement learning (RL)-style post-training methods has been a pivotal factor
in the advances of large language models on complex reasoning tasks. RL training optimizes model
outputs using reward signals derived from human preferences, model comparisons, or automated
verifiers [16, 25, 27, 24]. RL-style post-training encompasses a broad family of algorithms, including
reward-maximizing reinforcement learning (e.g., GRPO) [20, 1], contrastive preference optimization
methods [23, 38, 34, 39], and supervised fine-tuning on expert demonstrations or high-quality self-
generated samples [8]. Despite differences in algorithmic formulation, all these methods share a
central mechanism: increasing the likelihood of generating preferred/positive responses and reducing
that of dispreferred/negative ones.
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Figure 1: Illustration of the problem and our proposed solution ExPO. On the left, models (base model
is Qwen2.5-3B-Instruct) performance on the MATH dataset highlights the issue with GRPO-style
methods: they primarily strengthen the model’s existing capabilities rather than enabling new ones.
On the right, we present the positive and negative samples of both GRPO and our proposed ExPO
method for MATH level-4 (top) and level-5 (bottom). ExPO is more effective than GRPO in guiding
the model to learn for hard reasoning tasks.

While negative samples are typically abundant during RL post-training, positive samples are scarce,
especially in hard reasoning tasks. Thus, a key challenge remains unresolved: how to obtain effective
positive training samples in settings where the model’s initial success rate is low? In practice, positive
samples are either drawn from expert demonstrations, which are costly to obtain for complex domains
(e.g., MATH level-5 [12]), or self-generated by the model. Yet for hard problems, the model often
fails to produce any correct answers initially, leading to a pathological regime in GRPO-style training:
the advantage term vanishes, the KL term dominates, and the model regresses—an effect sometimes
described as “unlearning” [11, 43].

Existing work attempts to circumvent this by discarding training examples with all incorrect re-
sponses [37, 35], but this merely sidesteps the core issue. Fundamentally, GRPO-style methods
assume high-quality samples are likely to be sampled under the model’s current policy, but this
assumption breaks down in high-difficulty regimes (Figure 1). In other words, these methods exhibit
a distribution-sharpening bias: they sharpen the model’s output distribution around high-probability
correct responses, but struggle to guide learning on tasks where correct answers are unlikely under
the current model. This limitation reflects a broader issue noted in recent work [40]: current RL-
style post-training often reinforces existing capabilities rather than fostering fundamentally stronger
reasoning abilities beyond those of the base model.

This motivates a fundamental question:

How can we effectively guide learning for challenging reasoning tasks in
RL-style post-training, when positive samples are scarce?

Rather than focusing on suppressing negative samples that offer little benefit when the model lacks
any useful priors, we argue that progress hinges on identifying and synthesizing effective positive
samples. This paper therefore investigates two core questions:

1. How can we obtain positive samples when the base model’s initial success rate is low?
2. What properties must such samples possess to provide strong learning signals in RL-style

post-training?

Our Approach: ExPO. To answer these questions, we begin by identifying two essential properties
of ideal positive training samples:
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• In-distribution: The sample should have a high probability under the current policy to guide
learning effectively.

• Positive learning signal: The sample should increase the likelihood of the correct answer compared
to the model’s current CoT.

These criteria inform our proposed method, ExPO (Self-Explanation Policy Optimization), a modular
framework for generating and integrating positive samples via self-explanation. Specifically, ExPO
conditions the model on both the question and the final answer to generate plausible reasoning chains,
which are then used as positive samples for RL-style training.

Our key insight is that conditioning on the ground-truth answer helps the model produce in-distribution
reasoning traces that are more aligned with its current policy than expert-written CoTs, while
providing better guidance than its own incorrect completions. These self-explanations are more
elaborate and contain more correct steps than standard CoTs, serving as a form of natural process
supervision—as their relatively small deviation from standard CoTs helps the model identify where
and how to adjust its reasoning. Because they are more likely under the current policy, these self-
explanations guide the model to explore more effectively than expert CoTs—enabling the model to
learn in settings previously dismissed as unlearnable.

ExPO is broadly applicable and can be instantiated in both contrastive (e.g., DPO) and reward-based
(e.g., GRPO) frameworks. Across both domains, we demonstrate that ExPO improves sample effi-
ciency, accelerates learning, and significantly boosts performance—especially on difficult questions
where prior methods fail. Notably, ExPO not only removes the need for expert CoTs, but also
outperforms approaches that rely on them.

2 Related work

RL methods for training LLM reasoning ability. Reinforcement Learning methods are increasingly
showing promise in training for complex reasoning tasks. The simple but effective Direct Preference
Optimization (DPO) algorithm [23] is used for reasoning and other human preference alignment tasks
on a pair of positive and negative generations. There are variants to better apply DPO on reasoning
tasks, for example, the iterative DPO method [21, 29] iteratively applies DPO to make it online; the
self-training DPO method [31] iterates between SFT and DPO. On the other hand, the Group Relative
Policy Optimization (GRPO) method [25] uses only the outcome verifier to train strong reasoning
models. Without the need for process supervision signal (reasoning chain-of-thought), it is possible
to train on a large scale of tasks. We incorporate our method ExPO with DPO and GRPO to further
improve their training performance on challenging reasoning tasks.

RL methods for self-improvement without expert-labeled CoT. Given the challenge of acquiring
expert-labeled CoT for complex reasoning tasks, self-improvement through reinforcement learning
has become a key area of research. Current approaches include reinforcement learning from AI
feedback [18, 9, 33], which uses a powerful “judge” model to evaluate responses; methods with
iterative self-correction and self-refinement, where a model refines its own generation [2, 22]; and
the use of self-generated training data [41, 7]. Our work contributes to this third category, where the
model generates the reasoning steps as signals for its own training.

One important paper in this domain is STaR [41], which proposes to use self-generated chain-of-
thought during finetuning on reasoning tasks. In the absence of expert-labeled CoT, they prompt
the model to regenerate rationales for incorrect predictions given the correct answer. While STaR is
limited to SFT training and direct prompting, subsequent work proposes various methods for better
self-training with RL. Their methods include using model rules, implicit signals, or external verifiers
[13–15, 28, 42]. However, while these approaches demonstrate practical success, they do not explain
why STaR-style methods are so effective. Our paper proposes a more general theoretical analysis on
why STaR-style methods can work and sometimes even surpass methods that use expert-labeled CoT,
particularly under the RL framework.

3 Characteristics on the Ideal Positive Training Sample

We focus on settings where the model struggles to generate positive samples on its own—though
it can still produce negative ones (e.g., incorrect self-generated responses), as commonly seen in
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hard reasoning tasks. In such cases, effective positive training samples are essential to guide the
model’s exploration and reduce the sample complexity of learning. To tackle this challenge, we
first analyze what makes a positive training sample effective in the context of policy/preference
optimization for reasoning tasks (Section 3.2, 3.3). We then demonstrate how our proposed method
for generating positive samples satisfies these ideal properties (Section 4). Finally, we introduce
ExPO (self-Explanation-based Policy Optimization), along with instantiations using different base
⋆PO algorithms such as DPO and GRPO (Section 5).

