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Abstract—Social anxiety is a common mental health condition
linked to significant challenges in academic, social, and occupa-
tional functioning. A core feature is elevated momentary (state)
anxiety in social situations, yet little prior work has measured
or predicted fluctuations in this anxiety throughout the day.
Capturing these intra-day dynamics is critical for designing real-
time, personalized interventions such as Just-In-Time Adaptive
Interventions (JITAIs). To address this gap, we conducted a
study with socially anxious college students (N=91; 72 after
exclusions) using our custom smartwatch-based system over an
average of 9.03 days (SD = 2.95). Participants received seven
ecological momentary assessments (EMAs) per day to report
state anxiety. We developed a base model on over 10,000 days of
external heart rate data, transferred its representations to our
dataset, and fine-tuned it to generate probabilistic predictions.
These were combined with trait-level measures in a meta-learner.
Our pipeline achieved 60.4% balanced accuracy in state anxiety
detection in our dataset. To evaluate generalizability, we applied
the trained-training approach to a separate hold-out set from the
TILES-18 dataset—the same dataset used for TE-pretraining. On
10,095 once-daily EMAs, our method achieved 59.1% balanced
accuracy, outperforming prior work by at least 7%.

I. INTRODUCTION

Social anxiety, or anxiety tied to social situations in which
one may be evaluated negatively, is a prevalent mental health
problem. An estimated 12.1% of individuals in the U.S. meet
the criteria for social anxiety disorder at some point in their
life [1]]. Social anxiety often limits individuals’ lives and is
associated with avoiding potentially meaningful careers that
require social interactions, avoiding romantic relationships,
and delaying starting families [2]. Existing research shows
that helping people respond to state anxiety in more effective
ways (e.g., by challenging anxious thinking and approaching
rather than avoiding feared situations) can reduce overall
levels of social anxiety [3]]. However, much of the existing
research using passive sensing to detect anxiety has focused on
predicting between-person differences in anxiety levels—most
commonly trait anxiety, a stable and enduring tendency to
experience anxiety across time and situations (e.g., [4]])—or
general anxiety symptoms [5]. While predicting trait anxiety
through passive sensing can be useful for early identification
of mental health conditions, advancing toward the detection
of within-person fluctuations in anxiety (i.e., state anxiety)
is essential for enabling real-time, adaptive interventions that
address anxiety in the moment.

Past studies have used passive sensing to predict within-
person anxiety level at the daily timescale (e.g., [6]), but only a

handful of studies (e.g., [7]) have attempted to estimate within-
person fluctuations in anxiety measured at the timescale of
hours or minutes, with most such research conducted in con-
trolled laboratory settings. Only one study to our knowledge
has attempted to predict within-person fluctuations in anxiety
measured multiple times per day outside of a controlled lab
setting [8]. However, in [8], the authors used R? as the
evaluation metric, which does not directly reflect predictive
accuracy, leaving the model’s effectiveness in identifying mo-
ments of state anxiety unclear. Moreover, their models relied
on smartphone sensor data, which may be less effective for
detecting momentary anxiety, as smartphones are not always
carried as frequently as smartwatches [9].

For our study, we developed WatchAnxiety, a smartwatch-
based system that advances wearable computing and pervasive
health by using transfer learning to predict state anxiety. Vali-
dated on 2,742 real-world EMA responses, the model achieved
60.4% balanced accuracy and F1 score. To assess general-
izability, we then applied our meta-learning approach to an
independent dataset of 10,095 state-anxiety EMAs—bringing
the total labeled samples to over 12,000, the largest evaluation
to date. This scale is noteworthy given that wearable mental-
health research is often hampered by limited labeled data,
which can impede robust validation and real-world deploy-
ment.

II. METHODOLOGY
A. Dataset Construction

1) System Design: We developed a smartwatch sys-
tem (expected to_be compatible with any Wear OS-based
smartwatch) for real-time collection of physiological, be-
havioral, and acoustic data. To protect participants’ privacy,
data collection is disabled between 12 AM and 8 AM and
automatically pauses when the watch is removed. The system
operates on a S-minute duty cycle, capturing data for 1
minute per cycle. Data are uploaded to secure Amazon S3
storage either manually (via button press) or automatically
when the watch is charging and connected to Wi-Fi. Although
the system supports multiple sensing modalities, this study
focuses exclusively on heart rate (HR)—a widely available
physiological marker on commercial smartwatches with strong
relevance to health monitoring.

