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ABSTRACT

Combinatorial optimization (CO) problems have widespread applications in sci-
ence and engineering but they present significant computational challenges. Re-
cent advancements in generative models, particularly diffusion models, have
shown promise in bypassing traditional optimization solvers by directly gener-
ating near-optimal solutions. However, we observe an exponential scaling law
between the optimality gap and the amount of training data needed for training
diffusion-based solvers. Notably, the performance of existing diffusion solvers re-
lies on both quantity and quality of training data: they perform well with abundant
high quality training data labeled by exact or near-optimal solvers, while suffer-
ing when high-quality labels are scarce or unavailable. To address the challenge,
we propose GuideCO, an objective-guided diffusion solver for combinatorial op-
timization, which can be trained on imperfectly labelled datasets. GuideCO is
a two-stage generate-then-decode framework, featuring an objective-guided dif-
fusion model that is further reinforced by classifier-free guidance for generating
high-quality solutions on any given problem instance. Experiments demonstrate
the improvements of GuideCO against baselines when trained on imperfect data,
in a range of combinatorial optimization benchmark tasks such as TSP (Traveling
Salesman Problem) and MIS (Maximum Independent Set).

1 INTRODUCTION

Combinatorial optimization (CO) problems present fundamental challenges in computational sci-
ence, as they involve finding optimal solutions from an exponentially large set of possibilities. Tra-
ditionally, approaches to solving CO problems have relied integer programming (IP) or carefully
crafted heuristics (Gonzalez, 2007; Arora, 1996), requiring substantial computational resources and
extensive domain knowledge.

Recently, generative models have emerged as powerful and promising tools for tackling combina-
torial optimization problems. Variational Autoencoders (VAEs) (Hottung et al., 2021) and diffusion
models (Sun & Yang, 2023) have demonstrated their effectiveness in classic challenges such as the
Traveling Salesman Problem (TSP) and Maximal Independent Set (MIS). Graph generators (Li et al.,
2023; You et al., 2019) have shown great potential in solving complex problems like Satisfiability
(SAT) and Mixed-Integer Linear Programming (MILP). Beyond traditional benchmarks, generative
models are now being successfully applied to real-world combinatorial design tasks such as chip
design (Du et al., 2024; Cheng et al., 2022) and game design (Cui et al., 2022), highlighting their
adaptability to practical applications.

Most notably, recent adaptations of diffusion models (Sun & Yang, 2023) to CO have achieved state-
of-the-art performance for solving TSP. The success of diffusion models in CO can be attributed to
their supervised progressive denoising paradigm, which can directly model the multi-modal joint
distribution over the solution space, and enjoys high simplicity in training process at the same time.
Therefore, it avoids the sequential generation bottleneck of autoregressive solvers (Vinyals et al.,
2015; Kool et al., 2018) and also surpasses the instability in RL-based methods (Wu et al., 2021;
Chen & Tian, 2019).
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Figure 1: Exponential data scaling law in dif-
fusion solvers. Tested on TSP-50 benchmark.
The optimality gap sup-optimal data is 9.42%.

However, despite these advantages brought by the
diffusion modeling paradigm, we observe an expo-
nential scaling law for the relationship between op-
timality gap and training data quantity (blue curve
in Fig. 1). Furthermore, the performance of diffu-
sion solvers rely heavily on the training data qual-
ity: to achieve the best performance, training in-
stances are required to be labeled by exact or near-
optimal solvers. Without such high-quality labels,
their performance significantly declines (green curve
in Fig. 1

In response to the challenge we identified, we inves-
tigate the following questions in this paper:

Q1: Can we mitigate the performance drop in diffusion solvers when training instances are
labeled with sub-optimal solutions?

Q2: Can we train diffusion solvers to achieve good solving quality while solely using instances
labeled with sub-optimal solutions?

At their core, these two questions call for the extrapolation ability of diffusion solvers: to learn how
to generate better solutions than what have been seen in the training dataset. To this end, we propose
GuideCO, an objective-guided training framework for diffusion solvers, which is illustrated in Fig.2.
GuideCO is a two-stage generate-then-decode framework, featuring an objective-conditioned diffu-
sion model that is further reinforced by a classifier-free guidance, to generate high-quality solutions
even when training with imperfectly labeled instances.

Figure 2: Illustrations of the GuideCO framework with objective-guided diffusion model.

GuideCO offers a two-stage generate-then-decode strategy (§ 3.1): a solution graph is firstly gen-
erated via a graph diffusion model on the original CO problem graph, and a final solution is then
decoded via greedy methods on top of the solution graph. This two-stage strategy has a intriguing
link to a bi-level relaxation of original CO problems, and this design is empirically observed to
be beneficial when training with imperfect data. The key advancement in GuideCO is a objective-
conditioned diffusion model (§ 3.2), motivated by its ability to differentiate a generation processes
under varying conditions and then generate novel data points aligned with the input condition (Ajay
et al., 2022; Sohl-Dickstein et al., 2015; Yuan et al., 2024). Therefore, in the optimization context,
integrating objective as a condition enables diffusion models to differentiate generation processes
with varying levels of optimality. Thus during inference, GuideCO can guide the generation process
to a direction with higher optimality. In addition, we propose a novel classifier-free guidance for CO
(Ho & Salimans, 2022) that can further reinforce the guidance strength (§3.2.2).