3.1 Problem Setup

When training a large reasoning model, our (implicit) end goal is the following:
max

θ
E(q,a⋆)∼D,(c,a)∼πθ(·|q) [r(q, c, a, a

⋆)] , (1)

where D is a distribution of question q and ground-truth answer a⋆ pairs. The model πθ generates a
pair of CoT c and answer a, and the verifiable reward is often given by whether the answer is correct,
i.e., r(q, c, a, a⋆) = I{a = a⋆}. Though many algorithms (e.g., ⋆PO algorithms like GRPO, DPO,
PPO, etc.) have been proposed to train reasoning models with various learning objectives, implicitly,
our end goal is Eq. (1) as indicated by how we have evaluated the performance of the trained model
πθ: we evaluate them directly on their correctness on reasoning tasks instead of evaluating them on
their learning objectives. For simplicity, we denote the objective in Eq. (1) as J(θ).

To understand the effect of data on the training process across different algorithms, we consider two
complementary types of analysis: Policy improvement[26], where we use gradient-based analysis
to examine how different samples contribute to optimizing the overarching objective Eq. (1); and
Probability shifts [5], where we analyze directly how the policy πθ changes in response to different
types of training samples (and that these probability shifts are closely tied to policy improvement).

Drawing insights from both analyses, we identify two key properties that characterize ideal positive
training samples: (1) They must be in-distribution with respect to the current policy; and (2) They
must be better than negative samples in achieving the task at hand (which we will provide a more
precise definition for) and thus provide positive learning signal.

3.2 Property 1: In-distribution

Consider a generic gradient g(q̄, c̄, ā) obtained with a sample (question, CoT, answer) pair (q̄, c̄, ā).
For now, we keep the gradient definition abstract: it can be derived from any policy/preference
optimization algorithm, and the sample used for its computation can be obtained on- or off-policy
. In this setting, after taking a gradient ascent2 step with learning rate α > 0, we have θt+1 =
θt + αg(q̄, c̄, ā), and approximate the change in the objective (1) by a first-order Taylor expansion:

∆J = J(θt+1)− J(θt) ≈ α∇θJ(θ)
⊤g(q̄, c̄, ā). (2)

The key to understand the effect of training data (q̄, c̄, ā) on the policy improvement ∆J is thus to
identify the alignment between the true gradient ∇θJ(θ) and the sample gradient g(q̄, c̄, ā) used in
training. Given the definition in (1), we have the true gradient to be

∇θJ(θ) = E(q,a⋆)∼D,(c,a)∼πθ(·|q) [∇θ log πθ(c, a|q)r(q, c, a, a⋆)] , (3)
As discussed in Shao et al. [25] Appendix A, given the training data (q̄, c̄, ā), the gradient of ⋆PO
algorithms often takes the form:

g(q̄, c̄, ā) = w∇θ log πθ(c̄, ā|q̄), (4)
for some weighting w ∈ R. The weighting depends on the relative quality of the data. When a sample
is considered “positive”—that is, it performs better than other samples in the batch (e.g., it achieves a
higher objective value or is correct)—the weighting is positive (w > 0). Conversely, samples that
perform worse has the weighting to be w < 0.3

2Depending on the exact ⋆PO algorithm (minimizing or maximizing the learning objective), it can be either a
descent or ascent step.

3For certain algorithms (e.g., PPO), the weighting is applied per-token, i.e., the weighting is different for
each of the summand in ∇θ log πθ(c̄, ā|q̄) =

∑
t ∇θ log πθ(c̄t|q̄, c̄<t) + ∇θ log πθ(ā|q̄, c̄). For illustration

simplicity, we keep a fixed weighting for each token in a (response) trajectory, but the general properties we
illustrate below apply to settings with token-dependent weighting.
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By injecting the ∇θJ(θ) and g(q̄, c̄, ā) into the objective3.2 and transform the expectation into
summation, we argue that the magnitude of the policy improvement ∆J (and the alignment between
the true gradient ∇θJ(θ) and the actual used gradient g(c̄, ā, q̄)) is dominated by the term (details
are in Appendix)

wπθ(c
′, a′|q′)∥∇θ log πθ(c

′, a′|q′)∥2r(q′, c′, a′, a⋆), (5)
Thus, the training data (q̄, c̄, ā) will only be effective in improving the policy if πθ(c̄, ā|q̄) is large,
i.e., the training sample (q̄, c̄, ā) is “in-distribution” with respect to policy πθ.

We now formalize the first ideal property of a positive training sample: being in-distribution under
the current policy.
Property 1 (In-distribution). A sample (c̄, ā) is considered more in-distribution relative to another
sample (c, a) for a given question q if its probability under the current policy πθ is higher, i.e.,

πθ(c̄, ā|q) > πθ(c, a|q).

This is a relative criterion, not an absolute one, reflecting the fact that in practice, when determining
which samples in a given batch are more in-distribution, we compare how likely each sample is under
the current policy. Samples with high probability and high reward can contribute more effectively to
policy improvement. In practice, we want the training sample (q̄, c̄, ā) to have πθ(c̄, ā|q̄) sufficiently
far from zero, and not too far from maxc,a πθ(c, a|q̄). This ensures that the sample is in-distribution
enough to meaningfully contribute to policy improvement.

3.3 Property 2: Positive Learning Signal

In the above, we already see the importance of having in-distribution data: gradients for samples
(q̄, c̄, ā) (with positive rewards) where πθ(c̄, ā|q̄) ≫ 0 enable more effective policy improvement. In
the following analysis, we examine which in-distribution samples should be given positive rewards
and receive positive learning signals to increase their probability.

Consider a batch containing two training samples for the same question: {(q, c1, a1), (q, c2, a2)}.
When a1 is correct and a2 is not, it is clear that the correct one should be preferred, i.e., (q, c1, a1) ≻
(q, c2, a2), and thus receive the positive reward to increase its probability. However, in settings where
both a1 and a2 are incorrect (as is often the case in model training for challenging reasoning tasks),
which sample should be treated as the positive/preferred one to increase the probability?

We argue that the notion of preference between responses in general should be defined in terms of
their ability to increase the likelihood of the correct answer a⋆. Specifically, we propose the following
criterion:
Property 2 (Positive learning signal). A sample (q, c1, a1) has a positive learning signal compared
to (q, c2, a2), and thus should be preferred, i.e., (q, c1, a1) ≻ (q, c2, a2), if and only if

πθ(a
⋆|q, c1) > πθ(a

⋆|q, c2).