2) Participants: All study procedures were approved by
IRB of the University of Virginia (UVA). We recruited par-
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Fig. 1: WatchAnxiety system for identifying state anxiety. FC: Fully Connected, BN: Batch Normalization.

ticipants with moderate-to-severe levels of social anxiety,
operationalized as a score of at least 34 on the Social In-
teraction Anxiety Scale (SIAS) following prior research [10].
Each participant was provided with either a Samsung Galaxy
Watch 5 or 5 Pro pre-installed with our system. Moreover,
participants installed the Sensus [11] app on their personal
smartphone to receive the EMA surveys. It is worthwhile to
mention that early participants received an earlier version of
our on-watch system with a duty cycle around 10 minutes,
while later participants mostly used the improved version with
a S-minute cycle.

We recruited 91 undergraduate students at UVA. Nineteen
participants were excluded due to limited data from the initial
version of the system, early withdrawal, or missing watch
data within the analysis window. The final sample included
72 participants used for model development.

3) Baseline Data Collection: During the initial study visit,
participants completed baseline surveys that captured trait-
level mental health characteristics: SIAS, Brief Fear of Neg-
ative Evaluation (BFNE), Difficulties in Emotion Regulation
(DERS), Depression, Anxiety, and Stress Scales-21 (DASS-
21), Adult Rejection Sensitivity Questionnaire (A-RSQ), and
Cambridge Depersonalization Scale 2-item version (CDS-
2). For missing items (57 item-level responses; 0.59%), we
imputed missing values using the mean of the remaining
valid responses of the participant on the corresponding scale.
For reverse-scored items, reverse coding was applied prior
to both imputation and scale score aggregation. Importantly,
imputation was performed independently for each participant,
using only their own responses, thereby avoiding the use of
data from other participants and preventing data leakage.

4) Measuring State Anxiety: Following the initial study
visit, participants reported their state anxiety via ecological
momentary assessments (EMAs) delivered through the Sensus
smartphone app up to seven times daily for 10 days. EMAs
were randomly scheduled every two hours between either 8
AM-10 PM or 10 AM-12 AM, based on participant prefer-
ence. Each EMA asked, “I feel...,” with responses recorded on
a slider from 1 (“not at all anxious”) to 10 (“very anxious”).
For classification, responses were binarized: a rating of 1 was
coded as class 0 (no anxiety) and all values greater than 1 as
class 1 (any level of anxiety).

Among the 72 participants, HR data were available for 650
total participant-days (mean = 9.03 days, SD = 2.95), with

a total of 3,663 state anxiety EMA responses (mean = 50.88
EMAs, SD = 15.91). However, the number of EMA responses
included for model development varied based on the explored
time window. Specifically, at least 50 HR samples were
available within the 1-hour, 1.5-hour, and 2-hour windows for
74.94%, 75.87%, and 76.41% of the EMA responses, respec-
tively. Selecting the appropriate window therefore is critical:
larger windows improve data availability but increase overlap
between EMAs, while shorter windows may better capture
transient physiological markers relevant to state anxiety but
increase the chance for data missingness within windows. To
balance these trade-offs, we set a 50-sample threshold—an
empirically supported cutoff, as nearly all sensor probe start
times produced at least 50 HR readings within a one-minute
period at ~1 Hz sampling. In other words, if at least one probe
occurred within the relevant time window prior to an EMA
submission, we included that EMA for model development.

B. Model Development

1) Feature Space: To construct the input feature space,
we first estimate R-R intervals (RRI) from HR using the
formula RRI = % [12]]. We also excluded HR values
outside the physiologically plausible range: above the age-
adjusted maximum (220 minus— age) and below 40 bpm, a
threshold reflecting the resting HR of very fit individuals. We
then estimated the corresponding RRI timestamps using the
cumulative sum of the RRI values, consistent with implemen-
tations in widely used packages (e.g., NeuroKit2). Using the
inferred RRI and the corresponding timestamps, we performed
a recurrence quantification analysis (RQA) of HR variability
using the NeuroKit2 package Makowski NeuroKit2°2021. To
take advantage of pre-trained ResNet-18 in our base model,
we adopted an image-based approach by transforming HR into
recurrence plots. These plots ercode-are based on time-delayed
embeddings of physiological signals, revealing dynamic pat-
terns that can be useful for predicting anxiety.

