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ABSTRACT

Federated reinforcement learning (FRL) has emerged as a promising paradigm
for reducing the sample complexity of reinforcement learning tasks by exploiting
information from different agents. However, when each agent interacts with a po-
tentially different environment, little to nothing is known theoretically about the
non-asymptotic performance of FRL algorithms. The lack of such results can be
attributed to various technical challenges and their intricate interplay: Markovian
sampling, linear function approximation, multiple local updates to save communi-
cation, heterogeneity in the reward functions and transition kernels of the agents’
MDPs, and continuous state-action spaces. Moreover, in the on-policy setting, the
behavior policies vary with time, further complicating the analysis. In response,
we introduce FedSARSA, a novel federated on-policy reinforcement learning
scheme, equipped with linear function approximation, to address these challenges
and provide a comprehensive finite-time error analysis. Notably, we establish that
FedSARSA converges to a policy that is near-optimal for all agents, with the ex-
tent of near-optimality proportional to the level of heterogeneity. Furthermore, we
prove that FedSARSA leverages agent collaboration to enable linear speedups as
the number of agents increases, which holds for both fixed and adaptive step-size
configurations.

1 INTRODUCTION

Federated reinforcement learning (FRL) (Qi et al., 2021; Nadiger et al., 2019; Zhuo et al., 2019),
a distributed learning framework that unites the principles of reinforcement learning (RL) (Sutton
& Barto, 2018) and federated learning (FL) (McMahan et al., 2017), is rapidly gaining prominence
for its wide range of real-world applications, spanning areas such as edge computing (Wang et al.,
2019), robot autonomous navigation (Liu et al., 2019), and Internet of Things (Lim et al., 2020).
This paper poses an FRL problem, where multiple agents independently explore their own envi-
ronments and collaborate to find a near-optimal universal policy accounting for their differing en-
vironmental models. FRL leverages the collaborative nature of FL to address the data efficiency
and exploration challenges of RL. Specifically, we expect linear speedups in the convergence rate
and increased overall exploration ability due to federated collaboration. We use FRL in autonomous
driving (Liang et al., 2022) as a simple example to demonstrate our motivations and associated the-
oretical challenges. In this scenario, the objective is to determine a strategy (policy) that minimizes
collision probability. In contrast to the single-agent setting, where a policy is found by letting one
vehicle interact with its environment, the federating setting coordinates multiple vehicles to inter-
act with their distinct environments—comprising different cities and traffic patterns. Despite their
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aligned objectives, the environmental heterogeneity will produce distinct optimal strategies for each
vehicle. Our goal is to find a universal robust strategy that performs well across all environments.

Tailored for such tasks, we propose a novel algorithm, FedSARSA, integrating SARSA, a classic
on-policy temporal difference (TD) control algorithm (Rummery & Niranjan, 1994; Singh & Sut-
ton, 1996), into a federated learning framework. On one hand, we want to leverage the power of
federated collaboration to collect more comprehensive information and expedite the learning pro-
cess. On the other hand, we want to utilize the robustness and adaptability of on-policy methods.
To elaborate, within off-policy methods, such as Q-learning, agents select their actions according to
a fixed behavior policy while seeking the optimal policy. In contrast, on-policy methods, such as
SARSA, employ learned policies as behavior policies and constantly update them. By doing so, on-
policy methods tend to learn safer policies, as they collect feedback through interaction following
learned policies, and are more robust to environmental changes compared to off-policy methods (see
Sutton & Barto (2018, Chapter 6)). Additionally, when equipped with different policy improvement
operators, on-policy SARSA is more versatile and can learn a broader range of goals than off-policy
Q-learning (see Section 4 and Appendix C). Formally analyzing our federated learning algorithm
poses several multi-faceted challenges. We outline the most significant below.

• Time-varying behavior policies. In off-policy FRL with Markovian sampling (Woo et al., 2023;
Khodadadian et al., 2022; Wang et al., 2023a), agents’ observations are not i.i.d.; they are gen-
erated from a time-homogeneous ergodic Markov chain as agents follow a fixed behavior policy.
Such an ergodic Markov chain converges rapidly to a steady-state distribution, enabling off-policy
methods to inherit the theoretical guarantees for i.i.d. and mean-path cases (Bhandari et al., 2018;
Wang et al., 2023a). In contrast, on-policy methods update agents’ behavior policies dynamically,
rendering their trajectories nonstationary. Therefore, previous analyses for off-policy methods,
whether involving Markovian sampling or not, do not apply to our setting. Specifically, it remains
unknown if the trajectories generated by on-policy FRL methods converge, and if they do, how
this nonstationarity affects the convergence performance.

• Environmental heterogeneity in on-policy planning. In an FRL instance, it is impractical to as-
sume that all agents share the same environment (Khodadadian et al., 2022; Woo et al., 2023).
In a planning task, this heterogeneity results in agents having distinct optimal policies. Thus, to
affirm the advantages of federated collaboration, it is crucial to precisely characterize the dispari-
ties in optimality. Only two FRL papers have considered heterogeneity: Jin et al. (2022) explored
heterogeneity in transition dynamics without linear speedup, and Wang et al. (2023a) considered
heterogeneity in a prediction task (policy evaluation). Beyond these studies, other research has
addressed heterogeneity primarily within the domains of control design (Wang et al., 2023c) and
system identification (Wang et al., 2023b). Unfortunately, neither the characterizations nor anal-
yses of heterogeneity from the previous work apply to on-policy FRL. Specifically, heterogeneity
in agents’ optimal policies implies heterogeneity in the behavior policies, which could lead to
drastically different local updates across agents, negating the benefits of collaboration.

• Multiple local updates and client drift. In the federated learning framework, agents communicate
with a central server periodically to reduce communication cost, and conduct local updates be-
tween communication rounds. However, these local updates push agents to local solutions at the
expense of the overall federated performance, a phenomenon known as client drift (Karimireddy
et al., 2020). Uniquely within our setting, client drift and nonstationarity amplify each other.

• Continuous state-action spaces and linear function approximation. To better model real-world
scenarios, we consider continuous state-action spaces and employ a linear approximation for the
value function. Unfortunately, RL methods with linear function approximation (LFA) are known
to exhibit less stable convergence when compared to tabular methods (Sutton & Barto, 2018;
Gordon, 1996). Besides, the parameters associated with value function approximation no longer
maintain an implicit magnitude bound. This concern is particularly relevant in on-policy FRL,
where the client drift and the bias from nonstationarity both scale with the parameter magnitude.

Given these motivations and challenges, we ask

Can an agent expedite the process of learning its own near-optimal policy by
leveraging information from other agents with potentially different environments?

1Considered i.i.d. and Markovian sampling, but only established linear speedup result for the i.i.d. case.
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Table 1: Comparison of finite-time analysis for value-based FRL methods. LSP and LFA represent
linear speedup and linear function approximation under the Markovian sampling setting; Pred and
Plan represent prediction (policy evaluation) and planning (policy optimization) tasks, respectively.

Work Hetero-
geneity LSP LFA Markovian

Sampling Task Behavior
Policy

Doan et al. (2019) % % " % Pred Fixed
Jin et al. (2022) " % % % Plan Fixed
Khodadadian et al. (2022) % " " " Pred & Plan Fixed
Shen et al. (2023) % "1 " " Plan Adaptive
Wang et al. (2023a) " " " " Pred Fixed
Woo et al. (2023) % " % " Plan Fixed
Our work " " " " Pred & Plan Adaptive

We provide a complete non-asymptotic analysis of FedSARSA, resulting in the first positive answer
to the above question. We situate our work with respect to prior work in Table 1. A summary of our
contributions is provided below:

• Heterogeneity in FRL optimal policies. We formulate a practical FRL planning problem in which
agents operate in heterogeneous environments, leading to heterogeneity in their optimal policies
as agents pursue different goals. We provide an explicit bound on this heterogeneity in optimality,
validating the benefits of collaboration (Theorem 1).

• Federated SARSA and its finite-sample complexity. We introduce the FedSARSA algorithm for
the proposed FRL planning problem and establish a finite-time error bound achieving a state-of-
the-art sample complexity (Theorem 2). At the time of writing, FedSARSA is the first provably
sample-efficient on-policy algorithm for FRL problems.

• Convergence region characterization and linear speedups via collaboration. We demonstrate that
when a constant step-size is used, federated learning enables FedSARSA to exponentially con-
verge to a small region containing agents’ optimal policies, whose radius tightens as the number
of agents grows (Corollary 2.1). For a linearly decaying step-size, the learning process enjoys
linear speedups through federated collaboration: the finite-time error reduces as the number of
agents increases (Corollary 2.2). We validate these findings via numerical simulations.

2 RELATED WORK

Federated reinforcement learning. A comprehensive review of FRL techniques and open prob-
lems was recently provided by Qi et al. (2021). FRL planning algorithms can be broadly catego-
rized into two groups: policy- and value-based methods. In the first category, Jin et al. (2022); Xie
& Song (2023) considered tabular methods but did not demonstrate any linear speedup. Fan et al.
(2021) considered homogeneous environments and showed a sublinear speedup property. In the
second category, Khodadadian et al. (2022); Woo et al. (2023) investigated federated Q-learning and
demonstrated linear speedup under Markovian sampling. However, these studies did not examine
the impact of environmental heterogeneity, a pivotal aspect in FRL. To bridge this gap, Wang et al.
(2023a) presented a finite time analysis of federated TD(0) that can handle environmental hetero-
geneity. To take advantage of both policy- and value-based methods, Shen et al. (2023) analyzed
distributed actor-critic algorithms, but only established the linear speedup result under i.i.d. sam-
pling. Table 1 summarizes the key features of these value-based methods, including our work. There
are also some works developed for studying the distributed version of RL algorithms: Doan et al.
(2019) and Liu & Olshevsky (2023) provided a finite-time analysis of distributed variants of TD(0);
however, their analysis is limited to the i.i.d sampling model.

SARSA with linear function approximation. Single-agent SARSA is an on-policy TD control
algorithm proposed by Rummery & Niranjan (1994) and Singh & Sutton (1996). To accommo-
date large or even continuous state-action spaces, Rummery & Niranjan (1994) proposed function

3



Published as a conference paper at ICLR 2024

approximation. We refer to SARSA with and without LFA as linear SARSA and tabular SARSA
respectively The asymptotic convergence result of tabular SARSA was first demonstrated by Singh
et al. (2000). However, linear SARSA may suffer from chattering behavior within a region (Gordon,
1996; 2000; Bertsekas & Tsitsiklis, 1996). With a smooth policy improvement strategy, Perkins &
Precup (2002) and Melo et al. (2008) established the asymptotic convergence guarantee for linear
SARSA. Recently, the finite-time analysis for linear SARSA was provided by Zou et al. (2019).

3 PRELIMINARIES

3.1 FEDERATED LEARNING

Federated Learning (FL) is a distributed machine learning framework designed to train models using
data from multiple clients while preserving privacy, reducing communication costs, and accommo-
dating data heterogeneity. We adopt the server-client model with periodic aggregation, akin to well-
known algorithms like FedAvg (McMahan et al., 2017) and FedProx (Sahu et al., 2018). Agents
(clients) perform multiple local updates (iterations of a learning algorithm) between communication
rounds with the central server. During a communication round, agents synchronize their local pa-
rameters with those aggregated by the server. However, this procedure introduces client-drift issues
(Karimireddy et al., 2020; Charles & Konečnỳ, 2021), which can hinder the efficacy of federated
training. This problem is particularly pronounced in our on-policy FRL setting, where client drift is
amplified due to the interplay with other factors.

3.2 MARKOV DECISION PROCESS AND ENVIRONMENTAL HETEROGENEITY

We consider N agents that explore within the same state-action space but with potentially different
environment models. Specifically, agent i’s environment model is characterized by a Markov deci-
sion process (MDP) denoted byM(i) =

(
S,A, r(i), P (i), γ

)
. Here, S denotes the state space, A

is the action space, r(i) : S × A → [0, R] is a bounded reward function, γ ∈ (0, 1) is the discount
factor, and P (i) is the Markov transition kernel such that P (i)

a (s, s′) is the probability of agent i’s
transition from state s to s′ following action a. While all agents share the same state-action space,
their reward functions and state transition kernels can differ. Agents select actions based on their
policies. A policy π maps a state to a distribution over actions, π(a|s) denotes the probability of an
agent taking action a at state s.
Assumption 1 (Uniform ergodicity). For each i ∈ [N ], the Markov chain induced by any policy
π and state transition kernel P (i) is ergodic with a uniform mixing rate. In other words, for any
MDPM(i) and candidate policy π, there exists a steady-state distribution η

(i)
π , as well as constants

mi ≥ 1 and ρi ∈ (0, 1), such that

sup
s∈S

sup
π

∥∥∥Pπ

(
S
(i)
t = ·

∣∣∣S(i)
0 = s

)
− η(i)π

∥∥∥
TV
≤ miρ

t
i,

where ∥ · ∥TV is the total variation distance.2

Assumption 1 is a standard assumption in the RL literature needed to provide finite-time bounds
under Markovian sampling (Bhandari et al., 2018; Zou et al., 2019; Srikant & Ying, 2019).

Agents operate in their own environments and may have their own goals. We collectively refer to
the differences in the transition kernels and rewards as environmental heterogeneity. Intuitively,
collaboration among agents is advantageous when the heterogeneity is small, but can become coun-
terproductive when the heterogeneity is large. We now provide two natural definitions for measuring
environmental heterogeneity.
Definition 1 (Transition kernel heterogeneity). We capture the transition kernel heterogeneity using
the total variation induced norm:

ϵp := max
i,j∈[N ]

∥∥P (i) − P (j)
∥∥
TV

,

2We use the functional-analytic definition of the total variation, which is twice the quantity supA∈F |p(A)|
for any signed measure p on F .
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where with a slight abuse of notation, we define

∥P∥TV := sup
q∈P(S×A)
∥q∥TV=1

∥qP∥TV = sup
q∈P(S×A)
∥q∥TV=1

∥∥∥∥∫
S×A

q(s, a)Pa(s, ·)dsda
∥∥∥∥
TV

,

where P(S × A) is the set of probability measures on S × A. By the triangle inequality and the
uniform bound on rewards, R, we have ϵp ≤ 2.
Definition 2 (Reward heterogeneity). We capture the reward heterogeneity using the infinity norm:

ϵr := max
i,j∈[N ]

∥∥r(i) − r(j)
∥∥
∞

R
,

where ∥r∥∞ = sups,a∈S×A |r(s, a)|. By the triangle inequality, we have ϵr ≤ 2.

3.3 VALUE FUNCTION AND SARSA

An RL planning task aims to maximize the expected return, defined as the accumulated reward of a
trajectory. For a given policy π, the expected return of a state-action pair (s, a) is captured by the
Q-value function:

qπ(s, a) = Eπ

[ ∞∑
t=0

γtr(st, at)
∣∣∣S0 = s,A0 = a

]
= r(s, a) + γEπ [qπ(S1, A1)|S0 = s,A0 = a]︸ ︷︷ ︸

Tπqπ(s,a)

,

(1)
where the expectation is taken with respect to a transition kernel that follows the policy π (except
for the initial action, which is fixed to a). For any MDP, there exists an optimal policy π∗ such that
qπ∗(s, a) ≥ qπ(s, a) for any other policy π and state-action pair (s, a). This paper focuses on an
FRL problem where all agents aim to find a universal policy that is near-optimal for all MDPs under
a low-heterogeneity regime.

To find such an optimal policy for a single agent, SARSA updates the estimated Q-value function
based on (1) by sampling and bootstrapping. With the updated estimation of the value function,
SARSA improves the policy via a policy improvement operator. By alternating policy evaluation
and policy improvement, SARSA finds the optimal policy within the policy space. The tabular
SARSA for a single agent can be described by the following update rules:{

Q (st, at) ← Q (st, at) + α (r(st, at) + γQ (st+1, at+1)−Q (st, at)) ,

π(at+1|st+1) ← Γ(Q(st+1, at+1)),
(2)

where Q is the estimated Q-value function, α is the learning step-size, and Γ is the policy improve-
ment operator. We provide further discussion on the policy improvement operator in Section 4.

3.4 LINEAR FUNCTION APPROXIMATION AND NONLINEAR PROJECTED BELLMAN
EQUATION

When the state-action space is large or continuous, tabular methods are intractable. Therefore, we
employ a linear approximation for the Q-value function (Rummery & Niranjan, 1994). For a given
feature extractor ϕ : S × A → Rd, we approximate the Q-value function as Qθ(s, a) = ϕ(s, a)T θ,
where θ ∈ Θ ⊆ Rd is a parameter vector to be learned. Without loss of generality, we assume that
∥ϕ(s, a)∥2 ≤ 1 for every state-action pair (s, a). Linear function approximation translate the task
of finding the optimal policy to that of identifying the optimal parameter θ that solves the nonlinear
projected Bellman equation:

Qθ = ΠπTπQθ, (3)
where Tπ is the Bellman operator defined by the right-hand side of (1), and Ππ is the orthog-
onal projection onto the linear subspace spanned by the range of the ϕ using the inner product
⟨x, y⟩π = ES∼ηπ,A∼π(S)[x(S,A)

T y(S,A)]. Equation (3) reduces to the linear Bellman equation
used in policy evaluation when the policy π is fixed (Tsitsiklis & Van Roy, 1996; Bhandari et al.,
2018), and to the Bellman optimality equation used in Q-learning when the policy improvement
operator is the greedy selector (Watkins & Dayan, 1992; Melo et al., 2008).
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4 ALGORITHM

We now develop FedSARSA; a federated version of linear SARSA. In FedSARSA, each agent
explores its own environment and improves its policy using its observations, which we refer to as
local updating. Periodically, agents send the parameter progress to the central server, where the
parameters get aggregated and sent back to each agent. We present FedSARSA in Algorithm 1.

Local update. Locally, agent i updates its parameter using the SARSA update rule. With linear
function approximation, the Q-value function update in (2) becomes

θ
(i)
t+1 = θ

(i)
t + αtg

(i)
t

(
θ
(i)
t ; s

(i)
t , a

(i)
t

)
,

where αt is the step-size3 and g
(i)
t is defined as

g
(i)
t (θ; s, a) = ϕ(s, a)r(i)(s, a)+ϕ(s, a) (γϕ(s′, a′)−ϕ(s, a))T θ, s′∼P (i)

a (s, ·), a′∼π
θ
(i)
t
(·|s′) .