We note that this property is also defined in a relative sense: it allows us to compare two chain-of-
thoughts, but does not assign absolute quality to any individual sample. In the specific case of a batch
containing two samples, if (q, c1, a1) carries a positive learning signal relative to (q, c2, a2), then
training algorithms should assign the weighting w for the gradient g(q, c1, a1) to be positive (hence,
positive gradient), and the weighting w for the gradient g(q, c2, a2) to be negative (4).

Why should we increase the probability of (q, c1, a1) and decrease that of (q, c2, a2), if (q, c1, a1)
possess a positive learning signal as defined in Property 2? For a fixed question and ground truth
answer pair (q, a⋆), consider our objective defined in (1):

J(θ; q, a⋆) =
∑

a,c πθ(c|q)πθ(a|q, c) I{a = a⋆} =
∑

c πθ(c|q)πθ(a
⋆|q, c). (6)

This objective reflects the total probability mass assigned to generating the correct answer a⋆ through
all reasoning paths c. Now, if πθ(a

⋆|q, c1) > πθ(a
⋆|q, c2), then increasing πθ(c1|q) and decreasing

πθ(c2|q) would increase the overall objective J(θ; q, a⋆). Therefore, adjusting the probabilities in this
way directly improves the model’s ability to generate the correct answer—justifying the preference
defined in the property. In Appendix, we provide a detailed analysis of how increasing or decreasing
probabilities under a softmax policy influences others (based on their relative value), showing that
choosing the wrong samples to increase/decrease probability can lead to unintended effects.
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4 Positive Training Sample Generation through Self-Explanation

As discussed, the ideal positive training samples should satisfy two properties: Property 1 (in-
distribution), which ensures the samples to have relatively high probability under the current training
policy πθ, and Property 2 (positive learning signal), which specifies that within a batch, the sample
whose CoT makes the ground truth answer more probable—relative to the CoTs of other samples—
should receive a positive gradient, i.e., its probability should be up-weighed.

In scenarios where self-generated responses (CoT, answer pairs) perform poorly (e.g., on challenging
tasks where the model has not yet learned to perform well), a surprisingly simple method can yield
positive samples that satisfy the in-distribution and positive learning signal properties—generate a
self-explanation conditioned on the correct answer:

c̃ ∼ πθ(cot |q, a⋆), (7)

and use (q, c̃, a⋆) as a positive sample. This idea resembles the sampling strategy proposed in
STAR [41]4. It is worth noting that the criteria for ideal positive training samples (Property 1, 2)
are more general than this specific sampling approach. As long as a sample is probable under the
training policy and leads towards the correct answer more likely on average than the self-generated
CoT, then the sample is ideal for providing positive learning signals. For example, beyond generating
the sample conditioned on the answer, one can generate it by conditioning on a partial expert CoT or
with additional hints.

4.1 Self-Explanation: Natural Guidance for RL Post-training

We begin by showing an example of self-explanation and provide some intuition on why self-
explanations are suitable positive training samples in RL post-training. Example 1 shows a self-
explanation for a hard math problem. For this problem, conditioning the model on the correct
answer enables it to successfully identify the pivotal step and guide the reasoning process correctly.
Compared to the model’s standard CoT, the self-explanation often contains more correct reasoning
steps. Besides, the self-explanation’s phrasing is more consistent with the model’s own language,
offering a clearer contrast to its incorrect responses.

Intuitively, self-explanation reduces the task difficulty by providing the correct answer as a known
condition, shifting the challenge from open-ended problem-solving to generating conditional expla-
nations. Because of this, the self-generated explanation has better quality while having a relatively
small deviation from the incorrect standard CoT. These properties seem well-suited for RL-style
training, which, in our understanding, is more geared toward shaping the existing behavior of the
base model rather than instilling entirely new knowledge. Therefore, self-explanation helps the model
identify where and how to adjust its reasoning, functioning as an effective and natural form of process
supervision.

Example 1: Standard CoT vs self-explanation for a question from MATH

Question: A Conditional probability question... Given that the side you see is red, what is
the probability that the other side is red?
Standard CoT: ✓[Correct step 1] Step 1:
Count... ✗[Redundant step 2] Step 2: Deter-
mine... ✗[Wrong computation in step 3] Step
3: Calculate...

Self-Explanation: ✓[Correct step 1] To
solve this problem... ✓[Correct step 2] Now,
we need to find... ✓[Explain the answer
again] The answer is...

In fact, if the base model still fails to generate better reasoning traces with the guidance given by
the correct answer, the problem is likely too difficult for the RL post-training approach. Compared
to supervised fine-tuning (SFT), RL training is not as efficient at teaching new knowledge to the
model. The objective of SFT is to maximize the probability of the target response, so that the
knowledge in the response can be memorized. In contrast, the RL post-training objective is to make
the positive/chosen response more likely than the negative/rejected one, which provides a weaker
learning signal for memorizing complex, response-relevant new knowledge. Besides, the KL term in
the RL post-training objective suggests that the trained model always stays close to the base model.

4We arrived at this sampling strategy independently, and only later recognized its resemblance to prior work.
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Therefore, if the model is unable to articulate improved reasoning even when the correct answer
is known, it is unlikely that reward-driven learning alone will yield meaningful gains in reasoning
capability—at least not in an efficient manner.

4.2 Comparing Self-Explanation with Expert CoT and Standard CoT

Method In-distribution Positive Learning Signal
Ours (self-explanation) ✓ ✓
Expert CoT ✗ ✓
Standard CoT ✓ ✗

Table 1: Comparison of different train-
ing data with respect to the ideal proper-
ties. Our ExPO method verifies both.

To more formally understand why self-explanations (7)
serve as ideal positive samples, we compare them—both
empirically and analytically—with two other types of data:
the expert CoT cE and the original self-generated CoT
c. Self-generated explanations satisfy both ideal prop-
erties (Table 1). In contrast, expert CoT lacks Property
1 and, empirically, provides less effective guidance for
model learning (Section 6). Compared to standard CoT,
self-explanations provide positive learning signals. We
elaborate on these findings below.

First, regarding the in-distribution Property 1, we observe that, compared to the expert CoT cE , the
self-generated explanation c̃ is more likely to be generated under the current policy and thus more
in-distribution for training. As shown in Figure 2, the self-generated explanation has a significantly
lower negative log-likelihood than the expert CoT. Surprisingly—at least empirically—training with
expert CoT can sometimes result in performance worse than the performance of models trained using
self-generated explanations (as shown in Section 6). This observation aligns with our gradient-based
analysis in Section 3.1. In general, the distribution of c̃ ∼ π(·|q, a⋆) is close to the original CoT
distribution c ∼ π(·|q), since the prompts used to generate these two distributions differ by only a
small number of tokens, which describe the ground-truth answer a⋆.

MATH GSM8K

0.2

0.4

0.6

0.8

win rate

MATH-500

1

MATH GSM8K

0.2

0.4

0.6
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-logp
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1
self-explanation
expert CoT

self-explanation
direct CoT

Figure 2: Left: Negative log-likelihood
of the self-explanation c̃ and expert CoT.
Right: Winrate labelled by GPT-4o in
terms the number of correct steps of
the self-explanation c̃ and self-generated
CoT c. Both on the test split of each
dataset using Qwen2.5 3B-Instruct.