2) Transfer Learning Approach: Transfer learning (TL) has
shown promise across diverse prediction tasks and is particu-
larly beneficial in scenarios with limited data [13]]. Given our
relatively small sample size (N = 72), TL is well-suited. To
develop the base model for TL, we used the TILES-18 dataset
[14], which includes sensor data from 212 hospital workers
collected via multiple devices, including Fitbit. Each day,
participants responded to a state anxiety EMA “Please select
the response that shows how anxious you feel at the moment”



on a scale of 1 to 5. We used the same approach (section
as used for our dataset to create the target variable for
classification task. After pre-processing and filtering for entries
with at least 50 HR samples, a total of 10,278 EMA responses
were available for modeling, with 38.35% labeled as class 1
and 61.65% as class 0. However, to explore generalization
(section [[II-A), the dataset was reduced to 10,095 EMAs
due to missing aggregated trait scores in TILES-18 for some
participants.

For the model, we adopted ResNet-18 [I5] without its
classification head and initialized it with ImageNet-pretrained
weights to leverage transferable representations. We added a
residual block, a global average pooling layer, and a final
output layer with a single neuron to predict the probability
of state anxiety. To address class imbalance, we applied class
weights and used the weighted binary focal loss as the loss
function. The model was trained with an SGD optimizer with a
learning rate of 1e—4 and trained for a maximum of 20 epochs
to obtain reasonable weights for the new layers. We then
restored the weights corresponding to the lowest validation
loss and fine-tuned the entire model using a reduced learning
rate of le — 8. To prevent overfitting, early stopping was
applied if validation loss did not improve for 3 consecutive
epochs.

To reduce computational overhead, we employed a leave-
five-out cross-validation (LFOCV) strategy, holding all state
anxiety responses of five participants for testing in each fold.
Of the remaining participants, two were selected for validation
(i.e., used for model selection and early stopping) while the
rest were used for training. In some cases, a validation par-
ticipant reported only one class of state anxiety, which could
bias the model. To address this and improve generalization,
validation participants were chosen, when available, such that
the ratio of class 1 to class 0 was within 10% of that in the
training set.

3) Model Tuning: A key difference between the TILES-18
dataset, used for base model development, and our target task
lies in the EMA protocol: TILES-18 collected state anxiety
once a day, while our study administered EMA seven times
a day to capture intraday fluctuations. TILES-18 also relied
on Fitbit devices with continuous data collection, while our
custom system employed a duty-cycled sampling strategy
to support real-time processing and conserve battery life -
enabling both data collection and future on-device interven-
tions. Furthermore, the study populations differed: TILES-18
involved hospital shift workers, while our participants were
undergraduate students.

Since the base models were trained using LFOCV on
TILES-18 data, multiple models were generated. We selected
the one with the highest balanced accuracy in its respective
test set. To adapt the model, we removed the top classification
layer and used the 512-neuron global average pooling layer
as output. We then added a 32-unit fully connected layer,
followed by batch normalization and a ReLU activation func-
tion. A final dense layer with a single neuron produced the
predicted probabilities. This architecture was inspired by the

squeeze-and-excitation (SE) block from SENet, where a low-
dimensional representation is learned post-global pooling to
enhance generalizable feature learning. The weights of the
base model were frozen and the new layers were trained
using the Nadam optimizer (learning rate = le — 5), as SGD
yielded suboptimal results in this context. To avoid overfitting
or underfitting, we employed a custom callback that restored
the best model based on training dynamics. Specifically, we
allowed up to a 3% tolerance between training and validation
loss, restoring the weights with the smallest difference if the
validation loss dropped below the training loss or exceeded the
tolerance. Training, validation, and testing followed the same
LFOCYV protocol described in Section

4) Meta-learner Development and Evaluation: After gen-
erating predicted probabilities from the fine-tuned model, we
incorporated trait measures (Section [I-A3) to train a meta-
learner. This approach is practical for real-world deployment,
as trait assessments need to be completed only once prior to
system use. To retain only relevant characteristics, we applied
feature selection based on information gain to identify the most
predictive traits. We then trained lightweight classifiers, K-
Nearest Neighbors (KNN), Logistic Regression (Logit), and
Decision Tree, as meta-learners for classifying state anxiety.
The use of lightweight models was motivated by the goal of
minimizing overfitting.