(4)
We refer to gt as a semi-gradient as it resembles a stochastic gradient but does not represent the
true gradient of any static loss function (Barnard, 1993). Also, we introduce a subscript t to the
semi-gradient to indicate that it depends on the policy π

θ
(i)
t

at time step t.

Policy improvement. We assume that all agents use the same policy improvement operator Γ,
which returns a policy π for any Q-value function. Since we consider linearly approximated Q-
value functions, we can view the policy improvement operator as acting on the parameter space:
Γ : θ 7→ π. We denote the policy resulting from the parameter θ as πθ = Γ(θ). To ensure
the convergence of the algorithm, we need the following assumption on the policy improvement
operator’s smoothness.
Assumption 2 (Lipschitz continuous policy improvement operator). The policy improvement oper-
ator is Lipschitz continuous in TV distance with constant L:

∥πθ1(·|s)− πθ2(·|s)∥TV ≤ L∥θ1 − θ2∥2, ∀θ1, θ2 ∈ Θ, s ∈ S.

Furthermore, L ≤ w/(Hσ), where H , σ, and w are problem constants to be defined in Appendix.

When the action space is of finite measure, Assumption 2 is equivalent to that in Zou et al. (2019).
This assumption is standard for linear SARSA (Zou et al., 2019; Perkins & Precup, 2002; Melo
et al., 2008). As shown in (De Farias & Van Roy, 2000; Perkins & Pendrith, 2002; Zhang et al.,
2022), linear SARSA with noncontinuous policy improvement may diverge.

An example policy improvement operator satisfying Assumption 2 is the softmax function with
suitable temperature parameter (Gao & Pavel, 2017). In contrast, the deterministic greedy policy
improvement employed in Q-learning is an illustrative case where Assumption 2 does not hold.
Additionally, when the policy improvement operator maps to a fixed point π, SARSA reduces to TD
learning, which evaluates the policy π. Generally, SARSA searches the optimal policy within the
policy space Γ(Θ) determined by the policy improvement operator and the parameter space.

Server side aggregation. FedSARSA adds an additional aggregation step to parallelize linear
SARSA. During this step, agents communicate with a central server by sending their parameters or
parameter progress over a given period. The central server then aggregates these local parameters
and returns the updated parameters to the agents. Intuitively, if the agents’ MDPs are similar, i.e.,
the level of heterogeneity is low, then exchanging information via the server should benefit each
agent. This is precisely the rationale behind the server-aggregation step. In general, K is selected to
strike a balance between the communication cost and the accuracy in FL.

Besides averaging, we add a projection step to ensure stability of the parameter sequence. This
technique is commonly used in the literature on stochastic approximation and RL (Zou et al., 2019;
Bhandari et al., 2018; Qiu et al., 2021; Wang et al., 2023a). In practice, it is anticipated that an
implicit bound on the parameters exists without requiring explicit projection.

3For ease of presentation, we assume all agents share the same step-size. Our analysis handles agents using
their own step-size schedule, as long as each agent’s step-size falls within the specified range.
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Algorithm 1: FedSARSA

input Initial parameter θ(i)0 = θ̄0
for t = 0, . . . , T − 1 do

for each agent i = 1, . . . , N do in parallel
π
(i)
t = Γ(θ

(i)
t ) // policy improvement

Sample observation (s
(i)
t , a

(i)
t , r

(i)
t , s

(i)
t+1, a

(i)
t+1) following policy π

(i)
t

θ
(i)
t+1 = θ

(i)
t + αtg

(i)
t , where g

(i)
t is defined in (4) // local update

if t+ 1 ≡ 0 (mod K) then // every K iterations

θ̄t+1 = ΠḠ

(
1
N

∑N
i=1 θ

(i)
t+1

)
// federated aggregation

Set θ(i)t+1 = θ̄t+1 for each agent i ∈ [N ]

5 ANALYSIS

We begin our analysis of FedSARSA by establishing a perturbation bound on the solution to (3),
which captures the near-optimality of the solution under reward and transition heterogeneity. We
then provide a finite-time error bound of FedSARSA, which enjoys the linear speedup achieved by
the federated collaboration. Building on this, we discuss the parameter selection of our algorithm.

5.1 NEAR OPTIMALITY UNDER HETEROGENEITY

We consider an FRL task where all agents collaborate to find a universal policy. However, due to
environmental heterogeneity, each agent has a potentially different optimal policy. Therefore, it is
essential to determine the convergence region of our algorithm, and how it relates to the optimal
parameters of the agents. To show that we find a near-optimal parameter for all agents, we need
to characterize the difference between the optimal parameters of agents. Given the operator Γ, we
denote by θ

(i)
∗ the unique solution to (3) for MDP M(i). The next theorem bounds the distance

between agents’ optimal parameters as a function of reward- and transition kernel heterogeneity.
Theorem 1 (Perturbation bounds on SARSA fixed points). There exist positive problem dependent
constants w, H , and σ such that

max
i,j∈[N ]

{∥∥∥θ(i)∗ − θ
(j)
∗

∥∥∥
2

}
≤ Rϵr +Hσϵp

w
=:

Λ(ϵp, ϵr)

w
,

where ϵp and ϵr are the perturbation bounds on environmental models defined in Definitions 1 and 2.

We explicitly define the constants in Theorem 1 and show that w=O(1−γ) in Appendix I. In the next
subsection, we demonstrate that there exists a parameter θ∗ such that ∥θ(i)∗ −θ∗∥ ≤ Λ(ϵp, ϵr)/w, and
Algorithm 1 converges to a neighborhood of θ∗ whose radius is also of O(Λ(ϵp, ϵr)/(1−γ)). Since
Λ(ϵp, ϵr) = O(ϵp + ϵr), when the environmental heterogeneity is small, these results guarantee that
θ∗ is near-optimal for all agents.

Theorem 1 is the first perturbation bound on nonlinear projected Bellman fixed points. Wang et al.
(2023a) established similar perturbation bounds for linear projected Bellman fixed points using the
perturbation theory of linear equations. However, it is crucial to note that their approach does not
extend to our setting where (3) is nonlinear.

5.2 FINITE-TIME ERROR AND LINEAR SPEEDUP

We now provide the main theorem of the paper, which bounds the mean squared error of Algorithm 1
recursively, and directly gives several finite-time error bounds.

Theorem 2 (One-step progress). Let {θ(i)t } be the parameters returned by Algorithm 1 and
θ̄t =

1
N

∑N
i=1 θ

(i)
t . Then, there exist positive problem dependent constants w,C1, C2, C3, C4, and a

parameter θ∗ such that maxi∈[N ] ∥θ
(i)
∗ − θ∗∥ ≤ Λ(ϵp,ϵr)/w, and for any t ∈ N, it holds that

E
∥∥θ̄t+1 − θ∗

∥∥2 ≤ (1− αtw)E
∥∥θ̄t − θ∗

∥∥2 + αtC1Λ
2(ϵp, ϵr) + α2

tC2/N + α3
tC3 + α4

tC4. (5)
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Explicit definitions of the constants are provided in Appendix J.

On the right-hand side of (5), the first term is a contractive term that inherits its contractivity from
the projected Bellman operator; the second term accounts for heterogeneity; the third term captures
the effect of noise where the variance gets scaled down by a factor of N (linear speedup) due to
collaboration among agents; the last two terms represent higher-order terms, which are negligible,
compared to other terms. In the following two corollaries, we study the effects of using constant and
decaying step-sizes in the above bound.
Corollary 2.1 (Finite-time error bound for constant step-size). With a constant step-size αt ≡ α0 ≤
w/(2120(2K + 8 + ln(m/(ρw)))), for any T ∈ N, we have

E
∥∥∥θ̄T − θ

(i)
∗

∥∥∥2 ≤ 4e−α0wT
∥∥∥θ0 − θ

(i)
∗

∥∥∥2+ 1

w

((
C1 +

6

w

)
Λ2(ϵp, ϵr) + α0

C2

N
+ α2

0C3 + α3
0C4

)
.

Corollary 2.2 (Finite-time error bound for decaying step-size). With a linearly decaying step-size
αt = 4/(w(1 + t+ a)), where a > 0 is to guarantee that α0 ≤ min{1/(8K), w/64}, there exists a
convex combination θ̃T of {θ̄t}Tt=0 such that

E
∥∥∥θ̃T − θ

(i)
∗

∥∥∥2= H2

(1−γ)2 ·O
(

K2+τ5

(1−γ)2T 2 +
τ

NT +
Λ2(ϵp,ϵr)

H2

)
= H2

(1−γ)2 ·Õ
(

1
NT +

Λ2(ϵp,ϵr)
H2

)
.

We now discuss the implications of the above theoretical guarantees.

Convergence region. From Corollary 2.1, with a constant step-size α, FedSARSA exponentially
converges to a ball around the optimal parameter θ∗i of each agent. The radius of this ball is governed
by two objects: (i) the level of environmental heterogeneity; (ii) the inherent noise in our model. In
the absence of heterogeneity, the above guarantee is precisely what one obtains for stochastic ap-
proximation algorithms with a constant step-size (Zou et al., 2019; Srikant & Ying, 2019; Bhandari
et al., 2018). The presence of heterogeneity manifests itself in the O(Λ(ϵp, ϵr)/(1−γ)) = O(ϵp+ϵr)
term in the convergence region radius. Since the optimal parameters of the agents may not be iden-
tical (under heterogeneity), such a term is generally unavoidable.

Linear speedup. Turning our attention to Corollary 2.2 (where we use a decaying step-size), let
us first consider the homogeneous case where ϵp = ϵr = 0. When T ≥ N , the O(1/(NT )) rate we
obtain in this case is the best one can hope for statistically: with T data samples per agent and N
agents, one can reduce the variance of our noise model by at most NT . Thus, for a homogeneous
setting, our rate is optimal, and clearly demonstrates an N -fold linear speedup over the single-agent
sample-complexity of O(1/T ) in Zou et al. (2019). In this context, our work provides the first such
bound for a federated on-policy RL algorithm, and complements results of a similar flavor for the
off-policy setting in Khodadadian et al. (2022). When the agents’ MDPs differ, via collaboration,
each agent is still able to converge at the expedited rate of O(1/NT ) to a ball of radius O(ϵp + ϵr)
around the optimal parameter of each agent. The implication of this result is simple: by participating
in federation, each agent can quickly (i.e., with an N -fold speedup) find an O(ϵp + ϵr)-approximate
solution of its optimal parameter; using such an approximate solution as an initial condition, the
agent can then fine-tune (personalize) - based on its own data - to converge to its own optimal
parameter exactly (in mean-squared sense). This is the first result of its kind for federated planning,
and complements the plethora of analogous results in federated optimization (Sahu et al., 2018;
Khaled et al., 2019; Li et al., 2019; Koloskova et al., 2020; Woodworth et al., 2020; Pathak &
Wainwright, 2020; Wang et al., 2020; Mitra et al., 2021; Mishchenko et al., 2022). Arriving at the
above result, however, poses significant challenges relative to prior art. We now provide insights
into these challenges and our strategies to overcome them.

5.3 PROOF SKETCH: ERROR DECOMPOSITION

Our main approach of proving Theorem 2 is to leverage the contraction property of the Bellman
equation (3) to identify a primary “descent direction.” Algorithm 1 then updates the parameters
along this direction with multi-sourced stochastic bias. We provide an informal mean squared error
decomposition (formalized in Appendix I.1 ) to illustrate this idea:

E
∥∥θ̄t+1 − θ∗

∥∥2 ≤ recursion + descent direction + gradient heterogeneity + client drift

+ gradient progress + mixing + backtracking + gradient variance.
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Some of these terms commonly appears in an FRL analysis: the descent direction is given by the
contraction property of the Bellman equation (3) when the policy improvement operator is suffi-
ciently smooth (Appendix I.2); the client drift represents the deviation of agents’ local parameters
from the central parameter, which is controlled by the step-size and synchronization period (Ap-
pendix I.4); the mixing property (Assumption 1) allows a stationary trajectory to rapidly reach to a
steady distribution (Appendix I.6). We highlight some unique terms in our analysis.

Gradient heterogeneity. This term accounts for the local update heterogeneity, which scales with
the environmental heterogeneity. The effect of time-varying policies coupled with multiple local
updates accentuates the effect of such heterogeneity. Thus, particular care is needed to ensure that
the bias introduced by heterogeneity does not compound over iterations (Appendix I.3).

Backtracking. FedSARSA possesses nonstationary transition kernels. To deal with this challenge
and use the mixing property of stationary MDPs, we virtually backtrack a period τ : starting at time
step t−τ , we fix the policy Γ(θ

(i)
t−τ ) for agent i, and consider a subsequent virtual trajectory following

this fixed policy. The divergence between the updates computed on real and virtual observations is
controlled by the step-size αt and backtracking period τ (Appendix I.7).

Gradient progress. Note that the steady distribution in the mixing term corresponds to an old policy.
Since the backtracking period is small, the discrepancy (progress) between this old policy and the
current one is small (Appendix I.5).

Gradient variance. While one can directly use the projection radius to bound the semi-gradient vari-
ance, such an approach would fall short of establishing the desired linear speedup effect. To achieve
the latter, we need a more refined argument that shows how one can obtain a “variance-reduction”
effect by combining data generated from non-identical time-varying Markov chains (Appendix I.8).

6 SIMULATIONS

We create a finite state space of size |S| = 100, an action space of |A| = 100, a feature space of
dimension d = 25, and set γ = 0.2 and R = 10. The actions determine the transition matrices by
shifting the columns of a reference matrix. The synchronization period is set to K = 10, and the
step-size of α0 = 0.01. For the full experiment setup, please refer to Appendix C. In Figure 1, we
plot the mean squared error averaged over ten runs for different heterogeneity levels and numbers
of agents. The simulation results are consistent with Corollary 2.1 and demonstrate the robustness
of our method towards environmental heterogeneity. Additional simulations, including federated
TD(0) and on-policy federated Q-learning covered by our algorithm, can be found in Appendix C.

(a) ϵp = ϵr = 0 (b) ϵp = ϵr = 1 (c) ϵp = ϵr = 2

Figure 1: Performance of FedSARSA under Markovian sampling.

7 CONCLUSION

We proposed a straightforward yet powerful on-policy federated reinforcement learning method:
FedSARSA. Our finite-time analysis of FedSARSA provides the first theoretically conformation
of the statement: an agent can expedite the process of learning its own near-optimal policy by
leveraging information from other agents with potentially different environments.

9
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single-step on-policy reinforcement-learning algorithms. Machine learning, 38:287–308, 2000.

Satinder P Singh and Richard S Sutton. Reinforcement learning with replacing eligibility traces.
Machine learning, 22(1):123–158, 1996.

Rayadurgam Srikant and Lei Ying. Finite-time error bounds for linear stochastic approximation
andtd learning. In Conference on Learning Theory, pp. 2803–2830. PMLR, 2019.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

John Tsitsiklis and Benjamin Van Roy. Analysis of temporal-diffference learning with function
approximation. Advances in neural information processing systems, 9, 1996.

Han Wang, Aritra Mitra, Hamed Hassani, George J Pappas, and James Anderson. Federated tem-
poral difference learning with linear function approximation under environmental heterogeneity.
arXiv preprint arXiv:2302.02212, 2023a.

Han Wang, Leonardo F Toso, and James Anderson. FedSysID: A federated approach to sample-
efficient system identification. In Learning for Dynamics and Control Conference, pp. 1308–
1320. PMLR, 2023b.

Han Wang, Leonardo F Toso, Aritra Mitra, and James Anderson. Model-free learning with het-
erogeneous dynamical systems: A federated LQR approach. arXiv preprint arXiv:2308.11743,
2023c.

Jianyu Wang, Qinghua Liu, Hao Liang, Gauri Joshi, and H Vincent Poor. Tackling the objective
inconsistency problem in heterogeneous federated optimization. Advances in Neural Information
Processing Systems, 33, 2020.

Xiaofei Wang, Yiwen Han, Chenyang Wang, Qiyang Zhao, Xu Chen, and Min Chen. In-edge AI:
Intelligentizing mobile edge computing, caching and communication by federated learning. Ieee
Network, 33(5):156–165, 2019.

Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8:279–292, 1992.

Jiin Woo, Gauri Joshi, and Yuejie Chi. The blessing of heterogeneity in federated q-learning: Lin-
ear speedup and beyond. In International Conference on Machine Learning, pp. 37157–37216.
PMLR, 2023.

Blake E Woodworth, Kumar Kshitij Patel, and Nati Srebro. Minibatch vs local SGD for heteroge-
neous distributed learning. Advances in Neural Information Processing Systems, 33:6281–6292,
2020.

Zhijie Xie and Shenghui Song. FedKL: Tackling data heterogeneity in federated reinforcement
learning by penalizing KL divergence. IEEE Journal on Selected Areas in Communications, 41
(4):1227–1242, 2023.

Fuzhen Zhang. Matrix Theory: Basic Results and Techniques. Springer, 2011.

Shangtong Zhang, Remi Tachet, and Romain Laroche. On the chattering of SARSA with linear
function approximation. arXiv preprint arXiv:2202.06828, 2022.

Hankz Hankui Zhuo, Wenfeng Feng, Yufeng Lin, Qian Xu, and Qiang Yang. Federated deep rein-
forcement learning. arXiv preprint arXiv:1901.08277, 2019.

Shaofeng Zou, Tengyu Xu, and Yingbin Liang. Finite-sample analysis for sarsa with linear function
approximation. Advances in neural information processing systems, 32, 2019.