Second, for the positive learning signal Property 2, as
illustrated in Example 1 above—and consistently observed
across the self-explanation data we have generated—self-
generated explanations tend to be more detailed and con-
tain more correct reasoning steps than the original self-
generated CoT. This observation is further supported em-
pirically by prompting GPT-4o to evaluate the relative
quality of c̃ and c—GPT-4o consistently rated c̃ signifi-
cantly higher in quality (Figure 2).

This intuition is also formalized in the following lemma:

Lemma 1. On average, the self-generated explanation is
more likely to lead to the ground-truth answer than the
original self-generated chain-of-thought. That is,

Ec̃∼πθ(c̃|q,a⋆) [πθ(a
⋆|q, c̃)] ≥ Ec∼πθ(c|q) [πθ(a

⋆|q, c)] .

To summarize, the self-generated explanation c̃ outperforms the expert CoT cE with respect to the
in-distribution property (though it is weaker in terms of the positive learning signal property), while
it surpasses the self-generated CoT c in terms of the positive learning signal property but not the
in-distribution one. Thus, our proposed positive sample—the self-generated explanation c̃—achieves
a balance between these two desirable properties. In the following, we describe how to leverage these
generated positive samples within RL-type training for reasoning tasks.

5 ExPO and its instantiations on DPO and GRPO

Building on our method for generating in-distribution positive samples (Section 4) and the theoretical
foundations established in Section 3.1, we instantiate our approach within two widely used poli-
cy/preference optimization frameworks: Direct Preference Optimization (DPO) and Group Relative
Policy Optimization (GRPO). This leads to two practical algorithms ExP-DPO and ExP-GRPO that
integrate explanation-based data augmentation into the learning pipeline.
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5.1 ExP-DPO

We design and evaluate two variants of ExP-DPO: an offline and an iteratively online version. In the
offline DPO setting, all explanations c̃ and responses c− are generated by the initial policy at the
beginning of the training, i.e. c̃+ ∼ πref(·|q, a⋆)and c− ∼ πref(·|q). In the online DPO setting, c̃ is
iteratively generated from the up-to-date policy.

Observation 1. In the offline setting, we implement ExP-DPO using either the expert-provided
CoT cE or the model-generated explanation c̃ as the winning response (see Section 6). However,
training with cE often results in deceptively low loss values, yet fails to yield strong downstream
performance. This occurs because cE typically has a much lower log-probability compared to the
self-generated CoT (the losing response). As a result, during training, even a minor increase in
the expert’s log-probability can suffice to classify it as the correct answer without meaningfully
increasing the expert CoT’s log-probability relative to that of the self-generated one.

Observation 2. While being effective at the beginning, the offline scheme eventually suffers from
distributional drift: as the policy πθ updates, the fixed explanation c̃ becomes increasingly out-of-
distribution, violating the in-distribution criterion outlined in Property 1.

These observations correspond with our theoretical analysis: out-of-distribution positive samples can
yield ineffective or even detrimental learning signals. To address this, we introduce the iteratively
online ExP-DPO, in which a fresh explanation c̃+ is regenerated after updating πi

θ over a large enough
batch of data, i.e. c̃+ ∼ πi

θ(·|q, a⋆). This formulation ensures that the winning sample remains
in-distribution of the evolving model, thereby providing a consistently strong learning signal.

5.2 ExP-GRPO

The Group Relative Policy Optimization (GRPO) method derives its learning signal by sampling
responses from the policy model itself. However, this approach has a critical limitation: when all
sampled responses are incorrect, the model receives no effective gradient signal. In such cases,
training degenerates into minimizing the KL divergence term alone, which fails to guide the model
toward better performance. This issue is particularly acute when the sampled questions are too
difficult for the model to generate valid intermediate reasoning steps. Prior works have circumvented
this problem by removing the KL divergence term or excluding such challenging examples from
training altogether [37, 19, 32], but they stop short of addressing the fundamental question—how can
a model learn to solve problems it currently fails at? Our method provides a principled mechanism to
overcome this limitation via the generated self-explanation c̃ and enables the model to explore and
learn even when initial sampled responses are incorrect, thereby unlocking the potential of the model
to improve on previously unsolvable instances.

In our design, we address such issues by introducing an ExP-SFT term with a scaling coefficient
β. We fix β = 0.04 in all reported experiments and an ablation study to justify this choice across
multiple β values on the full MATH training set is in Appendix. Specifically, we use the initially
generated c̃ as the CoT that leads to the correct answer. Then, we reconstruct the GRPO objective as:

JGRPO(θ) = E (q,a⋆)∼D,

{oi}G
i=1∼πθold (·|q)

c̃∼πθ(·|q,a⋆)

[
1
G

∑G
i=1

1
|oi|
∑|oi|

t=1 min
(
ri,t(θ)Âi,t, clip(ri,t(θ), 1− ε, 1 + ε)Âi,t

)
+ β log πθ(c̃, a

⋆|q)

]

Key Observations. In Section 6, we empirically demonstrate that the ExP-SFT term directly
addresses the core challenge of missing learning signals in difficult reasoning settings—where correct
responses are exceedingly rare under the initial policy. By injecting in-distribution, task-relevant
supervision through c̃, our method activates the trial-and-error learning loop that is otherwise stalled,
enabling the model to make meaningful progress even on instances previously considered unlearnable.
Moreover, we show that the addition of the ExP-SFT term significantly enhances sample efficiency
and allows the policy to reach a higher performance ceiling than baselines without such augmentation.
Further analysis reveals that the majority of the performance gains originate from the harder questions
in the test set. This suggests that the reasoning capabilities acquired via the ExP-SFT term not only
improve training efficiency but also improve models’ reasoning capability on more challenging,
unseen instances.
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Figure 3: Accuracy on the level-5 questions from MATH test set (left 1, 2) and on the whole test set
(right 3, 4) for Qwen2.5-3B-Instruct and LLaMA-3.2-3B-Instruct across global training steps. ExP-
GRPO consistently outperforms both GRPO and GRPO SFT-GT-CoT, the latter uses supervised
fine-tuning on expert CoT cE . The results show that ExP-GRPO provides more effective and
generalizable learning signals, leading to improved sample efficiency and higher overall performance.

We can interpret the ExP-SFT term as a form of natural process supervision—it increases the
likelihood of generating self-explanations c̃ while decreasing that of the self-generated CoTs c. The
relatively small deviation between these two reasoning traces helps the model pinpoint where and
how to adjust. This mechanism is particularly valuable for challenging tasks, where the model may
initially fail. In such cases, it is crucial to provide effective positive learning signals that introduce
new reasoning traces or knowledge. Compared to GRPO, ExP-SFT provides these signals and guides
the model in the right direction, leading to greater sample efficiency and performance ceiling.