Given that our meta-learner is lightweight and fast to train,
we applied leave-one-out cross-validation (LOOCV) at the
final evaluation stage. This setup, in which the intermediate
stage uses LFOCV and the final stage uses LOOCYV, avoids
information leakage. In contrast, using LFOCYV in the final
stage and LOOCYV earlier could introduce leakage by allowing
a participant seen during training in intermediate stage to
possibly reappear in the test sets of the meta-learner. For model
evaluation, we report balanced accuracy, precision, recall,
Fl-score, and specificity. To address class imbalance, both
precision and Fl-score were computed as weighted metrics.

III. RESULTS AND DISCUSSION

Although we explored 3 meta-learners, Logit consistently
performed better; thus, we report results for Logit only.
Across the windows evaluated, the performance was relatively
similar (Table [[); however, the 1.5heur—hour window offered
a favorable balance between recall (58-—158.1%) and balanced
accuracy (66—460.4%). To assess robustness, we compared
it with two baseline models. Baseline 1 is a model based
on all trait measures, while baseline 2 is a random classifier
with uniform probability across both classes. As shown in
Table (I, our meta—Iearner—meta-learner using a 1.5-hour
window outperformed both baselines. Though baseline 1 has
a comparable balanced accuracy (60.4% vs. 57.3%) with our
meta learner, empirically, we found a model based on trait
measures predicted always either class 1 or O for all days of
each participant (section for details).



TABLE I: Performance of baseline models and our meta-
learner. BA = Balanced Accuracy, Prec = Precision, Rec =
Recall, Spec = Specificity.

Model EMAs Trait Prec. Rec. Spec. BA Fl

Meta (1h) 2703 4 618 579 619 599 600
Meta (1.5h) 2742 4 623 581 627 604 60.4
Meta (2h) 2765 4 626 566 648 60.7 60.3
Baseline 1 2765 5 592 59.6 551 573 583
Baseline 2 2765 — 512 444 533 489 484

A. Approach Generalization

To assess the generalizability of our modeling pipeline and
benchmark it against existing methods, we conducted external
validation using the TILES-18 dataset [14]. We compared our
approach to a prior study [16] that predicted state anxiety
using features derived from Fitbit and other devices. Since our
model relies on watch-sensed heart rate (HR), we implemented
two baseline versions: one using all Fitbit-derived features
(e.g., cardio, fat burn, steps, sleep) and another using only
HR features, as in the original study. As shown in Table
Il our meta-learner model substantially outperformed both
baselines—for instance, achieving a 7.9% higher balanced
accuracy than the all-feature model.

TABLE II: TILES-18 Evaluationevaluation. BA-F = Balaneed

Aceuracy,-Spee—=-SpecificityFeatures.
Model EMAs F. Prec. Rec. Spec. BA Fl
Meta-learner (Ours) 10095 7 614 509 674 59.1 613
HR-only [16] 10095 1 513 36 957 49.7 49.1
All Fitbit [16] 10095 25 54.4 237 788 512 547

B. Ablation Study

To evaluate the contributions of the transfer learning (TL)
model and the meta-learner, we conducted an ablation study.
First, we assessed the TL model alone—without the meta-
learner—on both our dataset and the external TILES-18
dataset. On our dataset, the TL model achieved 58.5% recall
and 36.7% specificity. On TILES-18, it achieved 38.5% recall
and 58.9% specificity. Despite lower overall performance, the
TL model outperformed previously published approaches [|16]]
in recall when evaluated on 10,095 EMA responses from
TILES-18. As shown in Table [[I, recall for the prior models
ranged from just 3.6% (HR-only features) to 23.7% (all Fitbit
features), compared to 38.5% with our TL-only model and
50.9% with meta-learner.