12



Published as a conference paper at ICLR 2024

Appendix

Table of Contents
A Organization of Appendix 14

B Finite-Time Results Comparison 14

C Additional Simulations 14
C.1 Additional Simulations for FedSARSA . . . . . . . . . . . . . . . . . . . . . . 14
C.2 Simulations for Federated TD(0) . . . . . . . . . . . . . . . . . . . . . . . . . 15
C.3 Simulations for On-Policy Federated Q-Learning . . . . . . . . . . . . . . . . . 16

D Central MDP 17

E Notation 19

F Constants 20

G Preliminary Lemmas 21

H Proof of Theorem 1 24

I Key Lemmas 26
I.1 Error Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
I.2 Descent Direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
I.3 Gradient Heterogeneity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
I.4 Client Drift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
I.5 Gradient Progress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
I.6 Mixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
I.7 Backtracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
I.8 Gradient Variance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

J Proof of Theorem 2 38

K Proof of Corrolaries 2.1 and 2.2 41

L Constant Dependencies 42

M Tabular FedSARSA 44

13



Published as a conference paper at ICLR 2024

A ORGANIZATION OF APPENDIX

The appendix is organized as follows. First, we present an additional comparison of our results
with other finite-time results in Appendix B, and additional simulation results in Appendix C. In
Appendices D and E, we introduce the concept of central MDP and some notation that will assist
our analysis. In Appendix F, to aid readability, we list all the constants that appear in the paper
for readers’ convenience. In Appendix G, we provide several preliminary lemmas that will be used
throughout the analysis. Before presenting lemmas for Theorem 2, we first prove Theorem 1 in Ap-
pendix H, for it will be used by later lemmas. In Appendix I, we first decompose the mean squared
error and then present seven lemmas, each bounding one term in the decomposition. Then, we
provide the proof of Theorem 2 and Corollaries 2.1 and 2.2 in Appendix J and Appendix K, respec-
tively. To provide insights into our results, we discuss the dependencies of constants in Appendix L.
Finally, we reduce FedSARSA to the tabular case in Appendix M, demonstrating the flexibility and
efficiency of our algorithm.

B FINITE-TIME RESULTS COMPARISON

A comparison of finite-time results on temporal difference methods is provided in Table 2.

Table 2: Comparison of finite-time results. Results with green background are first provided by our
work; results with blue background are covered by our work. “Linear” indicates the usage of linear
function approximation, and “Hetero” indicates the presence of environmental heterogeneity. All
constants are defined in Section 5 and Appendix I. We show the squared ℓ2 error for linear settings
and squared ℓ∞ error for tabular settings. Asymptotic notations are omitted for simplicity.

Federated Single-Agent
Linear Tabular

Linear TabularHetero Homog Hetero Homog

TD Learning H2

(1−γ)2NT + Λ2

(1−γ)
† H2

(1−γ)2NT
‡ SA

λ2(1−γ)4NT + Λ2

λ2(1−γ)2
** S2

λ5(1−γ)9NT
‡ H2

(1−γ)2T
¶ SA

λ2(1−γ)4T
**

Q-Learning – H2

(1−γ)2NT
‡ 1

(1−γ)6T 2 + Λ2

(1−γ)4
§ S2

λ5(1−γ)9NT
‡ H2

(1−γ)2T
¶ SA

λ(1−γ)5T
||

SARSA H2

(1−γ)2NT + Λ2

(1−γ)2
* H2

(1−γ)2NT
* SA

λ2(1−γ)4NT + Λ2

λ2(1−γ)2
** SA

λ2(1−γ)4NT
** H2

(1−γ)2T
# SA

λ2(1−γ)4T
**

† (Wang et al., 2023a) ‡ (Khodadadian et al., 2022) § (Jin et al., 2022) ¶ (Bhandari et al., 2018)
|| (Qu & Wierman, 2020) # (Zou et al., 2019) * Corollary 2.2 ** Appendix M

C ADDITIONAL SIMULATIONS

C.1 ADDITIONAL SIMULATIONS FOR FEDSARSA

We first restate the simulation setup in more detail. We index a finite state space by S = [100] and
an action space by A = [100], where the actions determine the transition matrices by shifting the
columns of a reference matrix P0:

Pa = circ shift(P0,columns = a),

where circ shift denotes a circular shift operator. We construct the feature extractor as

ϕ(s, a) = e(s mod d1)·d2+a mod d2
∈ Rd1×d2 ,

where ei is the indicator vector with the i-th entry being 1 and the rest being 0. We set d1 = 5 and
d2 = 5. For the policy improvement operator, we employ the softmax function with a temperature
of 100:

πθ(a|s) =
exp(θTϕ(s, a)/100)∑

a′∈A exp(θTϕ(s, a′)/100)
.

Other parameters are set as follows: the reward cap R = 10, the discount factor γ = 0.2, the
synchronization period K = 10, and the step-size α0 = 0.01.
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To construct heterogeneous MDPs, we first generate a nominal MDPM1 and obtain the remaining
MDPs by adding the perturbations toM1. Unlike in FedTD (Wang et al., 2023a), where the optimal
parameters can be obtained by solving the linear projected Bellman equation directly, here we get
a reference parameter θ

(1)
ref by running a single-agent linear SARSA on M1 with decaying step-

size. As suggested in Corollary 2.2, the reference parameter converges to the optimal parameter
corresponding to M1. Then, we calculate the mean squared error with respect to the reference

parameter:
∥∥∥θ̄t − θ

(1)
ref

∥∥∥2
2
. All of our simulations are averaged over ten runs and all graphs are plotted

with 95% confidence region.

In Figure 1, both kernel heterogeneity and reward heterogeneity are set at the same level. In Fig-
ure 2, we fix the kernel heterogeneity as 1.0 and vary the reward heterogeneity. In contrast, we fix
the reward heterogeneity as zero and vary the kernel heterogeneity in Figure 3. Again, these results
affirm the robustness of our method towards environmental heterogeneity. Furthermore, they seem-
ingly suggest that the algorithm is more sensitive to reward heterogeneity than kernel heterogeneity.
However, it is important to note that ϵp and ϵr represent upper bounds and may be much larger than
the actual heterogeneity level.

Further exploring the effect of heterogeneity on federated collaboration, Figures 4 and 5 illustrate
the effect of different reward and kernel heterogeneity levels on the performance of FedSARSA
respectively. Generally, higher levels of heterogeneity result in larger mean squared error, which
aligns with our theoretical results in Section 5.

(a) ϵr = 0 (b) ϵr = 0.1 (c) ϵr = 0.2

(d) ϵr = 0.5 (e) ϵr = 1 (f) ϵr = 2

Figure 2: Performance of FedSARSA under Markovian sampling for varying reward heterogeneity
and numbers of agents with fixed kernel heterogeneity (ϵp = 1).

C.2 SIMULATIONS FOR FEDERATED TD(0)

As discussed in Section 4, FedSARSA reduces to federated TD(0) (Wang et al., 2023a) when
the policy improvement operator maps any parameter to a fixed policy π. This corresponds to a
fixed transition kernel. Therefore, we conduct simulations for federated TD(0) to demonstrate the
adaptability of FedSARSA. We inherit the simulation setup from the previous subsection (Ap-
pendix C.1), which matches the setup in Wang et al. (2023a). We fix the behavior policy by fix the
transition matrix as the reference matrix P0. The results are presented in Figure 6, which are similar
to the results in Section 6, again validating our theoretical results.
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(a) ϵp = 0 (b) ϵp = 0.1 (c) ϵp = 0.2

(d) ϵp = 0.5 (e) ϵp = 1 (f) ϵp = 2

Figure 3: Performance of FedSARSA under Markovian sampling for varying kernel heterogeneity
and numbers of agents with fixed reward heterogeneity (ϵr = 1).

(a) N = 5, ϵp = 1.0 (b) N = 10, ϵp = 1.0 (c) N = 20, ϵp = 1.0

(d) N = 5, ϵp = 2.0 (e) N = 10, ϵp = 2.0 (f) N = 20, ϵp = 2.0

Figure 4: Effect of the reward heterogeneity on the performance of FedSARSA.

C.3 SIMULATIONS FOR ON-POLICY FEDERATED Q-LEARNING

When equipped with a greedy policy improvement operator, FedSARSA reduces to on-policy fed-
erated Q-Learning. Specifically, we employ the greedy policy improvement operator:

πθ(a|s) = 1{a = argmax
a′∈A

θTϕ(s, a′)},

where 1 is the indicator function. For the other part of the simulation setup, we inherit the setup
from the previous subsection (Appendix C.1). The results are presented in Figure 7, which resemble
the results in Section 6 and Appendix C.2.
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(a) N = 5, ϵr = 1.0 (b) N = 10, ϵp = 1.0 (c) ϵp = 0.2

(d) N = 20, ϵr = 1.0 (e) N = 5, ϵr = 2.0 (f) N = 10, ϵr = 2.0

Figure 5: Effect of the kernel heterogeneity on the performance of FedSARSA.

(a) ϵp = ϵr = 0 (b) ϵp = ϵr = 0.1 (c) ϵp = ϵr = 0.2

(d) ϵp = ϵr = 0.5 (e) ϵp = ϵr = 1 (f) ϵp = ϵr = 2

Figure 6: Performance of FedSARSA with a fixed-point policy improvement operator, covering
federated TD(0).

D CENTRAL MDP

To facilitate our analysis, we introduce a virtual MDP: M̄ := 1
N

∑N
i=1M(i). Specifically, M̄ =

(S,A, r̄, P̄ , γ), where r̄ = 1
N

∑N
i=1 r

(i), P̄ = 1
N

∑N
i=1 P

(i). We refer to this virtual MDP as the
central MDP. The following proposition shows that M̄ is indistinguishable from the collection of
actual MDPs and also satisfies Assumption 1.

Proposition 1. If MDPs {M(i)} are ergodic (aperiodic and irreducible) under a fixed policy π, the
central MDP M̄ is also ergodic under π.
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(a) ϵp = ϵr = 0 (b) ϵp = ϵr = 0.1 (c) ϵp = ϵr = 0.2

(d) ϵp = ϵr = 0.5 (e) ϵp = ϵr = 1 (f) ϵp = ϵr = 2

Figure 7: Performance of FedSARSA with a greedy policy improvement operator, covering on-
policy federated Q-learning.

Proof. Suppose π is given. We first show that M is also aperiodic. If not, by the definition of
aperiodicity (Meyn & Tweedie, 2012, Page 121), there exists s ∈ S such that

d̄(s) := gcd{n : P̄n(s, s) > 0} > 1,

where gcd returns the greatest common divisor and we omit the subscript π of P̄π since we consider
a fixed policy. The above inequality indicates that, for any n ∈ N \ {kd̄(s)}k∈N, it holds that

0 = P̄n(s, s) =

(
1

N

N∑
i=1

P (i)

)n

(s, s) ≥ 1

Nn

(
P (i)

)n
(s, s), ∀i ∈ [N ]. (6)

Now since M(i) is aperiodic, d(i)(s) := gcd{n : (P (i))n(s, s) > 0} = 1. Thus there exists
n ∈ N \ {kd̄(s)}k∈N such that (P (i))n(s, s) > 0 (otherwise d(i)(s) ≥ d̄(s)), which contradicts
to (6). Therefore, we conclude that d̄(s) = 1 for any s ∈ S , and thus M̄ is aperiodic. We now
show that M̄ is irreducible given {M(i)} are irreducible (Meyn & Tweedie, 2012, Page 93). For
any A ⊂ B(S) with positive measure, where B(S) is the Borel σ-field on S, we have min{n :
(P (i))n(s,A) > 0} < +∞ for any s ∈ S and i ∈ [N ]. Then again by (6), we get

min{n : P̄n(s,A) > 0} ≤ min
i∈[N ]

min

{
n :

1

Nn

(
P (i)

)n
(s,A) > 0

}
< +∞.

Therefore, M̄ is irreducible.

When the state-action space is finite, Proposition 1 covers Wang et al. (2023a, Proposition 1).

By Proposition 1, we can confidently regard M̄ as the MDP of a virtual agent, which does not
exhibit any distinctive properties in comparison to the actual agents. Therefore, we denoteM(0) :=
M̄ and define the extended number set [N̄ ] := [N ] ∪ {0} = {0, 1, . . . , N}. When we drop the
superscript (i), it should be clear from the context if we are talking about the central MDP M̄ or
an arbitrary MDP M(i). Clearly, the extended MDP set {M(i)}i∈[N̄ ] still satisfies Assumption 1
and Definitions 1 and 2, and thus Theorem 1. Now we can specify the special parameter θ∗ in
Theorem 2: it is the unique solution to (3) for M̄. In other words, Theorem 2 asserts that the
algorithm converges to the central optimal parameter.
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E NOTATION

Before presenting lemmas and proofs of our main theorems, we introduce some notation that will
aid in our analysis. We introduce a notation for the unprojected central parameter:

θ̆t+1 =
1

N

N∑
i=1

(
θ
(i)
t + αtg

(i)
t

)
, when t+ 1 ≡ 0 (mod K).

Then, θ(i)t+1 = θ̄t+1 = ΠḠ(θ̆t+1) when t+1 ≡ 0 (mod K). It’s easy to verify that for any ∥θ∥ ≤ Ḡ,
we have

∥θ̄t − θ∥ ≤ ∥θ̆t − θ∥. (7)

Then we define some notations on the MDPs. Note that all these definitions apply to the extended
MDP set {M(i)}i∈[N̄ ] that includes the central MDP.
Definition 3 (Steady distributions). Assumption 1 guarantees the existence of a steady state distri-
bution for any MDP and policy π. We denote η

(i)
θ as the steady state distribution with respect to

MDPM(i) and policy πθ, i.e.,

η
(i)
θ (s) := lim

t→∞
P (i)
πθ

(St = s|S0 = s0).

Additionally, given a policy πθ, the steady state-action distribution is defined as

µ
(i)
θ (s, a) := η

(i)
θ (s) · πθ(a|s).

Then, the two-step steady distribution is defined as

φ
(i)
θ (s, a, s′, a′) := µ

(i)
θ (s, a)P (i)

a (s, s′)πθ(a
′|s′).

For a local parameter θ(i)t , we simplify the above notations as follows:

η
(i)
t := η

(i)

θ
(i)
t

, µ
(i)
t := µ

(i)

θ
(i)
t

, φ
(i)
t := φ

(i)

θ
(i)
t

.

We are now ready to provide the precise definitions of the semi-gradients discussed in Section 5.
Definition 4 (Semi-gradients). As indicated by (4), a semi-gradient is a function of both the param-
eter θ and the observation tuple O = (s, a, s′, a′), while the observation tuple is dependent on the
local Markovian trajectory. Therefore, the general form of a semi-gradient is

g
(i)
t−τ

(
θ;O

(i)
t

)
:= ϕ

(
s
(i)
t , a

(i)
t

)(
r(i)

(
s
(i)
t , a

(i)
t

)
+ γϕT

(
s
(i)
t+1, a

(i)
t+1

)
θ − ϕT

(
s
(i)
t , a

(i)
t

)
θ
)
,

where O
(i)
t =

(
s
(i)
t , a

(i)
t , s

(i)
t+1, a

(i)
t+1

)
is the observation of agent i at time step t, and the subscript

t−τ indicates that the trajectory after time step t−τ follows a fixed policy π
θ
(i)
t−τ

, i.e.,

a
(i)
t−τ , a

(i)
t−τ+1, . . . , a

(i)
t+1 ∼ π

θ
(i)
t−τ

.

When τ = 0, the semi-gradient corresponds to an actual SARSA trajectory, and we omit the sub-
script and the observation argument, i.e.,

g(i)(θ) := g
(i)
t

(
θ;O

(i)
t

)
.

When τ > 0, the semi-gradient corresponds a virtual trajectory, and we use Õt in place of Ot to
indicate it is a virtual observation at the current time step.

We add a bar to denote the mean-path semi-gradients, i.e.,

ḡ
(i)
t−τ (θ) := E

φ
(i)
t−τ

[
g
(i)
t−τ (θ,O)

]
= E

φ
(i)
t−τ

[
ϕ(s, a)(r(i)(s, a) + γϕT (s′, a′)θ − ϕT (s, a)θ)

]
,

where the expectation is taken over the two-step observation steady distribution:

O = (s, a, s′, a′) ∼ φ
(i)
t−τ := φ

(i)

θ
(i)
t−τ

.
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For mean-path semi-gradients, the randomness of the observation is eliminated, and the parameter θ
is the only argument, and we can substitute the subscript t−τ with a general parameter θ′; then we
define

ḡ
(i)
θ′ (θ) := E

φ
(i)

θ′

[
ϕ(s, a)(r(i)(s, a) + γϕT (s′, a′)θ − ϕT (s, a)θ)

]
.

We omit the superscript (i) when referring to the central MDP M̄. For instance,

ḡt−τ (θ) := Eφt−τ

[
ϕ(s, a)(r̄(s, a) + γϕT (s′, a′)θ − ϕT (s, a)θ)

]
.

Finally, for notational simplicity, we use bold symbols to denote the average semi-gradients, e.g.,

gt−τ (θt) =
1

N

N∑
i=1

g
(i)
t−τ

(
θ
(i)
t

)
.

The above notations will be used in combination, e.g.,

ḡ(θt) =
1

N

N∑
i=1

ḡ(i)
(
θ
(i)
t

)
=

1

N

N∑
i=1

ḡ
(i)
t

(
θ
(i)
t

)
.

We can further decompose semi-gradients into TD operators.

Definition 5 (TD operators). A semi-gradient g(i)t−τ

(
θ,O

(i)
t

)
can be decomposed into the following

two two operators:

g
(i)
t−τ

(
θ,O

(i)
t

)
= A

(i)
t−τ

(
O

(i)
t

)
θ + b

(i)
t−τ

(
O

(i)
t

)
.

where
A

(i)
t−τ

(
O

(i)
t

)
= ϕ

(
s
(i)
t , a

(i)
t

)(
γϕT

(
s
(i)
t+1, a

(i)
t+1

)
− ϕT

(
s
(i)
t , a

(i)
t

))
,

b
(i)
t−τ

(
O

(i)
t

)
= ϕ

(
s
(i)
t , a

(i)
t

)
r(i)

(
s
(i)
t , a

(i)
t

)
,

a
(i)
t , a

(i)
t+1 ∼ π

θ
(i)
t−τ

.

Similar to Definition 4, we can define other TD operators for each semi-gradient, e.g., the mean-path
TD operators:  Ā

(i)
θ = E

φ
(i)
θ

[A(i) (O)],

b̄
(i)
θ = E

µ
(i)
θ

[b(i) (O)].

We summarize the notations defined in this section and other notations used in our analysis in Ta-
ble 3.