6 Experiments

We present empirical results demonstrating the effectiveness of ExPO by providing strong on-policy
learning signals. We begin by evaluating our method in the context of ExP-DPO. The detailed
experimental results and analysis are in Appendix D.3. We then turn to a more challenging scenario:
GRPO [25] training when the initial policy struggles to generate meaningful responses and fails to
produce informative learning signals. In this regime, our method ExP-GRPO is especially valuable:
it jump-starts the learning process by guiding the policy early on, thereby igniting the trial-and-error
loop that is critical for sustained improvements in reasoning.

Models and training settings. We conduct preference optimization experiments using two families
of models: LLaMA-3.2 [6] and Qwen-2.5 [36]. Training and evaluation are performed on two widely
used mathematical reasoning benchmarks: MATH [12] and GSM8K [3]. The self-explanation of
ExP-GRPO training is published 5. Other experimental details are in Appendix D.1.

6.1 Results on ExP-GRPO

To create scenarios where learning signals are hard to obtain, we picked the difficulty level-5 questions
from the MATH dataset. In GRPO training, without extra guidance, these questions are hard for the
initial policy to obtain any effective learning signal. In addition, obtaining expert CoT label for hard
questions like these are expensive. However, with the help of learning signals from ExPO, the initial
policy acquired effective learning signals and soon is able to further improve its performance via
online sampling as shown in Figure 3. These results indicate our method’s effectiveness on providing
helpful learning signals on reasoning training set where learning signals are rare.

Further more, in training settings, using the whole MATH training set, that feature a mixture of easy
and hard questions—each associated with differing availability of learning signals—we find that
augmenting GRPO with the ExP-SFT term markedly improves both sample efficiency and the final
performance ceiling, as shown in Figure 3 (see Appendix for performance on more datasets). This
improvement stems from ExP-SFT’s ability to consistently inject informative, on-policy learning
signals even in regimes where standard policy samples fail to provide meaningful supervision. To
better understand the source of these gains, we conduct a breakdown analysis by question difficulty.
As summarized in Table 2, we observe that the majority of performance improvements arise from
the hardest subset of questions in the test set. This suggests that the reasoning capabilities acquired

5https://huggingface.co/datasets/humainlab/MATH-self-explanation
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Level 1 Level 2 Level 3 Level 4 Level 5
# Test Samples 437 894 1131 1214 1324
ExP-GRPO pass@4 96% 91% 86% 76%↑ 23%↑
GRPO SFT-GT-CoT pass@4 95% 89% 83% 65% 12%
GRPO pass@4 91% 84% 77% 39% 2%
Base pass@64 97% 88% 75% 32% 4%
Base pass@128 97% 93% 80% 42% 9%

Table 2: Accuracy of different methods (base model is Qwen2.5-3B-Instruct) across difficulty levels
on the MATH test set. While all methods perform comparably on easier questions, the performance
gap widens dramatically on harder levels. Especially on level-4 and level-5 questions, ExP-GRPO
yields substantial gains while the standard GRPO fails to learn. Moreover, when evaluated under
large pass@k settings—commonly used to reveal the full reasoning capacity of LLMs—ExP-GRPO
exhibits a substantially broader coverage on difficult questions, effectively harnessing and expanding
the model’s latent problem-solving ability beyond the reach of conventional RL methods.

via the ExP-SFT signal not only facilitate more effective policy learning during training, but also
generalize robustly to challenging, previously unsolvable instances at test time.

7 Discussion and Future Work

Discussion of broader application. While our experiments focus on math reasoning, ExPO’s core
idea of bootstrapping learning with self-generated, in-distribution samples conditioned on verifiable
outcomes applies broadly. For example, in code generation (e.g., Codeforces), correct outputs can be
verified via test cases. Given the desired output, the model can be prompted to generate rationale
(e.g., pseudocode), enabling ExPO to provide effective training signals. In common-sense reasoning
tasks where answers are deterministic, ExPO can generate the multi-step reasoning required to reach
the correct answer. More generally, any reasoning task with verifiable rewards (such as physics
or scientific QA) can benefit from this approach. Ultimately, ExPO demonstrates that a model
can effectively teach itself without expert-labeled chain-of-thought, paving the way for enhancing
language models’ complex reasoning ability.

Discussoin of the exploratory role of the advantage-weighted objective. ExPO method uses
the relative quality as learning signals of the self-generated explanation and direct chain-of-thought.
While Lemma 2 guarantees that the better-but-may-be-imperfect self-explanations often provide
partial or heuristic reasoning paths that still guides the model to learn, we want to further discuss why
the imperfect CoTs will not make the model collapse. On the one hand, our method does not collapse
to blindly imitating these imperfect CoTs. The ExPO training objective includes a reinforcement
term with an advantage-weighted update, which continues to explore around these initial CoTs. This
ensures that the model does not simply memorize the self-generated explanation c̃, but instead uses it
as an anchor for exploration, gradually refining the reasoning policy through trial-and-error. On the
other hand, we could employ an annealing schedule for the β coefficient: gradually decrease β as
training progresses. This would make the model rely less on the SFT term in later stages, effectively
"fine-tuning" its bootstrapped knowledge during warm-up while reducing the risk of locking in any
emergent hallucinations.

Looking ahead, we see two critical areas for enabling complex reasoning capabilities through self-
improvement: refining algorithmic approaches and optimizing data curation strategies. From an
algorithmic perspective, while RL-based training methods are currently seen as a promising direction
for achieving strong reasoning abilities, further investigation into their limitations and underlying
mechanisms is necessary. For instance, the distribution-sharpening phenomenon observed in GRPO
highlights new challenges that need to be addressed for developing truly capable models. From a data
perspective, our findings unexpectedly show that expert-generated chain-of-thought examples are
not always optimal. This suggests that simply increasing the quality of data does not automatically
lead to better performance. Therefore, future efforts should go beyond the focus on expert-annotated
high-quality data. Instead, tailoring data to the model’s current capabilities and designing learning
curricula will be crucial for continued model development.
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A Details of Property Derivations

Details of injecting the ∇θJ(θ) and g(q̄, c̄, ā) into the objective3.2 and transforming the expectation
into summation. From Equation (3), we have

∇θJ(θ)
⊤g(q̄, c̄, ā) =E(q,a⋆)∼D,(c,a)∼πθ(·|q)

[
g(q̄, c̄, ā)⊤∇θ log πθ(c, a|q)r(q, c, a, a⋆)

]
=
∑
q,c,a

P(q)πθ(c, a|q)g(q̄, c̄, ā)⊤∇θ log πθ(c, a|q)r(q, c, a, a⋆). (8)

From (8), we obtain that

∇θJ(θ)
⊤g(q̄, c̄, ā) = wP(q̄)πθ(c̄, ā|q̄)∥∇θ log πθ(c̄, ā|q̄)∥2r(q̄, c̄, ā, a⋆)︸ ︷︷ ︸

T1: when (q,c,a)=(q̄,c̄,ā)

+
∑

q,c,a̸=(q̄,c̄,ā)

wP(q)πθ(c, a|q)∇θ log πθ(c̄, ā|q̄)⊤∇θ log πθ(c, a|q)r(q, c, a, a⋆)︸ ︷︷ ︸
T2: when (q,c,a)̸=(q̄,c̄,ā)

. (9)

argue that the magnitude of the policy improvement ∆J (and the alignment between the true gradient
∇θJ(θ) and the actual used gradient g(c̄, ā, q̄)) is dominated by the term T1.