We trained a trait-only model using four selected trait mea-
sures, applying the same feature selection, classifier (Logit),
and hyperparameters as the meta-learner. While overall metrics
were comparable (e.g., BA: 60.4% vs. 60.16%; F1: 60.4%
vs. 59.2%), the trait-only model failed to capture intra- and
inter-day variability, consistently predicting the same class
per participant (BA: 0%, 50%, or 100%). In contrast, our
meta-learner produced more temporally sensitive, participant-
specific predictions. For example, in our dataset, 7 participants
had per-participant BA between 50%-100% and 9 between

0%-50%, with similar results on the TILES-18 dataset. These
differences reflect the static nature of trait-only inputs versus
the temporal variation in TL-derived probabilities used by the
meta-learner.

IV. CONCLUSION AND FUTURE WORK
We propose a model that leverages smartwatch-sensed
watch-sensed data to predict state anxiety. While it out-
performs baseline models, there is still considerable room
for improvement to support more precise and personalized
interventions. Future work will explore incorporating addi-
tional sensor modalities and enabling on-device detection of

timely intervention opportunities. In parallel, strategies such

as thresholds jointly determined by clinicians and users (e.g.,
lowering the threshold to increase sensitivity) could hel

balance sensitivity and specificity, thereby mitigating potential
negative effects. Also, our deep learning—based approach is
limited by interpretability, which future work could address.
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Dear program chairs,

We thank the reviewers for their time and insightful comments. We also thank you for giving us an opportunity to address
the raised issues. We addressed those in the revised manuscript and uploaded it as the camera-ready version. Here, we are
responding to each of the concerns raised by the reviewers.

1. Response to Reviews of Reviewer B6YB

1y

2)

3)

4)

Given 60% accuracy in a binary classification task, which is 10% above random guessing, how practical is this
technology when sensing and designing interventions based on it?

Our response: We appreciate this important question. An around 10% improvement over random guessing is
meaningful given the scale of our evaluation—over 12,000 EMA samples—representing the largest evaluation
of state anxiety prediction to date (previous studies [1], [2] tested on <1000 EMA samples). Nonetheless, we
acknowledge that the performance may still limit real-world impact, which we have noted in the ”Conclusion and
Future Work™ section: “While it outperforms baseline models, there is still considerable room for improvement
to support more precise and personalized interventions. Future work will explore incorporating additional sensor
modalities and enabling on-device detection of timely intervention opportunities.” In section IV of the revised
manuscript, we note that strategies such as thresholds jointly determined by clinicians and users (e.g., lowering the
threshold to increase sensitivity) could help balance sensitivity and specificity and mitigate potential negative effects.

There should be some rationale on why other physiological signals (like Electrodermal activity or EDA, respiratory
rate) have not been used in addition to HR. Adding them might have improved the classification results further.

Our response: We appreciate the reviewer’s suggestion to consider additional physiological signals such as EDA
and respiratory rate. Our initial development and rigorous testing were conducted on Galaxy Watches, which, to
the best of our knowledge, do not provide EDA or respiratory rate sensing. We intentionally focused on heart
rate to evaluate system performance since it is the most common physiological sensor available on commercial
smartwatches, as stated in our manuscript: ”Although the system supports multiple sensing modalities, this study
focuses exclusively on heart rate (HR)—a widely available physiological marker on commercial smartwatches
with strong relevance to health monitoring.”

Is the Samsung 5/5 pro at the core of the developed smartwatch system? If so, it must be clearly stated. Or, if the
developed sensor system is independent of the Samsung watch, why it was given to the participants?

Our response: Thank you for raising this point. The Samsung Galaxy Watch 5/5 Pro is not at the core of the
developed system. Our system is platform-independent and expected to be compatible with any Wear OS-based
smartwatch. We added language to the ”System Design” section of the revised manuscript to clarify this. While the
Galaxy Watch 5/5 Pro was used for participant deployment, we also tested the system on the Galaxy Watch 6 and
conducted initial testing on the Google Fossil Watch. We selected the Samsung watch for participants because our
system had been rigorously validated across multiple Galaxy models and also offered a significantly larger battery
capacity (e.g., Watch 5: ~410 mAh, Watch 5 Pro: ~590 mAh vs. Google Pixel Watch 2: ~306 mAh, the latest model
available during the study), which was essential for enabling full-day continuous sensing with a single daily charge.