F CONSTANTS

We first introduce two important constants that serve as base constants throughout the paper. The
first one is the upper bound of the norm of the central parameter, denoted by G ≥ ∥θ̄∥. For this
bound to hold, we require the projection radius Ḡ to be large enough such that

∥∥∥θ(i)∗

∥∥∥ ≤ Ḡ for

i ∈ [N̄ ]. The explicit expression for G will be given in Corollary I.5.3. Then, we define

H = R+ (1 + γ)G. (8)

The constant H can be viewed as the scale of the problem, analogous to |S||A| for the tabular
setting that will be discussed in Appendix M. For local parameters, we define a similar function
h(θ) := R+ (1 + γ)∥θ∥.
We summarized the constants that appear in our analysis in Table 4. Notice that τ, α0, and αt in
Table 4 refer to the constants in the case with a linearly decaying step-size. For the case with a
constant size, these constants are fixed and specified in Corollary 2.1.
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Table 3: Notation

Notation Definition

[N ], [N̄ ] The set of N numbers and the set of N + 1 numbers including 0

M(i),M̄ Markov decision processes
S,A,Θ State space, action space, and parameter space

r(i), r̄, P (i), P̄ Reward functions and transition kernels
S
(i)
t , U

(i)
t , O

(i)
t Agent i’s state, action, and observation random variable at time step t

s, a, o Instances of the state, action, and observation
π,Γ A policy and the policy improvement operator
∥ · ∥TV Total variation distance and its induced norm for transition kernels
q,Q True Q-value function and estimated Q-value function
ϕ, θ Feature map and feature weight (parameter)

Ππ,ΠḠ Orthogonal projection operator
Tπ Bellman operator

π
(i)
∗ , θ

(i)
∗ Optimal policies and optimal parameters

η
(i)
θ , µ

(i)
θ , φ

(i)
θ Steady distributions

g Semi-gradient
A, b, Z Temporal difference operators

h h(θ) := R+ (1 + γ)∥θ∥
Ωt, ωt Client drift
Ft Filtration containing all randomness prior to time step t

G PRELIMINARY LEMMAS

In this section, we present two preliminary lemmas that will be used throughout the analysis.

Lemma G.1 (Steady distribution differences). For the same MDP, the TV distance between the
steady distributions with regard to two different policies is bounded as follows:

∥ηθ1 − ηθ2∥TV ≤ Lσ′ ∥θ1 − θ2∥2 ,
∥µθ1 − µθ2∥TV ≤ L(1 + σ′) ∥θ1 − θ2∥2 ,
∥φθ1 − φθ2∥TV ≤ L(2 + σ) ∥θ1 − θ2∥2 ,

where L is the Lipschitz constant of the policy improvement operator specified in Assumption 2 and
σ′ is a constant determined by m and ρ specified in Assumption 1. Letting σ := σ′ + 2, all three
TV distances above are bounded by Lσ∥θ1 − θ2∥2. Next, for a fixed parameter θ, the TV distance
between the steady distributions with regard to two MDPs is bounded as follows:∥∥∥η(i)θ − η

(j)
θ

∥∥∥
TV
≤ σ′ϵp,∥∥∥µ(i)

θ − µ
(j)
θ

∥∥∥
TV
≤ σ′ϵp,∥∥∥φ(i)

θ − φ
(j)
θ

∥∥∥
TV
≤ (σ′ + 1)ϵp.

By the above inequalities, for different MDPs and different parameters, we have∥∥∥µ(i)

θ(i) − µ
(j)

θ(j)

∥∥∥
TV
≤ σ′ϵp + Lσ∥θ(i) − θ(j)∥2.

Proof. For the same MDP, by (Mitrophanov, 2005, Corollary 3.1), we get

∥ηθ1 − ηθ2∥TV ≤ σ′∥Pθ1 − Pθ2∥TV,
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Table 4: Constants

Notation Meaning Reference Range or Order

N Number of agents Section 3.2 N
R Reward cap Section 3.2 (0,+∞)

S,A Measures of the state space
and action space

Section 3.2 (0,+∞]

γ Discount factor Section 3.2 (0, 1)
mi,m Markov chain mixing constant Assumption 1

and Lemma G.1
[1,+∞)

ρi, ρ Markov chain mixing rate Assumption 1
and Lemma G.1

(0, 1)

σ, σ′ Steady distribution perturba-
tion constant

Lemma G.1 O(logm/(1− ρ))

Ḡ Algorithm projection radius Algorithm 1 (0,+∞)
G Parameter norm upper bound Corollary I.5.3 O(Ḡ+R)
H Problem scale Equation (8) O(Ḡ+R)
L Lipschitz constant for the pol-

icy improvement operator
Assumption 2 [0, w/(Hσ)]

K Local update period Section 4 N
ϵp, ϵr Environmental heterogeneity

ratio
Definitions 1 and 2 [0, 2]

Λ Environmental heterogeneity Theorem 1 O(H(ϵp + ϵr))
λ(i), λ Exploration constant Equation (18) (0, 1)
wi, w Convergence constant Equation (19) [(1− γ)λ/2, 1/2)
τ Backtracking period Lemma I.1 O(log T )
α0 Initial step-size Section 4 (0,min{1/8K,w/64}]
αt General step-size Section 4 O(1/t)

Cdrift Client drift constant Lemma I.4 O(KH)
Cprog Parameter progress constant Lemma I.5 O(Hτ)
Cback Backtracking constant Lemma I.7 O(τ2w)
Cvar Gradient variance constant Lemma I.8 O(H2w2τ4))
β Young’s inequality constant Appendix J (0, w/7)

Hdrift Another drift constant Appendix J O(H)
Cα Step-size constant Appendix J O(1)
C1 First-order constant Equation (50) O((1− γ)−1)
C2 Second-order constant Equation (50) O(H2τ)
C3 Third-order constant Equation (50) O(H2wτ4)
C4 Fourth-order constant Equation (50) O(H2w2τ5)
B Square of the convergence re-

gion radius for constant step-
size

Corollary 2.1 see Corollary 2.1

where Pθ(s, s
′) =

∫
A Pa(s, s

′)πθ(a|s)da, and

∥Pθ∥TV = sup
∥q∥TV=1

∥qPθ∥TV = sup
∥q∥TV=1

∥∥∥∥∫
S
q(s)Pθ(s, ·)ds

∥∥∥∥
TV

.

And the constant σ′ is defined by

σ′ = n̂+
mρn̂

1− ρ
, (9)

where n̂ =
⌈
logρ m

−1
⌉
, m := maxi∈[N ] mi, and ρ := maxi∈[N ] ρi with mi, ρi specified in As-

sumption 1. Note that in the above inequalities, we actually should use σ′
i defined by mi and ρi; but

σ′
i is bounded by σ′ for all i ∈ [N ], so we use this possibly looser bound for notational simplicity.
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Then, by Assumption 2, we have

∥Pθ1 − Pθ2∥TV = sup
∥q∥TV=1

∫
S

∣∣∣∣∫
S
q(s)(Pθ1(s, s

′)− Pθ2(s, s
′))ds′

∣∣∣∣ ds
= sup

∥q∥TV=1

∫
S

∣∣∣∣∫
S×A

q(s)(Pa(s, s
′)πθ1(a|s)− Pa(s, s

′)πθ2(a|s))dads′
∣∣∣∣ds

≤ sup
∥q∥TV=1

∫
S2×A

|q(s)|Pa(s, s
′) |πθ1(a|s)− πθ2(a|s)|dads′ds

= sup
∥q∥TV=1

∫
S×A

|q(s)| |πθ1(a|s)− πθ2(a|s)|dads

= sup
∥q∥TV=1

∫
S
|q(s)| ∥πθ1(·|s)− πθ2(·|s)∥TV ds

≤ L∥θ1 − θ2∥2 sup
∥q∥TV=1

∫
S
|q(s)|ds

= L∥θ1 − θ2∥2.
Therefore, we get

∥ηθ1 − ηθ2∥TV ≤ Lσ′∥θ1 − θ2∥2.
Next, for the state-action distribution, we have

∥µθ1 − µθ2∥TV =

∫
S×A

|ηθ1(s)πθ1(a|s)− ηθ2(s)πθ2(a|s)|dsda

≤
∫
S×A

ηθ1(s) |πθ1(a|s)− πθ2(a|s)|dsda+

∫
S×A

|ηθ1(s)− ηθ2(s)|πθ2(a|s)dads

≤ L∥θ1 − θ2∥2 + ∥ηθ1 − ηθ2∥TV

≤ L(1 + σ′)∥θ1 − θ2∥2.
Similarly, we have

∥φθ1 − φθ2∥TV ≤ L(2 + σ′)∥θ1 − θ2∥2.

Also by (Mitrophanov, 2005, Corollary 3.1), we get∥∥∥η(i)θ − η
(j)
θ

∥∥∥
TV
≤ σ′∥P (i)

θ − P
(j)
θ ∥TV ≤ σ′ϵp,

where ϵp is defined in Definition 1. Then, for the state-action distribution, we have∥∥∥µ(i)
θ − µ

(j)
θ

∥∥∥
TV

=
∥∥∥η(i)θ · πθ − η

(j)
θ · πθ

∥∥∥
TV

=
∥∥∥η(i)θ − η

(j)
θ

∥∥∥
TV
≤ σ′ϵp.

And similarly, we have∥∥∥φ(i)
θ − φ

(j)
θ

∥∥∥
TV

=

∫
S2×A2

∣∣∣µ(i)
θ (s, a)πθ(a|s)P (i)

a (s, s′)πθ(a
′|s′)− µ

(j)
θ (s, a)πθ(a|s)P (j)

a (s, s′)πθ(a
′|s′)

∣∣∣dsds′dada′
≤
∫
S2×A2

∣∣∣µ(i)
θ (s, a)πθ(a|s)P (i)

a (s, s′)πθ(a
′|s′)− µ

(j)
θ (s, a)πθ(a|s)P (i)

a (s, s′)πθ(a
′|s′)

∣∣∣dsds′dada′
+

∫
S2×A2

∣∣∣µ(j)
θ (s, a)πθ(a|s)P (i)

a (s, s′)πθ(a
′|s′)− µ

(j)
θ (s, a)πθ(a|s)P (j)

a (s, s′)πθ(a
′|s′)

∣∣∣dsds′dada′
≤
∥∥∥µ(i)

θ − µ
(j)
θ

∥∥∥
TV

+ ∥P (i) − P (j)∥TV

≤(σ′ + 1)ϵp ≤ σϵp

Finally, by the triangle inequality, we get∥∥∥µ(i)

θ(i) − µ
(j)

θ(j)

∥∥∥
TV
≤ σ′ϵp + Lσ∥θ(i) − θ(j)∥2.
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Similarly, we can bound the differences between TD operators defined in Definition 5.
Lemma G.2 (TD operator differences). For the same MDP, the difference between the mean-path
TD operators with regard to different parameters is bounded as follows:{∥∥Āθ1 − Āθ2

∥∥ ≤ (1 + γ)Lσ ∥θ1 − θ2∥2 ,∥∥b̄θ1 − b̄θ2
∥∥ ≤ RLσ ∥θ1 − θ2∥2 .

Next, for a fixed parameter θ, the difference between the mean-path TD operators with regard to
different MDPs is bounded as follows:

∥∥∥Ā(i)
θ − Ā

(j)
θ

∥∥∥ ≤ (1 + γ)σϵp,∥∥∥b̄(i)θ − b̄
(j)
θ

∥∥∥ ≤ R(ϵr + σϵp).

Then, by the triangle inequality, we get
∥∥∥Ā(i)

θ(i) − Ā
(j)

θ(j)

∥∥∥ ≤ (1 + γ)σ
(
L
∥∥θ(i) − θ(j)

∥∥
2
+ ϵp

)
,∥∥∥b̄(i)θ(i) − b̄

(j)

θ(j)

∥∥∥ ≤ R(ϵr + σϵp) +RLσ
∥∥θ(i) − θ(j)

∥∥
2
.

Proof. For the same MDP, by Definition 5, we have∥∥Āθ1 − Āθ2

∥∥ =

∥∥∥∥∫
S2×A2

ϕ(s, a)(γϕT (s′, a′)− ϕT (a, s))(dφθ1(s, a, s
′, a′)− dφθ2(s, a, s

′, a′))

∥∥∥∥
≤(1 + γ) ∥φθ1 − φθ2∥TV

≤(1 + γ)Lσ ∥θ1 − θ2∥2 ,
where the last inequality comes from Lemma G.1. Similarly, we have∥∥b̄θ1 − b̄θ2

∥∥ =

∥∥∥∥∫
S×A

ϕ(s, a)r(s, a)(dµθ1(s, a)− dµθ2(s, a))

∥∥∥∥
≤R ∥µθ1 − µθ2∥TV

≤RLσ ∥θ1 − θ2∥2 .

Then for the same parameter θ, we have∥∥∥Ā(i)
θ − Ā

(j)
θ

∥∥∥ =

∥∥∥∥∫
S2×A2

ϕ(s, a)(γϕT (s′, a′)− ϕT (a, s))(dφ
(i)
θ (s, a, s′, a′)− dφ

(j)
θ (s, a, s′, a′))

∥∥∥∥
≤(1 + γ)

∥∥∥φ(i)
θ − φ

(j)
θ

∥∥∥
TV

≤(1 + γ)σϵp,

where the last inequality comes from Lemma G.1. Similarly, we have∥∥∥b̄(i)θ − b̄
(j)
θ

∥∥∥ =

∥∥∥∥∫
S×A

ϕ(s, a)
(
r(i)(s, a)dµ

(i)
θ (s, a)− r(j)(s, a)dµ

(j)
θ (s, a)

)∥∥∥∥
≤
∫
S×A

∣∣∣r(i)(s, a)− r(j)(s, a)
∣∣∣ dµ(i)

θ (s, a) +

∫
S×A

r(j)(s, a)
∣∣∣dµ(i)

θ (s, a)− dµ
(j)
θ (s, a)

∣∣∣
≤Rϵr +Rσ′ϵp,

where the last inequality comes from Definition 2 and Lemma G.1.

H PROOF OF THEOREM 1

Theorem 1. For any i, j ∈ [N̄ ], we have∥∥∥θ(j)∗ − θ
(i)
∗

∥∥∥
2
≤ 1

wj
(Rϵr +Hσϵp) ≤

Λ(ϵp, ϵr)

w
,

where w := mini∈[N̄ ] wi; wi is defined in Lemma I.2 and Λ(ϵp, ϵr) is defined in Lemma I.3.
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Proof. First, we formulate the Bellman optimal equation in terms of TD operators defined in Defi-
nition 5:

Ā
(i)
∗ θ

(i)
∗ + b̄

(i)
∗ = 0,

for any i ∈ [N̄ ], where
Ā

(i)
∗ := Ā

(i)

θ
(i)
∗
, b̄

(i)
∗ := b̄

(i)

θ
(i)
∗
.

Then for any i, j ∈ [N̄ ], we have(
Ā

(j)
∗ − Ā

(i)
∗

)
θ
(i)
∗ + Ā

(j)
∗

(
θ
(j)
∗ − θ

(i)
∗

)
= b̄

(i)
∗ − b̄

(j)
∗ .

By Tsitsiklis & Van Roy (1996, Theorem 2), Ā(j)
∗ is negative definite Therefore, Ā(j)

∗ is non-singular,
and we get ∥∥∥θ(j)∗ − θ

(i)
∗

∥∥∥
2
≤
∥∥∥∥(Ā(j)

∗

)−1
∥∥∥∥∥∥∥(Ā(i)

∗ − Ā
(j)
∗

)
θ
(i)
∗ +

(
b̄
(i)
∗ − b̄

(j)
∗

)∥∥∥
2
.

And we have ∥∥∥∥(Ā(j)
∗

)−1
∥∥∥∥ =σ−1

min

(
Ā

(j)
∗

)
(10)

=
1∣∣∣λmax

(
Ā

(j)
∗

)∣∣∣ (11)

≤ 1

−ℜλmax

(
Ā

(j)
∗

) (12)

≤ 1

−λmax

(
sym

(
Ā

(j)
∗

)) (13)

=
1

2wj
, (14)

where (10) uses the spectrum norm equality and σmin returns the smallest singular value of a matrix;
(11) and (12) use the fact that Ā(j)

∗ is negative definite; (13) is by (Zhang, 2011, Theorem 10.28);
and lastly, (14) is the definition of wj (see Lemma I.2).

Therefore, letting G be large enough to contain {θ(i)∗ }i∈[N̄ ], we get∥∥∥θ(j)∗ − θ
(i)
∗

∥∥∥
2
≤ 1

2wj

(∥∥∥A(i)
∗ −A

(j)
∗

∥∥∥G+
∥∥∥b(i)∗ − b

(j)
∗

∥∥∥) .
By Lemma G.2, we get∥∥∥θ(j)∗ − θ

(i)
∗

∥∥∥
2
≤ 1

2wj

(
(1 + γ)σG

(
ϵp + L

∥∥∥θ(i)∗ − θ
(j)
∗

∥∥∥
2

)
+R(ϵr + σϵp) +RLσ

∥∥∥θ(i)∗ − θ
(j)
∗

∥∥∥
2

)
≤ 1

2wj

(
Rϵr +Hσϵp + LHσ

∥∥∥θ(i)∗ − θ
(j)
∗

∥∥∥
2

)
.

We require that LHσ ≤ wj (the same restriction (20) in Lemma I.2); then we get∥∥∥θ(j)∗ − θ
(i)
∗

∥∥∥
2
≤ 1

2wj
(Rϵr +Hσϵp) +

wj

2wj

∥∥∥θ(i)∗ − θ
(j)
∗

∥∥∥
2
,

which gives ∥∥∥θ(j)∗ − θ
(i)
∗

∥∥∥
2
≤ 1

wj
(Rϵr +Hσϵp) ≤

Λ(ϵp, ϵr)

w
,

where w := mini∈[N̄ ] wi and Λ(ϵp, ϵr) := Rϵr +Hσϵp (the same definition in Lemma I.3).
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I KEY LEMMAS

In this section, we first decompose the mean squared error and then present seven lemmas, each
bounding one term in the decomposition.

