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In the supplementary materials, we analyze the impact of training
text domain and the proportion of in-domain text data on video
captioning performance, as detailed in 1 and Section 2. Addition-
ally, we provide comprehensive implementation details in 3.

1 TRAINING TEXT DOMAIN

In this section, we conduct a quantitative evaluation of the im-
pact of training across various text domains on captioning perfor-
mance. Besides our synthesized in-domain data, we also incorpo-
rate near-domain and out-of-domain captions from the SMiT [11]
and WebVid-10M [2] datasets, respectively. We evaluate on the
MSR-VTT [17] dataset and employ the mean of BLEU-4 [12], ME-
TEOR [3], ROUGE-L [9], and CIDEr [15] as the primary evalu-
ation metric for robustness. The SMiT captions, manually anno-
tated by human experts, are close to the text style of the down-
stream MSR-VTT [17] dataset, whereas the WebVid-10M captions,
derived from web crawls, are significantly noisier and differ consid-
erably from the MSR-VTT text, representing out-of-domain data.
Our experimental results, presented in Fig. 1, demonstrate a signifi-
cant improvement in video captioning performance when training
with our synthesized in-domain text. Training with near-domain
SMIT [11] text yields only marginal improvements, while incorpo-
rating out-of-domain text from WebVid-10M [2] leads to a notice-
able decline in performance. These findings highlight the benefits
of employing in-domain text, synthesized via GPT-4 [1], in improv-
ing video captioning performance.
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Figure 1: Training across various text domains.

2 IN-DOMAIN TEXT DATA RATIO

In this section, we conduct a quantitative analysis to evaluate the
impact of varying in-domain text data ratios on video captioning
performance. We maintain a constant data volume to isolate the
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Figure 2: Comparative performance of SSF [8], LLaMA-
Adapter [20], and our MoS? across varying in-domain text
data ratios on the MSR-VTT [17] dataset.

effect of data composition. We combine synthesized in-domain text
with human-annotated, near-domain captions from the SMiT [11]
dataset to create training datasets with varying in-domain ratios.
We employ the mean of BLEU-4 [12], METEOR [3], ROUGE-L [9],
and CIDEr [15] as the primary evaluation metric for robustness.
The experiment results are depicted in Fig. 2.

Our results reveal that SSF [8] consistently outperforms LLaMA-
Adapter [20] across all in-domain text ratios tested, underscoring
the superiority of methods that utilize scale and shift transforma-
tions in the text decoder over prompt-based approaches. our model
achieves competitive performance relative to [8] at lower in-domain
ratios. Moreover, as the proportion of in-domain text increases, our
method begins to outperform both SSF [8] and LLaMA-Adapter,
which do not demonstrate consistent performance enhancements
at higher ratios.

Our proposed architecture, which integrates a mixture of scale
and shift experts, shows significant adaptability across varied data
distributions, enabling the assimilation of specialized knowledge
from distinct domains. This adaptability results in increased model
capacity and improved performance, highlighting the effectiveness
of leveraging in-domain text data.

3 IMPLEMENTATION DETAILS

We developed our training pipeline using the DeepSpeed [14] li-
brary. We employ fp16 training and ZeRO stage 1 [13] to shard the
optimizer state, which significantly reduces memory usage and ac-
celerates the training process. Unless specified, we employ the de-
fault configurations provided by DeepSpeed [14]. Our experiments
are conducted on four NVIDIA A6000 GPUs.
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Table 1: Data size and hyper-parameters for text-only train-
ing.

| MSRVTT [17] MSVD [4] VATEX [16]
#Downstream text 130.3K 48.8K 259.9K
#In-domain text 65.2K 23.1K 100.1K
Batch size 128
Learning rate schedule Linear decay
Training epochs 10
Optimizer AdamW [10], 1 = 0.9, B2 = 0.999
Weight decay 0.01
Gradient clipping norm 1

Table 2: Hyper-parameters for parameter-efficient learning
methods.

Method ‘ Learning Rate Other Hyper-parameters
SSF [8] le-5 -
BitFit [19] le-5 -
LLaMA-Adapter [20] le-4 #prompts=16
LoRA [6] le-6 rank=40
Adapter [5] le-6 hidden dimension=160
Full fine-tuning le-6 -
MoS? (ours) ‘ le-5 -

The hyper-parameters for our text-only training are detailed in
Table 1. We synthesize approximately 65.2K, 23.1K, and 100.1K in-
domain texts for MSR-VTT [17], MSVD [4] and VATEX [16], re-
spectively. The models are trained with a batch size of 128 and
we linearly decay the learning rate to le-7 over 10 epochs with-
out incorporating warm-up. Optimization is performed using the
AdamW optimizer [10], with betas set at [0.9, 0.999] and a weight
decay of 0.01. Gradients are clipped by a norm of 1. We utilize
the text prompt ”a video segment where”. During inference, we
perform beam search with a beam width of 5 and apply a length
penalty of 1.0, as described in [7]. Additionally, we uniformly sam-
ple 8 frames of 224 x 224 resolution, following [18]. The hyper-
parameters for parameter-efficient methods are provided in Table 2.
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