Since the TILES-18 data was collected using Fitbit, which has a different sensing hardware and calibration
system, just the transfer learning followed by the meta learning is not enough to ensure cross domain
generalization/adaptation and resulted in underperforming accuracy. My assumption is that the transfer learning +
meta learning approach is good for cross-population adaptation (fine tuning a model learned for hospital workers
with student data) but not for cross deice adaptation.

Our response: We thank the reviewer for this insightful comment. We did not directly use the base model trained
on Fitbit-derived heart rate data to predict state anxiety in our dataset. Instead, we fine-tuned the base model with
a updated architecture (Figure 1) using our own dataset, which may help with cross-device adaptation—similar
to how transfer learning followed by meta learning may support cross-population adaptation— especially, given



5)

6)

that both Fitbit and Galaxy watches measure heart rate. That said, we agree that further investigation is needed to
rigorously evaluate the extent to which this approach enables cross-device generalization, and we acknowledge
this as an important direction for future work. However, we could not discuss this in the revised paper due to page
limitations.

Earlier participants received a smartwatch system with 10-minute duty-cycle and the later ones received devices
with 5-minute duty-cycle. What processing was done to ensure data coherence?

Our response: Our primary focus was to train a deep learning model capable of learning robust feature
representations regardless of the number of available samples. The recurrence plots used in our approach are not
affected by the sampling interval because we computed RRI timestamps using the cumulative sum of the RRI
values, which depends on the RR interval values rather than the time spacing of consecutive heart rate samples,
as stated in the manuscript: “We then estimated the corresponding RRI timestamps using the cumulative sum of
the RRI values, consistent with implementations in widely used packages (e.g., NeuroKit2)”. Consequently, the
5-minute or 10-minute duty cycle should not affect the derived RRI time. Moreover, the base model was trained
on the TILES-18 dataset, which itself contains heart rate data sampled at non-uniform intervals ranging from
approximately 5 seconds to 15 minutes, depending on participants’ physical activity levels [3]. Developing a base
model on such non-uniform data likely helped the model’s ability to generalize to variable sampling intervals
during fine-tuning and evaluation.

No details were given on how the HR signals are transformed into recurrence plots.
Our response: Thank you for pointing this out. In the revised manuscript (section "Model Development”), we

now specify that the recurrence plots were generated using the neurokit2 package, a widely used toolkit for
physiological signal processing.

2. Response to Reviews of Reviewer 5Tte

1y

2)

3)

Although the paper converts anxiety levels into a binary classification task, the model’s overall performance
remains relatively modest, which may limit its practical utility.

Our response: Kindly see the response to [Tkt concern of reviewer BOYB.

The first baseline (trait-only) model is not sufficiently described in terms of implementation and purpose, and
the second baseline (random classifier) does not offer meaningful comparative value. The paper lacks a rigorous
comparison with existing deep learning—based or classical approaches for state anxiety detection, which makes it
difficult to assess the model’s relative performance in the broader literature.

Our response: We appreciate this valuable feedback. In addition to the two baseline models described, we also
compared our approach with the pipeline from a prior study [2], providing a point of reference against existing
work. Broader comparisons with both deep learning—based and classical approaches may offer a more rigorous
assessment of our model’s relative performance, and we hope to explore this in the future.

Despite external testing, both datasets are drawn from specific populations (college students and hospital workers),
and it remains unclear whether the system generalizes to more diverse cohorts (e.g., older adults, adolescents,
clinical populations).