I.1 ERROR DECOMPOSITION

Lemma I.1 (Error decomposition). The one-step mean squared error can be decomposed recur-
sively as follows:

E
∥∥θ̄t+1 − θ∗

∥∥2 ≤ E
∥∥θ̆t+1 − θ∗

∥∥2 = E
∥∥θ̄t − θ∗

∥∥2
+ 2αtE

〈
θ̄t − θ∗, ḡ

(
θ̄t
)
− ḡ (θ∗)

〉
(descent direction)

+
2αt

N

N∑
i=1

E
〈
θ̄t − θ∗, ḡ

(i)
(
θ̄t
)
− ḡ

(
θ̄t
)〉

(gradient heterogeneity)

+
2αt

N

N∑
i=1

E
〈
θ̄t − θ∗,

(
ḡ(i)

(
θ
(i)
t

)
− ḡ(i)

(
θ̄t
))〉

(client drift)

+
2αt

N

N∑
i=1

E
〈
θ̄t − θ∗, ḡ

(i)
t−τ

(
θ
(i)
t

)
− ḡ(i)

(
θ
(i)
t

)〉
(gradient progress)

+
2αt

N

N∑
i=1

E
〈
θ̄t − θ∗, g

(i)
t−τ

(
θ
(i)
t , Õ

(i)
t

)
− ḡ

(i)
t−τ

(
θ
(i)
t

)〉
(mixing)

+
2αt

N

N∑
i=1

E
〈
θ̄t − θ∗, g

(i)
t

(
θ
(i)
t , O

(i)
t

)
− g

(i)
t−τ

(
θ
(i)
t , Õ

(i)
t

)〉
(backtracking)

+ α2
tE

∥∥∥∥∥ 1

N

N∑
i=1

g
(i)
t

(
θ
(i)
t

)∥∥∥∥∥
2

. (gradient variance)

One can verify the above decomposition given ḡ(θ∗) = 0.

I.2 DESCENT DIRECTION

Lemma I.2 (Descent direction). There exist positive constants {wi}i∈[N̄ ] such that for any ∥θ∥ ≤ G,
we have 〈

θ − θ
(i)
∗ , ḡ(i)(θ)− ḡ(i)(θ

(i)
∗ )
〉
≤ −wi

∥∥∥θ − θ
(i)
∗

∥∥∥2 , ∀i ∈ [N̄ ].

Proof. We drop the subscript (i) in this lemma since the following derivation holds for all MDPs.
We first denote ∆θ = θ − θ∗. Then, we have

⟨θ − θ∗, ḡ(θ)− ḡ(θ∗)⟩ =∆θT
((
Āθθ + b̄θ

)
−
(
Āθ∗θ∗ + b̄θ∗

))
=∆θT Āθ∗∆θ +∆θT

(
Āθ − Āθ∗

)
θ +∆θT (b̄θ − b̄θ∗)

≤∆θT Āθ∗∆θ + ∥∆θ∥
∥∥Āθ − Āθ∗

∥∥ ∥θ∥+ ∥∆θ∥
∥∥b̄θ − b̄θ∗

∥∥
≤∆θT Āθ∗∆θ + (1 + γ)Lσ∥θ∥∥∆θ∥2 +RLσ∥∆θ∥2 (15)

=∆θT (Āθ∗ + Lσ(R+ (1 + γ)∥θ∥)I)∆θ

≤∆θT
(
Āθ∗ + LσH · I

)
∆θ (16)

=:∆θT Ãθ∗∆θ,

where (15) uses Lemma G.2, and (16) uses the fact that ∥θ∥ ≤ G and H := R + (1 + γ)G. By
(Tsitsiklis & Van Roy, 1996, Theorem 2), Āθ∗ is negative definite in the sense that x∗Ax < 0
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for any vector x ∈ Rd. Specifically, for any nonzero x ∈ Rd, we denote u = xTϕ(S,A) and
u′ = xTϕ(S′, A′). Then, for any x ̸= 0, by Definition 5, we have

xT Āθx = Eφθ

[
γuu′ − u2

]
= γE[uu′]−E[u2] ≤ γ

2

(
E[u2] + E[u′2]

)
−E[u2] = (γ−1)E[u2] < 0,

(17)
where we use the fact that E[u2] = E[u′2] under a steady distribution. Let Φ

(i)
θ :=

E
µ
(i)
θ

[ϕ(S,A)ϕT (S,A)] ≻ 0. We define

λ(i) := λmin

(
Φ

(i)

θ
(i)
∗

)
, λ := min

i∈[N̄ ]
λ(i). (18)

By (17), we have

−wi :=
1

2
λmax

(
sym

(
Ā

(i)

θ
(i)
∗

))
≤ 1

2
(γ − 1)λmin

(
Φ

(i)

θ
(i)
∗

)
=

γ − 1

2
λ(i). (19)

where sym(A) := 1
2 (A + A∗) maps general matrices to Hermitian matrices. Due to the positive

definiteness of Φ(i)

θ
(i)
∗

, We know wi > 0 for any i ∈ [N̄ ]. By Zhang (2011, Theorem 10.21) and the
linearity of the sym function, we know

λmax

(
sym

(
Ã

(i)

θ
(i)
∗

))
≤ λmax

(
sym

(
Ā

(i)

θ
(i)
∗

))
+ λmax(sym(LσH · I)) = −2wi + LσH.

Let w = mini∈[N̄ ]{wi}. Then, we can choose L to be small enough such that

L ≤ w

σH
, (20)

which gives
−wi ≥ λmax

(
sym

(
Ã

(i)

θ
(i)
∗

))
.

Therefore, for any i ∈ [N̄ ], we have〈
θ − θ

(i)
∗ , ḡ(i)(θ)− ḡ(i)(θ

(i)
∗ )
〉
≤ λmax

(
sym

(
Ã

(i)

θ
(i)
∗

))∥∥∥θ − θ
(i)
∗

∥∥∥2 ≤ −wi

∥∥∥θ − θ
(i)
∗

∥∥∥2 . (21)

Remark 1 (Convergence constant). Equation (21) mirrors the result of stochastic gradient descent
(SGD) (Bottou et al., 2018), with w being analogous to the Lipschitz constant of a function’s gradi-
ent. Therefore, similar to SGD, w controls the convergence rate of our algorithm.
Remark 2 (Exploration constant). The value of w depends on λ, a constant that reflects the explo-
ration difficulty of the environment. We can see this by considering a simple tabular setting, where
the feature map ϕ is simply the indicator function (see Appendix M for detailed definitions). Then
Eµ[ϕ(S,A)ϕ

T (S,A)] reduces to diag{µ(s, a)}(s,a)∈S×A. In this case, the minimal eigenvalue of
Φ is min(s,a)∈S×A µ(s, a), i.e., the probability of visiting the least probable state-action pair under
the steady distribution.

We say an environment is hard to explore if some state-action pairs have a very small probability
of being visited under the steady distribution, then λ is small. Conversely, λ is large when the
environment is easy to explore. Intuitively, an environment that is hard to explore requires more
samples to learn an optimal policy.

In the context of LFA, the value of λ, and consequently w, is determined by the conditions of both
the MDPs and the feature map ϕ. If the environments in the feature space are easy to explore under
the MDPs, λ and w will take on larger values, and the algorithm converges faster.

I.3 GRADIENT HETEROGENEITY

Lemma I.3 (Gradient heterogeneity). For ∥θ∥ ≤ G, we have∥∥∥∥∥ḡ(θ)− 1

N

N∑
i=1

ḡ(i)(θ)

∥∥∥∥∥ ≤ Hσϵp +Rϵr =: Λ(ϵp, ϵr)
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Proof. Directly applying the decomposition in Definition 5 and Lemma G.2 gives∥∥∥∥∥ḡ(θ)− 1

N

N∑
i=1

ḡ(i)(θ)

∥∥∥∥∥ =

∥∥∥∥∥(Āθθ + b̄θ)−
1

N

N∑
i=1

(Ā
(i)
θ θ + b̄

(i)
θ )

∥∥∥∥∥
≤ 1

N

N∑
i=1

(∥∥∥b̄θ − b̄
(i)
θ

∥∥∥+ ∥Āθ − Ā
(i)
θ ∥∥θ∥

)
≤σϵp (R+ (1 + γ)∥θ∥) +Rϵr,

I.4 CLIENT DRIFT

Before bounding the gradient progress, we first bound the client drift.
Lemma I.4 (Client drift). If ∥θ̄t∥ ≤ G holds for all t ∈ N, then

1

N

N∑
i=1

∥∥∥ḡ(i)(θ(i)t )− ḡ(i)(θ̄t)
∥∥∥2 ≤ α2

t−k (1 + γ + σLH)
2
C2

drift,

where k is the smallest integer such that t− k ≡ 0 (mod K), and

C2
drift = 4K2H2.

Proof. Similar to (15) in the proof of Lemma I.2, we have∥∥∥ḡ(i)(θ(i)t )− ḡ(i)(θ̄t)
∥∥∥ ≤ (1 + γ + Lσ

(
R+ (1 + γ)∥θ̄t∥

)) ∥∥∥θ(i)t − θ̄t

∥∥∥ (22)

Then, since ∥θ̄t∥ ≤ G, we have

1

N

N∑
i=1

∥∥∥ḡ(i)(θ(i)t )− ḡ(i)(θ̄t)
∥∥∥2 ≤ (1 + γ + σLH)

2 · 1
N

N∑
i=1

∥∥∥θ(i)t − θ̄t

∥∥∥2 . (23)

Let Ωt := 1
N

∑N
i=1

∥∥∥θ(i)t − θ̄t

∥∥∥2. We then need to bound Ωt. First, if t ≡ 0 (mod K), we have
Ωt = 0. Now suppose t ̸≡ 0 (mod K). Let k be the smallest integer such that t − k ≡ 0
(mod K). Then we know that there is no aggregation step between time step t − k and t, and
θ̄t−l = 1/N

∑N
i=1 θ

(i)
t−l for 0 ≤ l ≤ k. Therefore, we have

∥∥∥θ(i)t − θ̄t

∥∥∥2 =

∥∥∥∥∥θ(i)t−k − θ̄t−k +

k∑
l=1

αt−l

(
g
(i)
t−l(θ

(i)
t−l)− gt−l(θt−l)

)∥∥∥∥∥
2

≤ kα2
t−k

k∑
l=1

∥∥∥g(i)t−l(θ
(i)
t−l)− gt−l(θt−l)

∥∥∥2 ,
where gt(θt) = 1

N

∑N
i=1 g

(i)
t (θ

(i)
t ), and we choose α to be non-increasing. Since for a random

vector X , Var(X) ≤ E∥X∥2, we have

Ωt ≤ kα2
t−k

k∑
l=1

1

N

N∑
i=1

∥∥∥g(i)t−l(θ
(i)
t−l)− gt−l(θt−l)

∥∥∥2
≤ kα2

t−k

k∑
l=1

1

N

N∑
i=1

∥∥∥g(i)t−l(θ
(i)
t−l)

∥∥∥2
≤ kα2

t−k

k∑
l=1

1

N

N∑
i=1

2

(∥∥∥g(i)t−l(θ
(i)
t−l)− g

(i)
t−l(θ̄t−l)

∥∥∥2 + ∥∥∥g(i)t−l(θ̄t−l)
∥∥∥2)
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where we also used Jensen’s inequality. By the definition of the Markovian semi-gradients (see
Definition 4), they are linear and Lipschitz continuous with the Lipschitz constant bounded by
∥A(i)

t−l∥ ≤ 1+γ. However, it is worth emphasizing that the mean-path semi-gradients are non-linear
and non-Lipschitz continuous (unless ∥θ̄t∥ is bounded; see (22)). Given the Lipschitz continuity, we
have

Ωt ≤ 2kα2
t−k

k∑
l=1

1

N

N∑
i=1

(
(1 + γ)2

∥∥∥θ(i)t−l − θ̄t−l

∥∥∥2 +H2

)

= 2kα2
t−k

(
kH2 + (1 + γ)2

k∑
l=1

Ωt−l

)
. (24)

Recursively applying (24) gives

Ωt ≤2kα2
t−k

(
kH2 + (1 + γ)2

k∑
l=2

Ωt−l

)
+ 2kα2

t−k(1 + γ)2 · 2(k − 1)α2
t−k

(
kH2 + (1 + γ)2

k∑
l=2

(Ωt−l)

)

≤2kα2
t−k

(
1 + 8(k − 1)α2

t−k

)(
kH2 + (1 + γ)2

k∑
l=2

Ωt−l

)

≤2kα2
t−k

k∏
j=1

(
1 + 8(k − j)α2

t−k

) (
kH2 + (1 + γ)2Ωt−k

)
≤2kα2

t−k

(
1 + 8kα2

t−k

)k · kH2,

where we use the fact that Ωt−k = 0. To continue, we impose a constraint on the initial step-size by
requiring 4Kα0 ≤ 1, which gives 16k2α2

t−k ≤ 1. Then, we have

(1 + 8kα2
t−k)

k ≤ 1 +

k∑
l=1

kl(8kα2
t−k)

l ≤ 1 +
8k2α2

t−k

1− 8k2α2
t−k

≤ 1 + 16k2α2
t−k ≤ 2. (25)

Therefore, we get

Ωt ≤ 2k2H2α2
t−k(1 + 16k2α2

t−k) ≤ 4k2H2α2
t−k ≤ α2

t−kC
2
drift. (26)

Plugging (26) back into (23) gives the final result.

Corollary I.4.1. For future reference, we extract two bounds on the client drift from the proof of
Lemma I.4:

Ωt ≤ α2
t−kC

2
drift, ωt ≤ αt−kCdrift,

where ωt :=
1
N

∑N
i=1 ∥θ

(i)
t − θ̄t∥.

I.5 GRADIENT PROGRESS

To bound the gradient progress, we first need to bound the parameter progress. Instead of directly
bounding the client parameter progress, we bound the central parameter progress, which then gives
the client parameter progress combining Lemma I.4.
Lemma I.5 (Central parameter progress). If

∥∥θ̄l∥∥ ≤ G for any l ≤ t, then we have∥∥θ̄t − θ̄t−τ

∥∥ ≤ αsKCprog(τ),

where s is the largest integer such that sK ≤ t− τ and

Cprog(τ) = 2(τ + 2K)(H + 2α0Cdrift) = O(τ).

Proof. Bounding the central parameter progress is harder than bounding the client parameter
progress since

∥θ̄t − θ̄t−1∥ ̸≤ αt−1(R+ (1 + γ)∥θ̄t−1∥).
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Therefore we need to introduce the client drift, and then bound the parameter progress using Lemma
I.4. First, for any t, we have

∥θ̄t∥ ≤ ∥θ̆t∥ =

∥∥∥∥∥θ̄t−1 +
αt−1

N

N∑
i=1

g
(i)
t−1

(
θ
(i)
t−1

)∥∥∥∥∥
=

∥∥∥∥∥θ̄t−1 +
αt−1

N

N∑
i=1

(
A(i)

(
O

(i)
t−1

)
θ̄t−1 +A(i)

(
O

(i)
t−1

)(
θ
(i)
t−1 − θ̄t−1

)
+ b(i)

(
O

(i)
t−1

))∥∥∥∥∥
≤ (1 + αt−1(1 + γ))∥θ̄t−1∥+ αt−1(R+ 2ωt−1), (27)

where ωt−1 is defined in Corollary I.4.1. Let k be the smallest positive integer such that t − k ≡ 0
(mod K) (if t ≡ 0 (mod K), then k = K). Recursively applying (27) gives

∥θ̄t∥ ≤
t−1∏

l=t−k

(1 + 2αl)
∥∥θ̄t−k

∥∥+ k−1∑
j=0

(1 + 2αt−j)
jαt−j−1(R+ 2ωt−1)

≤(1 + 2αt−k)
k
∥∥θ̄t−k

∥∥+ αt−k(R+ 2αt−kCdrift)
(1 + 2αt−k)

k − 1

2αt−k
(28)

≤(1 + 4kαt−k)
∥∥θ̄t−k

∥∥+ 2kαt−k(R+ 2αt−kCdrift) (29)

≤2∥θ̄t−k∥+ 2kαt−k(R+ 2αt−kCdrift), (30)

where (28) uses Corollary I.4.1 and we require α to be non-increasing; and in (29) and (30), we
require that 4α0K ≤ 1, which gives (1+2αt−k)

k ≤ 1+4kαt−k with the similar reasoning in (25).

Now we are ready to bound any central parameter progress between two aggregation steps. Since
t− k ≡ 0 (mod K), we have ∥θ̄t−k∥ ≤ Ḡ. Then by (7), we get

∥θ̄t − θ̄t−k∥ ≤
∥∥∥θ̆t − θ̄t−k

∥∥∥ ≤ t−1∑
l=t−k

∥θ̄l+1 − θ̄l∥

(27)

≤
t−1∑

l=t−k

αl

(
R+ (1 + γ)∥θ̄l∥+ 2ωl

)
(30)

≤ kαt−k(R+ 2(1 + γ)∥θ̄t−k∥+ 4kαt−k(R+ 2αt−kCdrift) + 2αt−kCdrift)

≤2kαt−k

(
R+ (1 + γ)∥θ̄t−k∥+ 2αt−kCdrift

)
, (31)

where we use the fact that γ < 1 and 4kαt−k ≤ 1.

Finally, we need to bound the central parameter progress for general time period τ . For any t >
τ > 1, let s be the largest integer such that sK ≤ t − τ . And let s′ be the largest integer such that
s′K ≤ t. Then we have

∥θ̄t − θ̄t−τ∥ ≤
s′−s∑
j=1

∥θ̄(s+j)K − θ̄(s+j−1)K∥+ ∥θ̄t − θ̄s′K∥+ ∥θ̄t−τ − θ̄sK∥

(31)

≤ 2(τ + 2K)αsK(R+ 2αsKCdrift)

+ 2(1 + γ)αsK

s′−s∑
j=1

K∥θ̄(s+j−1)K∥+ (t− s′K)∥θ̄s′K∥+ (t− τ − sK)∥θ̄sK∥


≤2αsK(τ + 2K)(R+ 2αsKCdrift) + 2αsK(τ + 2K)(1 + γ)G

≤2αsK(τ + 2K) (R+ (1 + γ)G+ 2αsKCdrift)

≤αsKCprog(τ), (32)

where Cprog(τ) := 2(τ + 2K)(H + 2α0Cdrift) = O(τ).
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Corollary I.5.1 (Client parameter progress). If
∥∥θ̄l∥∥ ≤ G holds for all l ≤ t, we also have∥∥∥θ(i)t − θ

(i)
t−τ

∥∥∥ ≤ αsKCprog(τ),

where s is the largest integer such that sK ≤ t− τ .