To be more precise, we characterize when T2 (the sum of cross terms
⟨∇θ log πθ(c̄, ā|q̄),∇θ log πθ(c, a|q)⟩ in (9)) is negligible. Intuitively, these gradients lie in
extremely high-dimensional spaces (e.g., on the order of billions of dimensions when performing full
parameter updates, even on relatively small reasoning models). As a result, unless the questions
and corresponding CoTs are highly similar, it is unlikely that the cross-term gradient inner products
contribute significantly. In a simplified setting where the logits of the softmax policy πθ have
orthogonal gradients with equal norm, we show that for training samples to which the model assigns
lower probability, i.e., πθ(c̄, ā|q̄) < 1

2 , the cross-term gradient inner products decrease as the sample
becomes less likely. We formalize this below.

Lemma 2. Let T = {(qj , cj , aj)}Lj=1 be a finite set, and the policy being a softmax policy over this set,
i.e., πj := πθ(cj , aj |qj) = exp(zj)/

∑L
l=1 exp(zl) where zj := fθ(qj , cj , aj). Assume the following

conditions hold: (1) For all j ̸= l, the gradients of the logits are orthogonal: ⟨∇θzj ,∇θzl⟩ = 0. (2)
All logits have the same gradient norm: ∥∇θzj∥2 = C > 0 for all j ∈ [L]. Then for any pair j ̸= j′,
the cross-term gradient inner product ⟨∇θ log πj ,∇θ log πj′⟩ is strictly decreasing in πj if and only
if πj <

1
2 .

The above lemma implies that when the sample (q̄, c̄, ā) is assigned low probability under the
current policy (i.e., when πθ(c̄, ā|q̄) is small), the cross-term contributions in T2 become negligible.
Simultaneously, the leading term T1 in (9) is also small in magnitude, as it scales proportionally with
πθ(c̄, ā|q̄). As a result, such samples contribute minimally to overall policy improvement.

In summary, the policy improvement ∆J will be large on a gradient step with training data (q̄, c̄, ā)
when πθ(c̄, ā|q̄) is high—that is, when the sample is likely under the current policy—and when the
corresponding reward is also high.

B Proofs

Proof of Lemma 2. Let zj = fθ(qj , cj , aj) and define the log-probability gradient as:

∇θ log πj = ∇θzj −
L∑

l=1

πl∇θzl =: ∇θzj − z̄.

Then the inner product becomes:

⟨∇θ log πj ,∇θ log πj′⟩ = ⟨∇θzj − z̄,∇θzj′ − z̄⟩.
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Expanding the above and using the assumptions, we get:

⟨∇θ log πj ,∇θ log πj′⟩ = ⟨∇θzj ,∇θzj′⟩ −
∑
l

πl⟨∇θzj ,∇θzl⟩ −
∑
l

πl⟨∇θzj′ ,∇θzl⟩

+
∑
l,m

πlπm⟨∇θzl,∇θzm⟩

= 0− πjC − πj′C +

L∑
l=1

π2
l C

= C

(
−πj − πj′ +

L∑
l=1

π2
l

)
.

To study the monotonicity of the gradient inner product in πj , we check the gradient:

d

dπj
⟨∇θ log πj ,∇θ log πj′⟩ = −C + C · d

dπj

(∑
l

π2
l

)
= −C + 2Cπj = C(2πj − 1).

Therefore, the inner product decreases in πj if and only if πj <
1
2 .

Proof of Lemma 1. We begin by expanding the expectation under the left hand side of the inequality:

Ec̃∼πθ(c̃|q,a∗) [πθ(a
⋆ | c̃, q)] =

∑
c̃

πθ(c̃ | q, a⋆) · πθ(a
⋆ | c̃, q)

=
∑
c̃

πθ(a
⋆ | c̃, q) · πθ(c̃ | q)
πθ(a⋆ | q)

· πθ(a
⋆ | c̃, q) = 1

πθ(a⋆ | q)
∑
c̃

πθ(c̃ | q) · (πθ(a
⋆ | c̃, q))2

=
1

πθ(a⋆ | q)
Ec∼πθ(c|q)

[
(πθ(a

⋆ | c, q))2
]
,

where the second equality holds because of Bayes’ rule. Note that after applying the Bayes rule,
πθ(a

⋆ | c̃, q) cannot be directly generated by the language model, but it is a general distribution (the
reverse conditional).

Recall that the right hand side of the inequality is:

Ec∼πθ(c|q) [πθ(a
⋆ | c, q)] =

∑
c

πθ(c | q)πθ(a
⋆ | c, q) = πθ(a

⋆ | q).

Thus, the inequality we want to prove is reduced to comparing between:

E[X2]

E[X]
vs. E[X] where X = πθ(a

⋆ | c, q)

By Jensen’s inequality (since the square function x2 is convex), we have:

E[X2] ≥ (E[X])
2 ⇒ E[X2]

E[X]
≥ E[X],

which completes the proof.

C More discussion on probability shifts

During RL-type training like GRPO and iterative DPO, negative samples are on-policy and have
relatively high probability under the current policy. During training, the probability of these samples
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are pushed down, while the probability of the positive samples will be pushed up. We provide a
discussion on how pushing up samples with different probability (under the current policy) influences
the change of other sample’s probabilities when the policy is a softmax of independent logits. The
key takeaways are: (1) Pushing up samples that have low probability under the current policy will not
make minimal changes to other samples’ probabilities (thus the in-distribution property is needed for
effective training). (2) Pushing up and down equal amounts have different effects: the magnitude of
changes on other logits depend on the magnitude of the original logits.

To be more specific, let πk = ezk∑
m ezm be a softmax distribution over logits {zk}nk=1, and define a

perturbation:

z′i = zi +∆up, z′j = zj −∆down, z′k = zk for k ̸= i, j.

Let α = e∆up , β = e−∆down , and define:

Z =
∑
m

ezm , Z ′ = αezi + βezj +
∑
k ̸=i,j

ezk .

Then the change in softmax probabilities ∆πk = π′
k − πk is given by:

∆πi = ezi
(

α

Z ′ −
1

Z

)
,

∆πj = ezj
(

β

Z ′ −
1

Z

)
,

∆πk = ezk
(

1

Z ′ −
1

Z

)
for k ̸= i, j.