Experiment results demonstrate positive answers to the two question we have raised. We evaluated
GuideCO on two benchmark tasks such as TSPs (with varying sizes of 50, 100, 500, 1000) and MIS
on SATLIB and weighted/unweighted Erdos–Rényi graphs. For Question 1, GuideCO consistently
outperforms DIFUSCO across all benchmarks when both models are trained with instances with
sub-optimal labels (Tables in § 4.3 and § 4.4), delivering a decisive positive answer to Q1. For the
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more ambitious Question 2, GuideCO demonstrates a strong potential. Despite using sub-optimal
data, in TSP50/100, GuideCO outperforms DIFUSCO trained with solver-labeled instances (Table 2,
3); in MIS benchmarks, GuideCO trained with heuristic-labeled data has a matched performance to
DIFUSCO trained with solver-labeled data (−1% to +0.45% performance gain in Table 5), while
collecting heuristic-labeled training instances for GuideCO is over 40× faster (Table 1).

In contrast to a recent line of work that proposes objective-aware methods to improve diffusion
solvers (Li et al., 2024a; Yoon et al.) at the post-training stage, our paper studies the training process
of diffusion solvers. The highlights of our contributions in this paper are: 1) we identify an expo-
nential data scaling law in training diffusion solvers; 2) we propose an objective-guided diffusion
model featuring a classifier-free guidance to generate high-quality solutions from imperfect training
data; 3) we conducted extensive experiments to demonstrate that our method outperforms baseline
models when training with imperfectly-labeled data.

2 PROBLEM SETUP

We start with a formal problem set-up of combinatorial optimization (CO). In § 2.2, we introduce
the imperfect training data to use in GuideCO on its generation time and quality.

2.1 COMBINATORIAL OPTIMIZATION ON GRAPHS

A lot of combinatorial optimization (CO) problems can be formulated with graphs (Lucas, 2014),
so we formally formulate CO problems with graph structure by:

min
x

or max
x

f(x | G) s.t. ci(x,G) ≤ 0, for i = 1 . . . I. (1)

where x denotes the solution, f(x | G) denotes the objective function given input graph G and
ci(x,G) ≤ 0 represents the set of constraints. The goal of CO is to find the solution x satisfying
(1) for any input graph G, which specifies an instance of the problem. To present our method with
higher clarity, three specific CO problems are provided as examples. We start with some necessary
notations for defining those problems.

Notations. Suppose graph G is represented by G = ⟨V ,E⟩. V ∈ Rn×dv contains all node
features, n is the number of nodes in G and vector vi ∈ Rdv in the i-th row of V is the feature
for node i . E =

{
eij |eij ∈ Rde , 1 ≤ i, j ≤ n

}
consists of all edge features, eij is the feature

of edge between node i and j. For the problems we consider in this paper, solution x can be a
permutation or a subset of all nodes in G. For a graph with n nodes, define the set of its node indices
as S = {1, 2, · · · , n}. If x is a permutation, then x is defined as a bijection from S to itself s.t.
each node appears once and only once in {x(i), i = 1, · · · , n}. If x is a subset of all nodes, then
x is directly defined as a subset of S s.t. x ⊂ S, we still denote the elements in x as x(i) so that
x = {x(i), i = 1, · · · , k} where each node in G appears at most once and k ≤ n.

Due to space limit, in what follows, brief formulations of three example CO problems are presented,
more detailed and rigorous formulations are deferred to Appendix A.
Problem 1 (Travelling Salesman Problem (TSP)). Given a graph G with nodes representing a list
of cities and their locations, TSP aims to find the shortest route that visits each city exactly once
and returns to the origin. In TSP, node feature vi ∈ R2 is the 2D coordinate of node i and edge
feature eij ∈ R is the Euclidean distance between node i and j. In (1), the ci’s constraint x to be a
permutation and the objective to minimize is f(x | G) =

∑n−1
i=1 ex(i),x(i+1) + ex(n),x(1).

Problem 2 (Maximum Independent Set (MIS)). MIS is to find the largest independent set for any
given undirected graph G. In MIS, node feature vi ∈ N∗ is an integer recording the weight of node
i (vi = 1 for unweighted case). Edges in G are binary: eij = 1 means node i and j are connected
otherwise disconnect. In (1), ci’s constraint that ex(i),x(j) = 0 are satisfied for all node pairs in x;
and f(x | G) to maximize in (1) is defined as

∑
x(i)∈x vx(i), counting the weighted size of x.