Proof. If t ≡ 0 (mod K) and t− τ ≡ 0 (mod K), then θ
(i)
t = θ̄t and θ

(i)
t−τ = θ̄t−τ , and the result

directly follows Lemma I.5. Without loss of generality, we assume t ̸≡ 0 (mod K) and t − τ ̸≡ 0
(mod K). Let s be the largest integer such that sK < t − τ . And let s′ be the largest integer such
that s′K < t. Similar to (32), we have∥∥∥θ(i)t − θ

(i)
t−τ

∥∥∥ ≤∥θ̄s′K − θ̄sK∥+
∥∥∥θ(i)t − θ̄s′K

∥∥∥+ ∥∥∥θ(i)t−τ − θ̄sK

∥∥∥ .
By Lemma I.5, we have ∥∥θ̄s′K − θ̄sK

∥∥ ≤ αsKCprog(s
′K − sK − 2K),

where we subtract 2K to offset the addition of 2K in Lemma I.5 for general t and τ .

Then to bound the client parameter progress after a synchronization, we first notice that when t ̸≡ 0
(mod K), we have ∥∥∥θ(i)t − θ

(i)
t−1

∥∥∥ ≤ 2αt−1

∥∥∥θ(i)t−1

∥∥∥+ αt−1R.

Similar to (27)-(30), we have∥∥∥θ(i)t

∥∥∥ ≤(1 + 2αt−1)
∥∥∥θ(i)t

∥∥∥+ αt−1R

≤
t−1∏

l=t−k

(1 + 2αl)
∥∥θ̄t−k

∥∥+R

k−1∑
j=0

(1 + 2αt−j)
jαt−j−1

≤2
(
∥θ̄t−k∥+ kαt−kR

)
,

where k is the smallest integer such that t− k ≡ 0 (mod K). Then, we get∥∥∥θ(i)t − θ
(i)
t−k

∥∥∥ ≤ t−1∑
l=t−k

∥∥∥θ(i)l+1 − θ
(i)
l

∥∥∥
≤

k−1∑
l=t−k

αl

(
(1 + γ)

∥∥∥θ(i)l

∥∥∥+R
)

≤kαt−k

(
2(1 + γ)

(
∥θ̄t−k∥+ kαt−kR

)
+R

)
≤2kαt−k

(
R+ (1 + γ)∥θ̄t−k∥

)
,

where we use the fact that 4kαt−k ≤ 1. Therefore, we have∥∥∥θ(i)t − θs′K

∥∥∥ ≤ 2(t− s′K)αs′KH ≤ 2αsKKH,∥∥∥θ(i)t−τ − θsK

∥∥∥ ≤ 2(t− τ − sK)αsKH ≤ 2αsKKH.

Putting all together gives∥∥∥θ(i)t − θ
(i)
t−τ

∥∥∥ ≤ αsK(Cprog(s
′K − sK − 2K) + 4KH) ≤ αsKCprog(τ).

With the above corollary, we are ready to bound the gradient progress.
Corollary I.5.2 (Graident progress). If

∥∥θ̄l∥∥ ≤ G holds for all l ≤ t, then for any θ, we have∥∥∥ḡ(i)t−τ (θ)− ḡ
(i)
t (θ)

∥∥∥ ≤ Lσh(θ)αsKCprog(τ),

where s is the largest integer such that sK ≤ t− τ .
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Proof.∥∥∥ḡ(i)t−τ (θ)− ḡ
(i)
t (θ)

∥∥∥ =
∥∥∥(Ā(i)

t−τ − Ā
(i)
t

)
θ + b̄

(i)
t−τ − b̄

(i)
t

∥∥∥ ≤ Lσ (R+ (1 + γ)∥θ∥)
∥∥∥θ(i)t−τ − θ

(i)
t

∥∥∥ ,
where the inequality uses Lemma G.2. Then we get the desired result by plugging in Corollary I.5.1.

The third corollary of Lemma I.5 is the expression of G, which was stated as an assumption in
previous lemmas.
Corollary I.5.3 (Parameter bound). Given the explicit projection ΠḠ, for any t ∈ N, we have∥∥θ̄t∥∥ ≤ G :=

2(2Ḡ+R)

1− 16α2
0K

2γ
≤ 2(2Ḡ+R)

1− γ
.

Proof. For any t ∈ N, by (30) in Lemma I.5, we have∥∥θ̄t∥∥ ≤ 2
(
Ḡ+Kα0(R+ 2α0Cdrift)

)
.

Plugging the expression of Cdrift in Lemma I.4 into the above inequality gives the recursive defini-
tion:

G = 2(Ḡ+ α0K(R+ 2α0 · 2K(R+ (1 + γ)G))).

Note that we require 4Kα0 ≤ 1 in Lemma I.5. Thus, we have
G ≤ 2Ḡ+R+ 8α2

0K
2(1 + γ)G,

which gives

G ≤ 2(2Ḡ+R)

1− 16α2
0K

2γ
.

Therefore, we let G := 2(2Ḡ+R)/(1− 16α2
0K

2γ); and then, we have∥∥θ̄t∥∥ ≤ 2Ḡ+R+ 8α2
0K

2(1 + γ)G ≤ G.

I.6 MIXING

Unlike stationary MDPs in TD(0) and off-policy Q-learning, the mixing process in our algorithm is
a virtual process. After backtracking, we fixed the policy as Γ(θ(i)t−τ ), which then introduces a virtual
stationary MDP. We denote Õ

(i)
t = (S̃

(i)
t , Ũ

(i)
t , S̃

(i)
t+1, Ũ

(i)
t+1) the observation of this virtual MDP at

time step t.
Lemma I.6 (Mixing). Let Ft−τ denote the filtration containing all preceding randomness up to
time step t − τ . For any deterministic θ conditioned on Ft−τ—such as a constant parameter or a
parameter determined by Ft−τ—we have∥∥∥E [g(i)t−τ (θ, Õ

(i)
t )− ḡ

(i)
t−τ (θ)

∣∣∣Ft−τ

]∥∥∥ ≤ miρ
τ
i h (θ)

Proof. We define a new TD operator:

Z
(i)
t−τ

(
θ, Õ

(i)
t

)
:= g

(i)
t−τ

(
θ, Õ

(i)
t

)
− ḡ

(i)
t−τ (θ) .

Then, we have∥∥∥E [Z(i)
t−τ

(
θ, Õ

(i)
t

) ∣∣∣Ft−τ

]∥∥∥
=
∥∥∥E [g(i)t−τ

(
θ, Õ

(i)
t

) ∣∣∣Ft−τ

]
− ḡ

(i)
t−τ (θ)

∥∥∥
=

∥∥∥∥∫
S2×A2

ϕ(s, a)
(
r(i)(s, a) + γϕT (s′, a′)θ − ϕT (s, a)θ

)(
P

(i)
t−τ

(
Õ

(i)
t = O

∣∣∣Ft−τ

)
− φ

(i)
t−τ (O)

)
dO

∥∥∥∥
≤ (R+ (1 + γ) ∥θ∥) ·

∥∥∥P (i)
t−τ (S̃

(i)
t = ·

∣∣∣Ft−τ )− η
(i)
t−τ

∥∥∥
TV

≤miρ
τ
i (R+ (1 + γ) ∥θ∥) ,

where the last inequality is by Assumption 1.
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I.7 BACKTRACKING

Lemma I.7 (Backtracking). If ∥θ̄l∥ ≤ G for all l ≤ t, then for any deterministic θ conditioned on
Ft−τ , we have ∥∥∥E [g(i)t (θ,O

(i)
t )− g

(i)
t−τ (θ, Õ

(i)
t )
∣∣∣Ft−τ

]∥∥∥ ≤ αsKCback(τ)h (θ) ,

where
Cback(τ) = τLCprog(τ) = O(τ2).

Proof. First, we have∥∥∥E [g(i)t (θ,O
(i)
t )− g

(i)
t−τ (θ, Õ

(i)
t )
∣∣∣Ft−τ

]∥∥∥
≤ (R+ (1 + γ) ∥θ∥)

∥∥∥∥P (i)

θ
(i)
t

(O
(i)
t = · | Ft−τ )− P

(i)

θ
(i)
t−τ

(Õ
(i)
t = · | Ft−τ )

∥∥∥∥
TV

.

For a specific client, for notation simplicity, we omit the superscript (i) and denote Pθt by Pt. Let
O = (s, a, s′, a′); then we have

Pt(Ot = O|Ft−τ ) =

∫
Θ2

Pt(St = s, Ut = a, St+1 = s′, Ut+1 = a′, θt−1 = θ, θt = θ′|Ft−τ )dθdθ
′

=

∫
Θ2

Pt(St = s|Ft−τ ) · Pt(θt−1 = θ|Ft−τ , St = s)

· Pt(Ut = a|Ft−τ , St = s, θt−1 = θ)

· Pt(St+1 = s′|Ft−τ , St = s, θt−1 = θ, at = a)

· Pt(θt = θ′|Ft−τ , St = s, θt−1 = θ, Ut = a, St+1 = s′)

· Pt(Ut+1 = a′|Ft−τ , St = s, θt−1 = θ, Ut = a, St+1 = s′, θt = θ′)dθdθ′

=

∫
Θ2

Pt(St = s|θt−τ , St−τ ) · Pt(θt−1 = θ|θt−τ , St−τ , St = s) · πθ(a|s)

· Pa(s, s
′) · Pt(θt = θ′|θt−τ , St−τ , θt−1 = θ, St = s, Ut = a) · πθ′(a′|s′)dθdθ′,

where we use that fact that Ut is dependent on θt−1 instead of θt; and when θt−1 is determined, θt
is not dependent on St+1. Notice that for any (s, s′, a) ∈ S2 ×A, we have∫

Θ2

Pt(θt−1 = θ|Ft−τ , St = s) · Pt(θt = θ′|Ft−τ , θt−1 = θ, St = s, Ut = a)dθdθ′ = 1.

Thus, for Pt−τ (Õ|Ft−τ ), we have a similar expression:

Pt−τ (Õt = O|Ft−τ ) =

∫
Θ2

Pt−τ (S̃t = s, Ũt = a, S̃t+1 = s′, Ũt+1 = a′|Ft−τ ) · Pt(θt−1 = θ|Ft−τ , St = s)

· Pt(θt = θ′|Ft−τ , θt−1 = θ, St = s, Ut = a)dθdθ′

=

∫
Θ2

Pt−τ (S̃t = s|θt−τ , St−τ ) · πθt−τ
(a|s) · Pa(s, s

′) · πθt−τ
(a′|s′)

· Pt(θt−1 = θ|θt−τ , St−τ , St = s) · Pt(θt = θ′|θt−τ , St−τ , θt−1 = θ, St = s, Ut = a)dθdθ′

Therefore, we decompose the observation distribution discrepancy as follows:∥∥∥Pt(Ot|Ft−τ )− Pt−τ (Õt|Ft−τ )
∥∥∥
TV
≤

∫
S2×A2

(∣∣∣Pt(Ot = O|Ft−τ )−Qt(O)
∣∣∣︸ ︷︷ ︸

S1

+
∣∣∣Qt(O)−Pt−τ (Õt = O|Ft−τ )

∣∣∣︸ ︷︷ ︸
S2

)
dO,

where

Ql(O) :=

∫
Θ2

Pt−τ (S̃l = s|θt−τ , St−τ ) · πθt−τ
(a|s) · Pa(s, s

′) · πθ′(a′|s′)

· Pl(θl−1 = θ|θt−τ , St−τ , Sl = s) · Pl(θl = θ′|θt−τ , St−τ , θl−1 = θ, Sl = s, Ul = a)dθdθ′.
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For S1, we have∫
S2×A2

∣∣∣Pt−τ (Õt = O|Ft−τ )−Qt(O)
∣∣∣dO

≤
∫
S2×A2×Θ2

Pt−τ (S̃t = s|θt−τ , St−τ )πθt−τ
(a|s)Pa(s, s

′)Pt(θt−1 = θ|θt−τ , St−τ , St = s)

· Pt(θt = θ′|θt−τ , St−τ , θt−1 = θ, St = s, Ut = a)
∣∣πθt−τ (a

′|s′)− πθ′(a′|s′)
∣∣dOdθdθ′

=

∫
S2×A×Θ2

Pt−τ (S̃t = s|θt−τ , St−τ )πθt−τ
(a|s)Pa(s, s

′)Pt(θt−1 = θ|θt−τ , St−τ , St = s)

· Pt(θt = θ′|θt−τ , St−τ , θt−1 = θ, St = s, Ut = a) ·
∥∥πθt−τ

(·|s′)− πθ′(·|s′)
∥∥
TV

dsds′dadθdθ′.

By the Lipschitzness of the policy improvement operator (see Assumption 2), we know

sup
s′∈S

∥∥πθt−τ
(·|s′)− πθ′(·|s′)

∥∥
TV
≤ L ∥θt−τ − θ′∥ .

Then for any θ′ ∈ Θ for which Pt(θt = ·|Ft−τ ) has non-zero density, meaning that θ′ is reachable
at time step t, Corollary I.5.1 implies∥∥∥θ(i)t−τ − θ′

∥∥∥ ≤ αsKCprog(τ),

where s is the largest integer such that sK ≤ t− τ .

Therefore, we have∫
S2×A2

∣∣∣Pt−τ (Õt = O|Ft−τ )−Qt(O)
∣∣∣dO ≤ αsKLCprog(τ).

For S2, we have∫
S2×A2

|Pt(Ot = O|Ft−τ )−Qt(O)|dO

≤
∫
S2×A2×Θ2

Pt(θt−1 = θ|θt−τ , St−τ , St = s)Pt(θt = θ′|θt−τ , St−τ , St = s, Ut = a, θt−1 = θ)πθ′(a′|s′)Pa(s, s
′)

·
∣∣∣Pt−τ (S̃t = s|θt−τ , St−τ )πθt−τ (a|s)− Pt(St = s|θt−τ , St−τ )πθ(a|s)

∣∣∣ dOdθdθ′

=

∫
S×A×Θ

Pt(θt−1 = θ|θt−τ , St−τ , St = s)

·
∣∣∣Pt−τ (S̃t = s|θt−τ , St−τ )πθt−τ

(a|s)− Pt(St = s|θt−τ , St−τ )πθ(a|s)
∣∣∣dsdadθ

≤
∫
S×A×Θ

Pt(θt−1 = θ|θt−τ , St−τ , St = s)

·
(∣∣∣Pt−τ (S̃t = s|θt−τ , St−τ )πθt−τ

(a|s)− Pt−τ (S̃t = s|θt−τ , St−τ )πθ(a|s)
∣∣∣

+
∣∣∣Pt−τ (S̃t = s|θt−τ , St−τ )πθ(a|s)− Pt(St = s|θt−τ , St−τ )πθ(a|s)

∣∣∣)dsdadθ
≤ sup

s∈S
∥πt−τ (·|s)− πθ(·|s)∥TV +

∥∥∥Pt−τ (S̃t = ·|Ft−τ )− Pt(St = ·|Ft−τ )
∥∥∥
TV

≤αsKLCprog(τ − 1) +
∥∥∥Pt−τ (S̃t = ·|Ft−τ )− Pt(St = ·|Ft−τ )

∥∥∥
TV

.

Substituting S1 and S2 with the above bounds gives∥∥∥Pt(Ot|Ft−τ )− Pt−τ (Õt|Ft−τ )
∥∥∥
TV
≤
∥∥∥Pt−τ (S̃t = ·|Ft−τ )− Pt(St = ·|Ft−τ )

∥∥∥
TV

+αsKL

τ∑
l=τ−1

Cprog(l).

(33)
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Applying a similar decomposition as S1 and S2, we can obtain an analogous bound to (33) for the
state distribution discrepancy:∥∥∥Pt−τ (S̃t = ·|Ft−τ )− Pt(St = ·|Ft−τ )

∥∥∥
TV

≤
∥∥∥Pt−τ (S̃t−1 = ·|Ft−τ )− Pt−1(St−1 = ·|Ft−τ )

∥∥∥
TV

+ αsKLCprog(τ − 2)

≤
∥∥∥Pt−τ (S̃t−τ = ·|Ft−τ )− Pt−τ (St−τ = ·|Ft−τ )

∥∥∥
TV

+

τ−2∑
l=1

αsKLCprog(l)

≤(τ − 2)αsKLCprog(τ).

Putting this bound back into (33) gives∥∥∥Pt(Ot|Ft−τ )− Pt−τ (Õt|Ft−τ )
∥∥∥
TV
≤τasKLCprog(τ).

Finally, we get∥∥∥E [g(i)t (θ,O
(i)
t )− g

(i)
t−τ (θ, Õ

(i)
t )
∣∣∣Ft−τ

]∥∥∥ ≤ταsKLCprog(τ) (R+ (1 + γ) ∥θ∥) .

I.8 GRADIENT VARIANCE

Lemma I.8 (Gradient variance).

E ∥gt(θt)∥2 ≤ 64

(
E
∥∥θ̄t − θ∗

∥∥2 + Λ2(ϵp, ϵr)

w2

)
+ α2

sKCvar(τ) + 4m2ρ2τH2 +
32H2

N
,

where
Cvar(τ) = 4

(
4(3 +H2L2σ2)C2

drift + 4H2L2σ2C2
prog(τ) +H2C2

back(τ)
)
.

Proof. Similar to Lemma I.1, we first decompose the gradient variance and establish the linear
speedups for the backtracking and mixing terms.

∥gt(θt)∥2 = ∥gt(θt)− ḡ(θ∗)∥2 (34)

=
∥∥∥gt(θt)− gt(θ∗,Ot) + gt(θ∗,Ot)− gt−τ (θ∗, Õt)

+gt−τ (θ∗, Õt)− ḡt−τ (θ∗) + ḡt−τ (θ∗)− ḡ(θ∗)
∥∥∥2 (35)

≤ 4

N

N∑
i=1

(∥∥∥g(i)t

(
θ
(i)
t

)
− g

(i)
t

(
θ
(i)
∗

)∥∥∥2︸ ︷︷ ︸
G1

+
∥∥∥ḡ(i)t−τ

(
θ
(i)
∗

)
− ḡ

(
θ
(i)
∗

)∥∥∥2︸ ︷︷ ︸
G2, gradient progress

)

+ 4
∥∥∥gt (θ∗,Ot)− gt−τ

(
θ∗, Õt

)∥∥∥2︸ ︷︷ ︸
G3, backtracking

+4
∥∥∥gt−τ

(
θ∗, Õt

)
− ḡt−τ (θ∗)

∥∥∥2︸ ︷︷ ︸
G4, mixing

,

where (34) uses the fact that ḡ(θ∗) = 1
N

∑N
i=1 ḡ

(i)
(
θ
(i)
∗

)
= 0; and in (35), we denote

gt−τ (θ∗, Õt) =
1
N

∑N
i=1 g

(i)
t−τ

(
θ
(i)
∗ , Õ

(i)
t

)
, and the same notation applies to other semi-gradients.