First, note that α > 1 and β < 1. Thus, ∆πi > 0 and ∆πj < 0. The change of other logits are
relative to their rank: ∆πk is proportional to ezk .

Thus, we have:

• Increasing zk (pushing up sample k) increases πk and decreases πi for all i ̸= k.
• Decreasing zk (pushing down sample k) decreases πk and increases πi for all i ̸= k.
• The magnitude of these changes is proportional to the product of the original probabilities, implying

that updates to high-probability samples have larger impact than those to low-probability candidates.
• The effect of only pushing up/down sample probabilities differs from simultaneously pushing

up positive samples and pushing down negative ones. Relying solely on negative gradients (i.e.,
providing signals to decrease the probability of certain samples) will not be effective unless the
model already assigns high probability to the correct outputs. This approach is especially ineffective
for problems where the model is only partially correct. Conversely, only pushing probabilities up
of certain samples can lead to overly aggressive updates. Therefore, it’s important to include both
appropriate positive and negative samples.

D Additional Result

D.1 Detailed Experimental settings

In the ExP-DPO experiments, we train LLaMA-3.2-3B-instruct and QWEN-2.5-3B-instruct on a
single NVIDIA H100 GPU. The optimizer is AdamW with cosine learning rate scheduler and 0.05
warmup ratio, where the maximum learning rate is 5e-7. The training batch size is 16. The basic
code frameworks are the trl library [30] https://github.com/huggingface/trl and openr1
[4] https://github.com/huggingface/open-r1. The evaluation is performed under the zero-
shot prompting, with the simplest prompt for “think step by step” and the answer format. We run
the evaluation for 4 passes and calculate the match via MathVerify [17] https://github.com/
huggingface/Math-Verify.

Similarly, in the ExP-GRPO experiments, we fine-tune LLaMA-3.2-3B-instruct and QWEN-2.5-
3B-instruct based on the X-R1 [10] https://github.com/dhcode-cpp/X-R1 GRPO trainer on 4
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NVIDIA A100 GPUs (80GB each). Training is performed for 3 epochs with a per-device batch size of
3 and a gradient accumulation step size of 8. We adopt the AdamW optimizer with a cosine learning
rate schedule, setting the maximum learning rate to 3e-6 and a warmup ratio of 0.1. Mixed-precision
training is enabled via bfloat16, and flash attention v2 is used to accelerate attention computation.
Gradient checkpointing is applied to reduce memory usage, and training is conducted using the
accelerate framework with ZeRO Stage 3 configuration. For both experiments, during training, the
generation temperature is set to 0.9, while for evaluation it is set to 0.7.

D.2 Outputs at Initialization

The expert-annotated CoT is mathematically dense and concise, demonstrating the solution by
expanding and cancelling terms in a single step. In contrast, the self-explanation is more pedagogical
and compositional; it first defines the core concept, then explicitly states the key logical insight
(9! = 9 × 8!), and finally performs the simplified calculation. This decomposed, principle-first
approach provides a better in-distribution learning signal for RL training.

Example of expert-annotated CoT vs explanation for the question from MATH

Question:
Compute without using a calculator: 9!/8!

Expert-annotated CoT:
9!/8! = 9×8×···×1

8×7×···×1 = 9

Self-explanation:
The expression 9!/8! can be simplified by recognizing that the factorial function n! (n
factorial) is defined as the product of all positive integers up to n. So 9! = 9× 8× · · · × 1
and 8! = 8× 7× · · · × 1. Therefore, 9! = 9× 8!. When we divide 9! by 8!, we get:

9!

8!
=

9× 8!

8!
= 9

Hence, 9!/8! = 9 .

We also provide the full example of direct CoT vs explanation for the question from MATH in
Subsection 4.1.

Full example of direct CoT vs explanation for the question from MATH

Question:
A box contains six cards. Three of the cards are black on both sides, one card is black on
one side and red on the other, and two of the cards are red on both sides. You pick a card
uniformly at random from the box and look at a random side. Given that the side you see
is red, what is the probability that the other side is red? Express your answer as a common
fraction.
Direct CoT:
To solve this problem, we’ll break it down into steps.
Step 1: Count the total number of sides that are red. - There are 2 cards that are red on both
sides, so each has 2 red sides. That’s 2 * 2 = 4 red sides. - There is 1 card that is black on
one side and red on the other, so it has 1 red side. - Total red sides = 4 + 1 = 5
Step 2: Determine the total number of sides in the box. - There are 3 cards that are black on
both sides, so each has 2 sides. That’s 3 * 2 = 6 sides. - There are 2 cards that are red on both
sides, so each has 2 sides. That’s 2 * 2 = 4 sides. - Total sides = 6 + 4 = 10
Step 3: Calculate the probability that the other side is red given that the side you see is red. -
There are 5 red sides in total, and 5 of those are from cards that are red on both sides. - Since
we see a red side, we have 5 options for the side we see, and 5 of those are from cards that
are red on both sides. - The probability that the other side is red given that the side you see
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is red is the number of red sides from cards that are red on both sides divided by the total
number of red sides. - Probability = Number of red sides from cards that are red on both
sides / Total red sides = 5 / 5 = 1
Therefore, the probability that the other side is red given that the side you see is red is 1 .
Explanation:
To solve this problem, we first need to find the total number of red sides on all the cards in
the box.
There are two cards that are red on both sides, so they have 4 red sides in total. There is one
card that is black on one side and red on the other, so it has 1 red side.
In total, there are 4 + 1 = 5 red sides.
Now, we need to find the probability that the other side is red given that the side we see is
red. This is a conditional probability problem.
There are 5 red sides out of a total of 6 sides in the box.
So, the probability that we see a red side is 5/6.
If we see a red side, it could be from the 4 red sides of the cards that are red on both sides, or
from the 1 red side of the card that is black on one side and red on the other.
The 4 red sides of the cards that are red on both sides are out of the 5 red sides we see.
So, the probability that the other side is red, given that we see a red side, is 4/5.
The answer is based on the idea of conditional probability. We know that there are 5 red
sides out of a total of 6 sides in the box. When we see a red side, it could be from 4 different
cards, each with 2 red sides, or from 1 card with 1 red side. Therefore, the probability that
the other side is red, given that we see a red side, is 4 out of the 5 red sides.
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D.3 Results for ExP-DPO

Offline
LLaMA3.2-3B-Instruct

Online
LLaMA3.2-3B-Instruct

Offline
Qwen2.5-3B-Instruct

Online
Qwen2.5-3B-Instruct

Version c̃+ cE+
c̃+ cE+

c̃+ cE+
c̃+ cE+

MATH 45.7 38.7 50.2 53.6 54.3 43.7 60.4 49.3
GSM8K 71.2 63.7 81.5 74.4 80.1 69.6 85.4 76.3

Table 3: Pass@4 performance on MATH and GSM8K with models trained with ExP-DPO c̃+ and
expert CoT cE+. ExP-DPO consistently outperformed cE trained policy in both online and offline
settings.