Our response: We appreciate the reviewer’s question on generalizability, as this is indeed a critical challenge for
achieving real-world impact. As noted in the final paragraph of the Introduction section, our evaluation on more
than 12,000 EMA samples represents, to our knowledge, the largest study of state anxiety prediction to date. This
scale is noteworthy given that wearable mental-health research is often hampered by limited labeled data, which



4)

can impede robust validation and real-world deployment. In comparison, prior studies [1], [2]—including the most
recent work [1]—evaluated their models on fewer than 1,000 EMA samples. We see our work as an important step
toward understanding generalization and view evaluation on more diverse cohorts (e.g., older adults, adolescents,
clinical populations) as one of the directions for future research. As a first step, however, we believe healthcare
workers and undergraduate college students are worthwhile populations for which to design anxiety-sensing
systems. Healthcare workers have high rates of mental health problems, including burnout and anxiety, with some
evidence suggesting that there have been long-term negative mental health impacts of the COVID-19 pandemic
on this population [4]. Additionally, college-age individuals have high rates of anxiety relative to other age groups

(50
While the system design is technically sound, the paper does not discuss computational requirements, real-time

feasibility, or energy efficiency—critical issues for practical deployment on wearable devices.

Our response: Thanks for pointing out practical deployment. Due to the page limitations of only 4 pages, we
could not explore and include the computational requirements.

3. Response to Reviews of Reviewer dC3s

1y

2)

3)

4)

Limited sensor modalities: The study uses only heart rate despite having access to additional sensing modalities.
Incorporating others (e.g., accelerometer, skin temperature) could boost predictive performance and robustness.

Our response: We appreciate this observation and agree that incorporating additional sensing modalities can
further improve predictive performance and robustness. We have explicitly acknowledged this as a limitation in
the ”Conclusion and Future Work™ section, where we state: “Future work will explore incorporating additional
sensor modalities and enabling on-device detection of timely intervention opportunities.”

Binary classification oversimplification: Binarizing anxiety into “none” vs. “any” potentially reduces the richness
of data, especially given the original 1-10 scale. A regression or multi-class classification might preserve more
information.

Our response: We appreciate this thoughtful comment. We agree that regression or multi-class classification
could preserve more information and provide finer-grained predictions, which future work can explore. However,
our binary prediction task (“none” vs. “any” anxiety) is still valuable for practical intervention scenarios, as it
identifies moments when a user might need support, enabling timely and actionable just-in-time interventions.
Indeed, just-in-time interventions largely rely on binary logic (e.g., don’t deliver an intervention [0] vs. do deliver
an intervention [1]), so our binarizing anxiety fits with what we see as the clearest application of our system.
Furthermore, the one (to our knowledge) prior attempt at predicting state anxiety with passive sensing in a
regression framework led to low performance [6] (i.e., models predicted 39% of variance in within-person anxiety
fluctuations), indicating that substantial progress is still needed in this area.

Generalization scope: While performance on TILES-18 is promising, the datasets are demographically and
behaviorally different. More diverse population studies (e.g., clinical samples, non-student populations) would
improve ecological validity.

Our response: Kindly, see our response to the [Brd concern of the reviewer 5Tte.

Model interpretability: Although the architecture is well described, deeper insight into feature importance (e.g.,

SHAP or LIME analysis on the meta-learner) could improve interpretability, especially for healthcare deployment.

Our response: We appreciate this valuable suggestion. Our primary focus in this work was to develop a
deep learning—based approach to achieve higher predictive performance compared to existing methods, which



comes with the trade-off of reduced interpretability. In section IV of the revised manuscript, we have explicitly
acknowledged this limitation: “our deep learning—based approach is limited by interpretability, which future work
could address.”.

5) Privacy and deployment considerations: Discussion of privacy risks and the feasibility of on-device inference is
minimal, especially relevant given continuous physiological monitoring.

Our response: We appreciate the reviewer’s concern regarding privacy and deployment. We took several steps
to respect participants’ privacy. As stated in subsection “System Design”: “To protect participants’ privacy,
data collection is disabled between 12 AM and 8 AM and automatically pauses when the watch is removed”.
Furthermore, our system does not continuously stream data; instead, it collects data for only one minute at
predefined intervals (e.g., every five minutes), which further minimizes potential privacy risks.

In two different sections, we talked a bit about on-device deployment. In subsection "Model Tuning”, we stated:
“TILES-18 also relied on Fitbit devices with continuous data collection, while our custom system employed
a duty-cycled sampling strategy to support real-time processing and conserve battery life - enabling both
data collection and future on-device interventions”. Also, in section IV, we stated: “Future work will explore
incorporating additional sensor modalities and enabling on-device detection of timely intervention opportunities.”
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