By the Lipschitzness of semi-gradient g(i)t , G1 is bounded by∥∥∥g(i)t

(
θ
(i)
t

)
− g

(i)
t

(
θ
(i)
∗

)∥∥∥2 ≤4 ∥∥∥θ(i)t − θ
(i)
∗

∥∥∥2
≤12

(∥∥∥θ(i)t − θ̄t

∥∥∥2 + ∥∥θ̄t − θ∗
∥∥2 + ∥∥∥θ(i)∗ − θ∗

∥∥∥2) .
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By Lemma G.1, G2 is bounded by∥∥∥ḡ(i)t−τ

(
θ
(i)
∗

)
− ḡ

(
θ
(i)
∗

)∥∥∥2 ≤((R+ (1 + γ)
∥∥∥θ(i)∗

∥∥∥)∥∥∥µ(i)
t−τ − µ

(i)
∗

∥∥∥
TV

)2
≤H2L2σ2

∥∥∥θ(i)t−τ − θ
(i)
∗

∥∥∥2
≤4H2L2σ2

(∥∥∥θ(i)t−τ − θ̄t−τ

∥∥∥2 + ∥∥θ̄t−τ − θ̄t
∥∥2 + ∥∥θ̄t − θ∗

∥∥2 + ∥∥∥θ∗ − θ
(i)
∗

∥∥∥2) .

Now we are left with G3 and G4. However, we only have the bound of their first moment by Lemma
I.7 and I.6. We first note that for a set of functions {gi}Ni=1 such that ∥gi∥∞ ≤ a and independent
random variables {xi}Ni=1 such that ∥Egi(xi)∥ ≤ b, we have

E∥g(x)∥2 =E

〈
1

N

N∑
i=1

gi(xi),
1

N

N∑
i=1

gi(xi)

〉

=
1

N2

N∑
i=1

E∥gi(xi)∥2 +
1

N2

∑
i̸=j

⟨Egi(xi),Egj(xj)⟩

≤a2

N
+

1

N2

N∑
i=1

N∑
j=1

∥Egi(xi)∥∥Egj(xj)∥

≤a2

N
+ b2. (36)

By (36) and Lemma I.7, the expectation of G3 is bounded by

E
[∥∥∥gt (θ∗,Ot)− gt−τ

(
θ∗, Õt

)∥∥∥2 ∣∣∣∣Ft−τ

]
≤ 4H2

N
+ α2

sKC2
backH

2. (37)

By (36) and Lemma I.6, the expectation of G4 is bounded by

E
[∥∥∥gt−τ

(
θ∗, Õt

)
− ḡt−τ (θ∗)

∥∥∥2 ∣∣∣∣Ft−τ

]
= E

[∥∥∥Zt−τ (θ∗, Õt)
∥∥∥2 ∣∣∣∣Ft−τ

]
≤ 4H2

N
+m2ρ2τH2.

Combining all together with Lemma I.4, I.5, and Theorem 1, we get

E
[
∥gt(θt)∥2|Ft−τ

]
≤4
(
4(3 +H2L2σ2)

(
E
[∥∥θ̄t − θ∗

∥∥2 |Ft−τ

]
+ α2

sKC2
drift +

Λ2(ϵp, ϵr)

w2

)
+4H2L2σ2α2

sKC2
prog +

8H2

N
+
(
α2
sKC2

back +m2ρ2τ
)
H2

)
≤64

(
E
[∥∥θ̄t − θ∗

∥∥2 |Ft−τ

]
+

Λ2(ϵp, ϵr)

w2

)
+ α2

sKCvar + 4m2ρ2τH2 +
32H2

N
,

where we use the fact that LHσ ≤ w ≤ 1 required by (20), and

Cvar = 4
(
4(3 +H2L2σ2)C2

drift + 4H2L2σ2C2
prog +H2C2

back

)
.

Finally, we get

E∥gt(θt)∥2 = E
[
E
[
∥gt(θt)∥2|Ft−τ

]]
≤ 64

(
E
∥∥θ̄t − θ∗

∥∥2 + Λ2(ϵp, ϵr)

w2

)
+α2

sKCvar+4m2ρ2τH2+
32H2

N
.

Recall that Lemma I.5 bounds the central parameter progress, which gives a naive bound of the
mean square central parameter progress E∥θ̄t − θ̄t−τ∥2 ≤ α2

sKC2
prog(τ) for any τ ≤ t, where

s is the largest integer such that sK ≤ t − τ . However, with the help of Lemma I.8, we can
derive a tighter bound of the mean square central parameter progress, which is essential for proving
Theorem 2 later.
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Corollary I.8.1 (Mean square central parameter progress). For any τ ≤ t, we have

E
∥∥θ̄t − θ̄t−τ

∥∥2 ≤ 4(τ +K)(τ + 3K)α2
sK

(
64E

∥∥θ̄sK − θ∗
∥∥2 + V (τ)

)
,

where s is the largest integer such that sK ≤ t− τ and

V (τ) :=
64Λ2(ϵp, ϵr)

w2
+ α2

sKCvar(τ) + 4m2ρ2τH2 +
32H2

N

is part of the gradient variance bound in Lemma I.8.

Proof. Recall in Lemma I.5, we utilize a naive bound of ∥gt(θt)∥ by (R+ (1 + γ)∥θ̄t∥+ 2ωl); the
key difference in this proof is that we will bound E∥gt(θt)∥2 using Lemma I.8. Therefore, similar
to (32), let s and s′ be the largest integer such that sK ≤ t− τ and s′K ≤ t respectively. Then we
have

E∥θ̄t − θ̄t−τ∥2 ≤(s′ − s+ 2)

E∥θ̄t − θ̄s′K∥2 +
s′−s∑
j=1

E∥θ̄(s+j)K − θ̄(s+j−1)K∥2 + E∥θ̄t−τ − θ̄sK∥2


≤(s′ − s+ 2)

E∥θ̆t − θ̄s′K∥2 +
s′−s∑
j=1

E∥θ̆(s+j)K − θ̄(s+j−1)K∥2 + E∥θ̆t−τ − θ̄sK∥2


≤2(s′ − s+ 2)K

t−1∑
l=sK

α2
lE∥gl(θl)∥2

≤2(τ + 3K)α2
sK

t−1∑
l=sK

E∥gl(θl)∥2.

By Lemma I.8, we get

E∥θ̄t − θ̄t−τ∥2 ≤ 2(τ + 3K)α2
sK

t−1∑
l=sK

(
64E∥θ̄l − θ∗∥2 + V (l − sK)

)
. (38)

Then, similar to (30), we want to bound E∥θ̄l − θ∗∥2 by E∥θ̄sK − θ∗∥2 for sK < l ≤ t − 1. We
have

E
∥∥θ̄l − θ∗

∥∥2 ≤ E
∥∥∥θ̆l − θ∗

∥∥∥2
= E∥θ̄l−1 − θ∗ + αl−1gl−1 (θl−1) ∥2

= E∥θ̄l−1 − θ∗
∥∥2 + 2αl−1E

〈
θ̄l−1 − θ∗, gl−1 (θl−1)

〉
+ α2

l−1E
∥∥ gl−1 (θl−1) ∥2

≤ (1 + αl−1)E
∥∥θ̄l−1 − θ∗

∥∥2 + αl−1 (1 + αl−1)E ∥gl−1 (θl−1)∥2 (39)

≤ (1 + αl−1) (1 + 64αl−1)E∥θ̄l−1 − θ∗∥2 + αl−1 (1 + αl−1)V (l − 1− sK), (40)

where (39) uses Young’s inequality and (40) uses Lemma I.8. We require 64αsK ≤ 1, which gives
(1 + αl−1)(1 + 64αl−1) ≤ (1 + 66αl−1). Recursively applying (40) gives

E
∥∥θ̄l − θ∗

∥∥2 ≤ (1 + 66αsK)
l−sK E∥θ̄sK − θ∗∥2 + αsK (1 + αsK)V (τ)

l−1−sK∑
j=0

(1 + 66αsK)j ,

where we use the fact that V is monotonically increasing. We further requires that 132(τ+K)αsK ≤
1. Then, similar to (25), we get

E
∥∥θ̄l − θ∗

∥∥2 ≤ 2E∥θ̄sK − θ∗∥2 + 2αsK (1 + αsK) (τ +K)V (τ). (41)
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Combining (38) and (41) gives

E∥θ̄t − θ̄t−τ∥2 ≤2(τ + 3K)α2
sK

t−1∑
l=sK

(
128E∥θ̄sK − θ∗∥2 + 128αsK (1 + αsK) (τ +K)V (τ) + V (τ)

)
≤2(τ + 3K)α2

sK

t−1∑
l=sK

(
128E∥θ̄sK − θ∗∥2 +

(
128

132
· 133
132

+ 1

)
V (τ)

)
(42)

≤4(τ +K)(τ + 3K)α2
sK

(
64E∥θ̄sK − θ∗∥2 + V (τ)

)
,

where (42) uses our requirement that αt−τ ≤ (τ +K)αsK ≤ 1/132.

J PROOF OF THEOREM 2

Theorem 2. If
∥∥θ̄l∥∥ ≤ G holds for all l ≤ t, then

E
∥∥θ̄t+1 − θ∗

∥∥2 ≤ (1− αtw)E
∥∥θ̄t − θ∗

∥∥2 + αtC1Λ
2(ϵp, ϵr) + α2

t

C2

N
+ α3

tC3 + α4
tC4,

where C1, C2, C3, C4 are constants defined in (50).

Proof. We need to pre-process the results from Lemmas I.3 to I.7 before plugging them back into
Lemma I.1. Throughout this proof, let s and s′ be the largest integers such that sK ≤ t − τ and
s′K ≤ t. First, for Lemma I.3, by Young’s inequality ab ≤ 1

2

(
βa2 + 1

β b
2
)

, for any positive β, we
have

2E

〈
θ̄t − θ∗,

1

N

N∑
i=1

ḡ(i)
(
θ̄t
)
− ḡ

(
θ̄t
)〉
≤ βE

∥∥θ̄t − θ∗
∥∥2 + Λ2(ϵp, ϵr)

β
. (43)

Similarly, for Lemma I.4 and I.5.2, we have

2E

〈
θ̄t − θ∗,

1

N

N∑
i=1

(
ḡ(i)(θ

(i)
t )− ḡ(i)(θ̄t)

)〉
≤βE

∥∥θ̄t − θ∗
∥∥2 + 1

β
α2
s′K(1 + γ + σLH)2C2

drift,

(44)

1

N

N∑
i=1

2E
〈
θ̄t − θ∗, ḡ

(i)
t−τ (θ

(i)
t )− ḡ(i)(θ

(i)
t )
〉
≤βE

∥∥θ̄t − θ∗
∥∥2 + 1

β
α2
sKC2

progL
2σ2Eh2 (θt) ,

(45)

where h2(θt) =
1
N

∑N
i=1 h

2
(
θ
(i)
t

)
, and

Eh2 (θt) = 2H2 + 2(1 + γ)2E [Ωt] ≤ 2H2 + 8α2
s′KC2

drift ≤ H2
drift,

where we define Hdrift :=
√
2H2 + 8α2

0C
2
drift.

Then, for Lemma I.6, we have

1

N

N∑
i=1

E
〈
θ̄t − θ∗, g

(i)
t−τ

(
θ
(i)
t

)
− ḡ

(i)
t−τ

(
θ
(i)
t

)〉
=

1

N

N∑
i=1

E
〈
θ̄t − θ̄t−τ , g

(i)
t−τ

(
θ
(i)
t

)
− ḡ

(i)
t−τ

(
θ
(i)
t

)〉
+

1

N

N∑
i=1

E
〈
θ̄t−τ − θ∗, g

(i)
t−τ

(
θ
(i)
t

)
− ḡ

(i)
t−τ

(
θ
(i)
t

)〉
≤E

[
1

N

N∑
i=1

E
[〈

θ̄t − θ̄t−τ , g
(i)
t−τ

(
θ
(i)
t

)
− ḡ

(i)
t−τ

(
θ
(i)
t

)〉 ∣∣∣Ft−τ

]]
︸ ︷︷ ︸

H1

+ E

[
1

N

N∑
i=1

∥∥θ̄t−τ − θ∗
∥∥∥∥∥E [g(i)t−τ

(
θ
(i)
t

)
− ḡ

(i)
t−τ

(
θ
(i)
t

) ∣∣∣Ft−τ

]∥∥∥]︸ ︷︷ ︸
H2

.

38



Published as a conference paper at ICLR 2024

For H1, since both g
(i)
t−τ and ḡ

(i)
t−τ are independent of θ(i)t conditioned on Ft−τ , Lemma I.5 and I.6

give

H1 =E

[
1

N

N∑
i=1

〈
E[θ̄t − θ̄t−τ | Ft−τ ],E

[
g
(i)
t−τ

(
θ
(i)
t

)
− ḡ

(i)
t−τ

(
θ
(i)
t

) ∣∣∣Ft−τ

]〉]

≤E

[
1

N

N∑
i=1

∥∥E[θ̄t − θ̄t−τ | Ft−τ ]
∥∥∥∥∥E [Z(i)

t−τ

(
θ
(i)
t

) ∣∣∣Ft−τ

]∥∥∥]
≤αsKCprog ·mρτEh(θt) (46)
≤αsKmρτCprogHdrift.

Similarly, for H2, we have

H2 =E

[∥∥θ̄t−τ − θ∗
∥∥ 1

N

N∑
i=1

∥∥∥E [g(i)t−τ

(
θ
(i)
t

)
− ḡ

(i)
t−τ

(
θ
(i)
t

) ∣∣∣Ft−τ

]∥∥∥]
≤E

[
mρτEh (θt)

(∥∥θ̄t−τ − θ̄t
∥∥+ ∥∥θ̄t − θ∗

∥∥)]
≤mρτHdrift

(
E
∥∥θ̄t − θ∗

∥∥+ αsKCprog

)
≤1

2

(
βE
∥∥θ̄t − θ∗

∥∥2 + 1

β
m2ρ2τH2

drift

)
+ αsKmρτCprogHdrift.

Substituting H1 and H2 with the above bounds gives

1

N

N∑
i=1

2E
〈
θ̄t − θ∗, g

(i)
t−τ

(
θ
(i)
t

)
− ḡ

(i)
t−τ

(
θ
(i)
t

)〉
≤ βE

∥∥θ̄t − θ∗
∥∥2+mρτHdrift

(
1

β
mρτHdrift + 4αsKCprog

)
.

(47)

For Lemma I.7, the trick we applied in (46) is no longer valid because g
(i)
t and θ

(i)
t are correlated.

Notice that θ(i)t−τ is deterministic given Ft−τ , we first apply the following decomposition:

1

N

N∑
i=1

2E
〈
θ̄t − θ∗, g

(i)
t (θ

(i)
t , O

(i)
t )− g

(i)
t−τ (θ

(i)
t , Õ

(i)
t )
〉

=
1

N

N∑
i=1

2E
〈
θ̄t − θ∗,

(
g
(i)
t (θ

(i)
t , O

(i)
t )− g

(i)
t (θ

(i)
t−τ , O

(i)
t )
)
+
(
g
(i)
t−τ (θ

(i)
t−τ , Õ

(i)
t )− g

(i)
t−τ (θ

(i)
t , Õ

(i)
t )
)〉

︸ ︷︷ ︸
H3

+
1

N

N∑
i=1

2E
〈
θ̄t−τ − θ∗, g

(i)
t (θ

(i)
t−τ , O

(i)
t )− g

(i)
t−τ (θ

(i)
t−τ , Õ

(i)
t )
〉

︸ ︷︷ ︸
H4

+
1

N

N∑
i=1

2E
〈
θ̄t − θ̄t−τ , g

(i)
t (θ

(i)
t−τ , O

(i)
t )− g

(i)
t−τ (θ

(i)
t−τ , Õ

(i)
t )
〉

︸ ︷︷ ︸
H5

.

By the Lipschitzness of semi-gradient g(i)t and g
(i)
t−τ and Corollary I.5.1, we have

H3 ≤
1

N

N∑
i=1

2E
[∥∥θ̄t − θ∗

∥∥ · 4∥∥∥θ(i)t − θ
(i)
t−τ

∥∥∥] ≤ βE∥θ̄t − θ∗∥2 +
4

β
α2
sKC2

prog(τ).

By Lemma I.7, we have

H4 ≤
2

N

N∑
i=1

E
[∥∥θ̄t−τ − θ∗

∥∥E [∥∥∥g(i)t (θ
(i)
t−τ , O

(i)
t )− g

(i)
t−τ (θ

(i)
t−τ , Õ

(i)
t )
∥∥∥ ∣∣∣Ft−τ

]]
≤βE

∥∥θ̄t − θ∗
∥∥2 + 1

β
(αsKCbackEh(θt−τ ))

2
+ 2α2

sKCprogCbackEh(θt−τ ).
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Finally, for H5, by Young’s inequality, we have

H5 ≤
τ + 2K

αsK(τ +K)(τ + 3K)
E∥θ̄t − θ̄t−τ∥2

+
αsK(τ +K)(τ + 3K)

τ + 2K
E
[
E
[
∥gt(θt−τ ,Ot)− gt−τ (θt−τ , Õt)∥2

∣∣∣Ft−τ

]]
.

Since θt−τ is deterministic given Ft−τ , we can apply a similar argument to (37) here, which gives

H5 ≤
(τ + 2K)

αsK(τ +K)(τ + 3K)
E∥θ̄t − θ̄t−τ∥2 + αsK(τ + 2K)

(
4H2

N
+ α2

sKC2
back(τ)H

2

)
.