We evaluate two variants of ExP-DPO: an offline and an iteratively updated online version. For offline,
we first compare the impact of using expert CoTs (cE) versus self-generated explanations (c̃) as the
preferred response. As shown in Table 3, training with cE leads to only marginal improvements in
downstream performance. This observation aligns with our earlier analysis: although expert CoTs are
semantically correct, they often lie in low-probability regions under the current policy πθ, violating
the in-distribution criterion (Property 1). Consequently, they induce misaligned gradient signals.
Moreover, from visualization of its loss (see Appendix for details), we observe that even minimal
increases in the log-probability of cE are sufficient to yield a near-zero loss, creating the illusion of
rapid convergence. Therefore, we transition to the online ExP-DPO setting, where the preferred
explanation c̃ is regenerated periodically from the current policy. These improvements underscore
the importance of maintaining distributional alignment between positive training samples and the
evolving policy. By continuously adapting c̃ to reflect the model’s current beliefs, ExP-DPO ensures
that learning remains anchored in the regions where the model can most effectively improve, thereby
enabling robust optimization without relying on external expert demonstrations.

Figure 4: We compare ExP-DPO performance on the MATH dataset across training steps for two base
models: Qwen2.5-3B-Instruct and Llama3.2-3B-Instruct. Online ExP-DPO consistently outperforms
its offline counterpart, confirming that updating the explanation-based positive samples improves
learning efficiency and final accuracy. Qwen2.5 shows higher sample efficiency and peak accuracy
than Llama3.2 under both settings.
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Figure 5: ExP-DPO performance on the GSM8K dataset for Qwen2.5-3B-Instruct and Llama3.2-3B-
Instruct models. Online ExP-DPO achieves stronger performance and faster convergence compared
to the offline setting. Qwen2.5 benefits more from the online explanation updates, attaining over 85%
accuracy, while Llama3.2 saturates earlier.

D.4 Deceptive Loss Dynamics in DPO Training

Figure 6: Training curves on the MATH dataset using LLaMA-3.2-3B-Instruct. We compare standard
DPO (with ground-truth answer as the preferred response) against our ExP-DPO method. The solid
lines denote model performance (PASS@4 accuracy), while the dashed lines represent the loss. We
observe that under standard DPO, the training loss rapidly decreases to a low value; however, this
does not translate into improved downstream performance, revealing a phenomenon of deceptively
low loss. In contrast, ExP-DPO exhibits a smoother loss decay and leads to significantly higher task
accuracy. This demonstrates that ExP-DPO provides a more reliable learning signal and avoids the
overfitting or shortcut behaviors often associated with poorly aligned positive preference supervision.

D.5 Choice of β for ExP-GRPO

In our implementation of ExP-GRPO, the guidance term of self-explanations on the ground-truth
answer is incorporated into the overall objective via a scaling coefficient beta: β log πθ(c̃, a

⋆|q) This
term is designed to provide an additional learning signal when the model’s own sampled responses
fail to yield effective gradients, particularly in challenging reasoning settings. We fix β = 0.04 in all
reported experiments. To justify this design, we conducted an ablation study across multiple β values
on the full MATH training set (1 epoch).

Model \ β 0.5 0.1 0.08 0.04 0.01 0

Qwen2.5-3B-Instruct 47.3% 48.6% 50.5% 68.7% 60.4% 51.6%
LLaMA-3.2-3B-Instruct 33.5% 34.8% 35.3% 58.9% 46.6% 44.3%

Table 4: Accuracy of ExPO-GRPO with different β values on the MATH training set after 1 epoch of
training. We can see that β = 0.04 yields to the best training result.
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From Table 4, we observe a clear trend: the addition of the ExP-SFT term significantly boosts
performance over the baseline (β = 0), particularly in early-stage training where standard GRPO
fails to provide meaningful updates. However, excessively large β values (e.g., β = 0.5) degrade
performance, likely due to over-reliance on imperfect guidance signals. In contrast, smaller β values
(e.g., β = 0.01) yield slower learning.

Thus, β = 0.04 offers a favorable trade-off between initial learning efficiency and final performance.
It balances the model’s ability to leverage the structured supervision from self-generated explana-
tions without overwhelming the exploration driven by the advantage term in GRPO. These results
empirically support our design choice and highlight the complementary role of the ExP-SFT term in
bootstrapping reasoning capability where standard policy optimization struggles.

D.6 ExPO-GRPO results across different base model sizes

Qwen2.5-1.5B-It LLaMA-3.2-1B-It Qwen2.5-3B-It LLaMA-3.2-3B-It Qwen2.5-7B-It LLaMA-3.1-8B-It
ExP-GRPO 45.2% 40.5% 68.7% 58.9% 83.2% 70.9%
GRPO SFT-GT-CoT 38.8% 35.8% 61.9% 48.2% 79.8% 64.9%
GRPO 32.5% 28.3% 50.3% 44.4% 78.1% 63.9%

Table 5: Accuracy of ExPO-GRPO across different base model sizes on the MATH test set. For
>7B model, we use the LoRA parameter-efficient fine-tuning. ExPO consistently outperforms other
baselines across all tested scales.

To better demonstrate the generality and robustness of ExPO, we conducted a broader evaluation
across model scales. The results show that ExPO performance gains hold even in >=7B models,
suggesting that ExPO’s design, which is grounded in in-distribution gradient alignment and positive
learning signal, scales effectively with model capacity. These results strengthen our claim that ExPO
is a scalable and general reinforcement learning method for reasoning, even in the absence of expert
CoT supervision.

D.7 Additional Result for ExP-GRPO

Figure 7: Test accuracy on GSM8K for Qwen2.5-3B-Instruct (left) and LLaMA-3.2-3B-Instruct
(right) across global training steps. ExP-GRPO consistently surpasses both GRPO and GRPO
SFT-GT-CoT, the latter of which incorporates supervised fine-tuning on expert CoT cE . These
results highlight the effectiveness of ExP-GRPO in delivering stronger and more generalizable
learning signals, resulting in improved sample efficiency and superior final performance.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our paper contains contain both theoretical and experimental results to support
the main claim.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limirations in the discussion part.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: We present the properties and short proof in section 3 and the complete proof
in appendix.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide the experimental setup including dataset, model and training in
section 4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We will open source the code.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We will open source the code.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We run the experiment several times for averaging and error bar.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We will open source the code and indicate that in supplementary material.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We conform the neurips code of ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss social impact in the discussino part.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

25

https://neurips.cc/public/EthicsGuidelines


• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We use open source publicly available models and dataset.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We do our original work and cite properly.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: Our code is based on open source code base and we will open source it.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our work does not involve crowdsourcing or human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our work does not involve crowdsourcing or human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method is not from LLM.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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