By Corollary I.8.1 and Lemma I.5, we get

H5 ≤αsK(τ + 2K)

(
256E

∥∥θ̄sK − θ∗
∥∥2 + 4V (τ) +

4H2

N
+ α2

sKC2
back(τ)H

2

)
≤αsK(τ + 2K)

(
256(1 + 1/32)E

∥∥θ̄t − θ∗
∥∥2 + 256(1 + 32)E

∥∥θ̄sK − θ̄t
∥∥2

+ 4V (τ) +
4H2

N
+ α2

sKC2
back(τ)H

2
)

≤αsK(τ + 2K)

(
264E

∥∥θ̄t − θ∗
∥∥2 + 8448α2

sKC2
prog(τ) + 4V (τ) +

4H2

N
+ α2

sKC2
back(τ)H

2

)
We further require that 132αsK(τ + 2K) ≤ β. Then, plugging H3, H4, H5, and V (τ) back gives

1

N

N∑
i=1

2E
〈
θ̄t − θ∗, g

(i)
t (θ

(i)
t , O

(i)
t )− g

(i)
t−τ (θ

(i)
t , Õ

(i)
t )
〉

≤4βE∥θ̄t − θ∗∥2 +
1

β
α2
sK

(
4C2

prog + 2βCprogCbackHdrift + C2
backH

2
drift

)
+

2βΛ2

w2

+ αsK(τ + 2K)

(
8448α2

sKC2
prog + 4α2

sKCvar + 16m2ρ2τH2 + α2
sKC2

backH
2 +

132H2

N

)
.

(48)

Putting Equations (43) to (45), (47) and (48) and Lemmas I.2 and I.8 back into Lemma I.1, we get

E
∥∥θ̄t+1 − θ∗

∥∥2 ≤ E
∥∥∥θ̆t+1 − θ∗

∥∥∥2
≤(1− 2αtw)

∥∥θ̄t − θ∗
∥∥2 + 8αtβE

∥∥θ̄t − θ∗
∥∥2

+ αt

(
Λ2(ϵp, ϵr)

β
+

2βΛ2(ϵp, ϵr)

w2
+

1

β
α2
s′K(1 + γ + σLH)2C2

drift +
1

β
α2
sKC2

progL
2H2

driftσ
2

+mρτHdrift

(
1

β
mρτHdrift + 4αsKCprog

)
+

1

β
α2
sK

(
4C2

prog + 2βCprogCbackHdrift + C2
backH

2
drift

)
+ αsK(τ + 2K)

(
8448α2

sKC2
prog +4α2

sKCvar + 16m2ρ2τH2 + α2
sKC2

backH
2 +

132H2

N

))
+ α2

t

(
64

(
E
∥∥θ̄t − θ∗

∥∥2 + Λ2(ϵp, ϵr)

w2

)
+ α2

sKCvar + 4m2ρ2τH2 +
32H2

N

)
.

Note that τ is a virtual time range that we backtrack, and we have not determined it yet. Now we
require it to be large enough such that mρτ ≤ αt. We also do not want τ to be too large. Thus, we
fix

τ = ⌈(logαt − logm)/ log ρ⌉ ≍ logα−1
t . (49)

We also require that the decay rate of αt is non-increasing and
∑∞

t=0 αt = +∞. Then, there exists
T1 > 0 such that for any t ≥ T1, it holds that

sK ≥ t− τ −K = t−
⌈
logαt − logm

log ρ

⌉
−K ≥ t

2
.
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The requirement on the step-size also gives lim supt→∞ αt/2/αt < +∞. Then, there exists
C ′

α, Cα > 0 such that for any t ≥ 0, we have
αsK

αt
≤ C ′

α · lim sup
t→∞

αt/2

αt
= Cα.

Thus, after some rearrangement, we get

E
∥∥θ̄t+1 − θ∗

∥∥2
≤(1− 2αtw + 8αtβ + 64α2

t )E
∥∥θ̄t − θ∗

∥∥2 + 4α2
t (33Cα(τ + 2K) + 8)

H2

N

+ α3
tC

2
α

(
1

β

(
(1 + γ + σLH)2C2

drift + C2
progL

2H2
driftσ

2 +H2
drift + 4C2

prog + 2βCprogCbackHdrift + C2
backH

2
drift

)
+ 4CprogHdrift

)
+ α4

tC
3
α((τ + 2K)(8448C2

prog + 4Cvar + 16H2 + C2
backH

2) + Cvar + 4H2)

+ αt

(
1

β
+

2β + 64αt

w2

)
Λ2(ϵp, ϵr).

Now we let β and α0 small enough such that
8β + 64α0 ≤ w.

Then we get the final form

E
∥∥θ̄t+1 − θ∗

∥∥2 ≤ (1− αtw)E
∥∥θ̄t − θ∗

∥∥2 + αtC1Λ
2(ϵp, ϵr) + α2

t

C2

N
+ α3

tC3 + α4
tC4,

where
C1 =β−1 + (2β + 64α0)w

−2,

C2 =4(33Cα(τ + 2K) + 8)H2,

C3 =C2
α

(
1

β

(
(1+γ+σLH)2C2

drift+ C2
progL

2H2
driftσ

2+H2
drift + 5C2

prog + 2C2
backH

2
drift

)
+ 4CprogHdrift

)
C4 =C3

α((τ + 2K)(8448C2
prog + 4Cvar + 16H2 + C2

backH
2) + Cvar + 4H2).

(50)

K PROOF OF CORROLARIES 2.1 AND 2.2

In this section, we provide the proofs of Corollaries 2.1 and 2.2. Combining with the constant
dependencies discussed in Appendix L, we get the final results presented in Section 5.
Corollary 2.1. With a constant step-size αt ≡ α0 ≤ w/(2120(2K + 8 + ln(m/(ρw)))), for any
T ∈ N, we have

E
∥∥∥θ̄T − θ

(i)
∗

∥∥∥2 ≤ 4e−α0wT
∥∥∥θ0 − θ

(i)
∗

∥∥∥2 +B,

where B is the squared convergence region radius defined by

B :=
1

w

((
C1 +

6

w

)
Λ2(ϵp, ϵr) + α0

C2

N
+ α2

0C3 + α3
0C4

)
.

Proof. Let θ∗ be the central optimal parameter. By Theorem 2, for any T ∈ N, we have

E∥θ̄T−θ∗∥2 ≤ (1−α0w)
TE∥θ0−θ∗∥2+α0w

(
B − 6Λ2

w2

) T−1∑
t=0

(1−α0w)
t ≤ e−α0wT ∥θ0−θ∗∥2+B−6Λ2

w2
,

where the last inequality uses the fact that (1− α0w) ≤ e−α0w and
∑∞

t=0(1− α0w)
t = (α0w)

−1.
Then by Theorem 1, we get

E
∥∥∥θ̄ − θ

(i)
∗

∥∥∥2 ≤ 2E∥θ̄ − θ∗∥2 + 2
Λ2

w2
≤ 4e−α0wT ∥θ0 − θ

(i)
∗ ∥2 +B − 6Λ2

w2
+

6Λ2

w2
.
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Corollary 2.2. With a linearly decaying step-size αt = 4/(w(1 + t + a)), where a > 0 is to
guarantee that α0 ≤ min{1/(8K), w/64}, there exists a convex combination θ̃T of {θ̄t}Tt=0 such
that

E
∥∥θ̃T − θ

(i)
∗
∥∥2 ≤ 1

w
O

(
C4

w3T 2
+

C3 log T

w2T 2
+

C2

wNT
+ C1Λ

2(ϵp, ϵr)

)
.

Proof. Let ct = a+ t and C =
∑T

t=0 ct ≥ (T + 1)2/2. We define

θ̃T =
1

C

T∑
t=0

ctθ̄t,

which is a convex combination of
{
θ̄t
}T
t=0

. Then, by Jensen’s inequality, we have

E
∥∥∥θ̃T − θ∗

∥∥∥2 ≤ 1

C

T∑
t=0

ctE
∥∥θ̄t − θ∗

∥∥2 . (51)

Let θ∗ be the central optimal parameter. By Theorem 2, we have

1

2
E
∥∥θ̄t − θ∗

∥∥2 ≤ ( 1

αtw
− 1

2

)
E
∥∥θ̄t − θ∗

∥∥2 − 1

αtw
E
∥∥θ̄t+1 − θ∗

∥∥2 +B(αt),

where B(α) = (C1Λ
2 + αC2/N + α2C3 + α3C4)/w. Recall our choice of the step-size αt =

4/(w(a+ t+ 1)); then we have 1/(αtw) = (a+ t+ 1)/4. Plugging this back into (51) gives

E
∥∥∥θ̃T−θ∗∥∥∥2 ≤ 1

C

T∑
t=0

ct

(
a+t−1

2
E
∥∥θ̄t−θ∗∥∥2 − a+t+1

2
E
∥∥θ̄t+1−θ∗

∥∥2 + 2B(αt)

)

=
1

2C

T∑
t=0

(
(a+ t− 1)(a+ t)E

∥∥θ̄t − θ∗
∥∥2 − (a+ t)(a+ t+ 1)E

∥∥θ̄t+1 − θ∗
∥∥2)

+
2C1Λ

2

w
+

8C2

CNw2

T∑
t=0

a+ t

a+ t+ 1
+

32C3

Cw3

T∑
t=0

a+ t

(a+ t+ 1)2
+

128C4

Cw4

T∑
t=0

a+ t

(a+ t+ 1)3

≤ 1

2C

(
a(a− 1)

∥∥θ̄0 − θ∗
∥∥2 − (a+ T )(a+ T + 1)E

∥∥θ̄T+1 − θ∗
∥∥2)

+
2C1Λ

2

w
+

8C2(T + 1)

CNw2
+

32C3

Cw3

T∑
t=0

1

t+ 1
+

128C4

Cw4

T∑
t=0

1

(t+ 1)2

≤a2 ∥θ0 − θ∗∥2

T 2
+

2C1Λ
2

w
+

8C2

w2NT
+

32C3

w3T 2
O(log(T )) +

256C4

w4T 2

=O

(
a2

T 2
+

C4

w4T 2
+

C3 log T

w3T 2
+

C2

w2NT
+

C1Λ
2

w

)
.

Then by Theorem 1 and the fact that 1/w ≲ C1 (see Appendix L) and a ≲ K/w2, we get

E
∥∥∥θ̃T−θ(i)∗

∥∥∥2 ≤ 2E
∥∥∥θ̃T−θ∗∥∥∥2 + 2

Λ2

w2
= O

(
K2 + C4

w4T 2
+

C3 log T

w3T 2
+

C2

w2NT
+

C1Λ
2

w

)
.

L CONSTANT DEPENDENCIES

In this section, we establish explicit dependencies between the constants. We begin by introducing
problem constants that are independent of other parameters: the reward cap R > 0, discount factor
γ ∈ (0, 1), projection radius Ḡ > 0,1 local update period K, and kernel-related constants, m ≥
1, ρ ∈ (0, 1), and λ := mini∈[N̄ ] λ

(i) ∈ (0, 1]. Throughout this paper, we use asymptotic notation
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as R, Ḡ,K,m → ∞ and γ, ρ → 1. We also use the nonasymptotic notation a ≲ b and b ≳ a to
indicate that there exists C ≥ 0 such that a ≤ Cb, and a ≍ b to indicate that both a ≲ b and b ≳ a
hold.

We first give the dependencies of σ′ defined in (9). By its definition, we have σ′ ≥ 0, and

σ′ ≤ logm

− log ρ
+

1

1− ρ
≤ logm+ 1

1− ρ
= O

(
logm

1− ρ

)
,

where the asymptotic notation holds as ρ→ 1 and m→∞. We also get σ = σ′+2 = O(logm/(1−
ρ)). We will now use σ as a base constant.

w is an important MDP constant and plays a critical role in the convergence rate. By its defini-
tion (19), we get w ≤ 1/2 and

w = min
i∈[N̄ ]

wi ≥
1− γ

2
min
i∈[N̄ ]

λ(i) =
1− γ

2
λ,

which gives
w−1 = O((1− γ)−1).

We then consider G and H . By Corollary I.5.3, we get

G =
2(2Ḡ+R)

1− 16α2
0K

2γ
= O

(
Ḡ+R

1− γ

)
.

When γ is near 1, the above bound is undesirable. Thus, when γ is large, we can further require
4α0K <

√
0.5, which gives G ≤ 4(2Ḡ+R). Without loss of generality, we have

G ≍ Ḡ+R

And by the definition of H , we get

H = R+ (1 + γ)G ≍ Ḡ+R.

We now use H as a base constant and replace Ḡ+R with H for simplicity. H can be viewed as the
scale of the problem. If we choose Ḡ according to (Zou et al., 2019), then H = O(R/(1− γ)).

By (20), we get the dependencies of the policy improvement operator’s Lipschitz constant L:

L ≤ w

σH
.

We now address the constants in Appendix I. By Lemma I.4, we directly have

Cdrift = O (KH) .

We now consider α0. There are two requirements on α0 throughout the proof: 4Kα0 < 1 in
Lemmas I.4 and I.5, and 64α0 ≤ w in Appendix J. Combining these conditions gives

α0 ≤ min

{
1

4K
,
w

64

}
≲ min

{
K−1, w

}
.

Therefore, Cprog in Lemma I.5 has the following dependencies:

Cprog = O((τ +K)(H +K−1 ·KH)) = O((τ +K)H).

And Cback in Lemma I.7 has the following dependencies:

Cback = O(τ2LH) = O(τ2w).

Then, Cvar in Lemma I.8 is controlled by

Cvar = O(C2
drift + w2C2

prog +H2C2
back) = O(H2(K2 + w2τ4)).

1One can choose Ḡ = R/w as suggested in Zou et al. (2019). Here, we make it a pre-defined algorithm
constant.
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Next, we give the dependencies of constants in Appendix J. By definition, we have

Hdrift = O(H + α0Cdrift) = O(H).

By the requirement of β, we have
β ≍ w.

And we have Cα = O(1). Therefore, we get

C1 = O(w−1) = O((1− γ)−1),

C2 = O(H2(τ +K)),

C3 = O
(
H2(w−1(τ2 +K2) + wτ4)

)
,

C4 = O(H2(τ +K)(τ2 +K2 + w2τ4)).

Finally, we give the dependencies of constants in Corollaries 2.1 and 2.2. In Corollary 2.1, we
choose a constant step-size αt = α0. There are two requirements on αt throughout the proof:
132(τ + K)αsK ≤ 1 in Corollary I.8.1 and 132αsK(τ + 2K) ≤ β in Appendix J. A concrete
condition satisfying these requirements is α0 ≤ w/(2120 (2K + ln(2120m)/(ρw))). Furthermore,
if we choose a small enough initial step size such that α−1

0 ≍ τ ≳ max
{
K,w−1

}
, then C2, C3,

and C4 becomes

C2 = O(H2τ) = Õ(H2), C3 = O(H2wτ4) = Õ(H2w), C4 = O(H2w2τ5) = Õ(H2w2), (52)

where Õ omits the logarithmic dependencies on τ . Then the convergence region radius in Corol-
lary 2.1 becomes

B = O

(
α2
0H

2τ4 +
α0H

2τ

N(1− γ)
+

Λ2

(1− γ)2

)
= Õ

(
α2
0H

2 +
α0H

2

N(1− γ)
+

Λ2

(1− γ)2

)
With the linearly decaying step-size in Corollary 2.2, (49) gives

τ ≍ log T

as the total number of iterations T → ∞. And the requirements on αt in previous discussion
automatically hold for large enough t. Omitting the logarithmic dependencies on T , C2, C3, and C4

in this case are the same as (52). Therefore, the finite-time error bound in Corollary 2.2 becomes

E
∥∥∥θ̃T − θ∗

∥∥∥2 =
H2

(1− γ)2
·O
(
τ5

T 2
+

τ

NT
+

Λ2(ϵp, ϵr)

H2

)
=

H2

(1− γ)2
· Õ
(

1

NT
+

Λ2(ϵp, ϵr)

H2

)
.

M TABULAR FEDSARSA

In this section, we reduce our algorithm and analysis to the tabular setting. Recall that S and A are
the measures of the state space S and action space A, respectively. For the tabular setting, S and
A are the numbers of states and actions. Then, we choose the feature map to be an indicator vector
function, i.e.,

ϕ : S ×A → RSA, [ϕ(s, a)](s′,a′) 7→ 1{(s′, a′) = (s, a)},
where we treat ϕ(s, a) as a vector and use a two-dimensional index such that [ϕ(s, a)](s′,a′) is the
(s′, a′)-th element of ϕ(s, a); 1 is the indicator function. Using this feature map, the parameter θ is
indeed the estimated value function table:

Qθ(s, a) = ϕT (s, a)θ = [θ](s,a)

Therefore, the local update rule in Algorithm 1 reduces to the tabular SARSA update rule (2).

We now show a natural bound G for ∥θ∥2 without an explicit projection. First, the true value function
(1) is bounded by

|qπ(s, a)| ≤
∞∑
t=0

γtR =
R

1− γ
=: G∞.
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Suppose current estimated value function satisfies that |Qt(s, a)| ≤ G∞ for any state-action pair,
then we have

|Qt+1(s, a)| =|Qt(s, a) + α(r(s, a) + γQt(s
′, a′)−Qs,a)|

=|(1− α)Qt(s, a) + αγQt(s
′, a′) + αr(s, a)|

≤(1− α)G∞ + αγG∞ + αR

=(1− α+ αγ)
R

1− γ
+ αR

=
R

1− γ
= G∞.

Therefore, if the bound holds for the initial estimated value function, it holds for all sequential, local
or central, estimated value functions. However, G∞ is a upper bound for ∥θ∥∞. For 2-norm, we
have

∥θ∥2 ≤
√
SA∥θ∥∞ ≤

√
SAR

1− γ
=: G,

which further gives

H = O

(√
SAR

1− γ

)
.

Also, for tabular FedSARSA, Remark 2 tells us that

w−1 = O

(
1

λ(1− γ)

)
,

λ is the probability of visiting the least probable state-action pair under the steady distribution of the
optimal policy across all agents. Then, Corollary 2.2 can be translated into the following corollary.
Corollary 2.3 (Finite-time error bound for tabular FedSARSA with decaying step-size). With
a linearly decaying step-size αt = 4/(w(1 + t + a)), where a > 0 is to guarantee that
α0 ≤ min{1/(8K), w/64}, there exists a convex combination θ̃T of {θ̄t}Tt=0 such that

E
∥∥θ̃T − θ

(i)
∗
∥∥2
2
≤ 1

λ2(1− γ)2
· Õ
(

SAR2

λ2(1− γ)4T 2
+

SAR2

(1− γ)2NT
+ Λ2 (ϵp, ϵr)

)
.

where the asymptotic notation suppresses the logarithmic factors. Since ∥θ∥∞ ≤ ∥θ∥2, we also get
the finite-time error bound under the infinity norm.
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