2.2 IMPERFECT TRAINING DATA FOR DIFFUSION SOLVER

Different from previous supervised-learning based solver models Nowak et al. (2018); Sun & Yang
(2023); Li et al. (2024a) that consume perfectly labelled data consisting of problem-solution pairs as
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{(G,x∗)}, where x∗ is the exact optimal solution of G produced by solvers, we work with instances
labelled with sub-optimal solutions. Table 1 shows a comparison for the labeling time and quality
of using exact and heusitic solvers for TSP and MIP problems. It shows that the generating costs of
sub-optimal training data with heuristic methods is way more economical than exact solvers.

Labeller TSP-100 Weighted MIS-100
Length↓ Gap↓ Time ↓ Size↑ Gap ↓ Time ↓

Exact Solver 7.76 — 13.20 min 135.40 — 40.00min (32 workers)
Heuristic 8.72 12.29 % 2.10 min 122.47 9.55 % 0.91min

Table 1: Comparison of labelling time and quality between exact and heuristic solvers for TSP-100
and MIS-100 tasks. The exact solver for TSP and MIS is Concorde and Gurobi, respectively;
and the heuristic method for TSP and MIS is farthest insertion and Olmi (2024), respec-
tively. Time reported here is for generating a batch of 12800 training samples.

3 GUIDECO: OBJECTIVE-GUIDED DIFFUSION SOLVER

A generative perspective (Sun & Yang, 2023; Li et al., 2024a) has been adopted to seeks one (or
multiple) optimal solutions x∗ given the problem instance instance G. It naturally corresponds to a
conditional generation task: to generate x conditioned on G according to P (x∗ | G), a conditional
distribution of optimal solutions given the problem instance. GuideCO is primarily based on this
generative perspective and designs of Sun & Yang (2023), in which a solution is formulated as
binary vectors and P (x∗ | G) is viewed as a graph-to-vector prediction task, and a final solution is
decoded based on the logits of prediction.

3.1 GENERATE-THEN-DECODE FRAMEWORK

In this paper, we propose a two-stage generation method that merges diffusion and heuristics meth-
ods for effectively generating solutions for CO, generalizing the key designs in Sun & Yang (2023).
It’s called generate-then-decode: in the first stage a “solution graph” Gx is generated based on the
“problem graph” G, and in the second stage a decoding algorithm h(·) is applied to solve Gx so
that the final solution is obtained as x = h(Gx). The utilization of heuristic decoding methods can
reduce requirement of solution quality generated by diffusion model while without compromising
quality.

With this two-stage view, the current generative formulation of CO closely links to the following
bi-level relaxation of the original problem:

min
x,Gx

f (x | G)

s.t. x ∈ argmin
x′

{f (x′ | Gx) : ci (x
′,Gx) ≤ 0, for i = 1 . . . I} , (2)

here f and G are the same objective and problem instance in (1), and lower level problem in (2) is
approximately solved by the decoding algorithm h(·) in the two-stage process.

We use TSP and MIS as two examples to showcase the two-stage process and the link to bi-level
relaxation. The solution graph Gx = ⟨V x,Ex⟩ generated in the first stage and the solution x output
in the second stage are defined as follows:

• TSP: x is a permutation of nodes in G. In Gx, V x = V , i.e. the node features stayed
unchanged from the problem graph G. In Ex, the edge between node i and j exits if and
only if it is covered in the tour specified by x, i.e. ex(n),x(1) = 1 and ex(i),x(i+1) = 1 for
i = 1 · · ·n− 1, ei,j = 0 for the rest of positions.

• MIS: x is a subset of nodes in G. In Gx,Ex = E, i.e. the edge features stayed unchanged
from the problem graph G. The node feature V x have vi = 1 if node i is in the solution
subset x, otherwise vi = 0.
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Figure 3: Solutions and solution graphs in TSP and MIS.

In both TSP and MIS, it is easy to see x is a solution of the lower level problem in (2): for TSP the
objective is minx′ −f(x′ | Gx) and for MIS that is maxx′ f(x′ | Gx), linking the two stage process
to a bi-level formulation. As a result, the solution graph Gx reflects a solution x, hence x can be
obtained through a greedy algorithm based on the distribution of Gx output by the diffusion model.
In pracThe specific greedy algorithms (Graikos et al., 2022; Qiu et al., 2022; Sun & Yang, 2023) for
TSP and MIS are summarized as follows:

• TSP: Sort the logits of Ex in the descending order as confidence, sequentially insert edges
from high to low confidence if there are no conflicts, until a tour is formed.

• MIS: Start with x = ∅. Inserting nodes into x in the descending order of V x’s logits as
long as there are no conflicts, until all nodes are gone over.

3.2 OBJECTIVE-GUIDED DIFFUSION MODELS

In this section, we present our objective-guided diffusion model featuring objective-conditioned
diffusion (§ 3.2.1) and guide-reinforced diffusion (§ 3.2.2), and conclude the section with network
architecture of GuideCO (§ 3.2.3).

3.2.1 OBJECTIVE-CONDITIONED DIFFUSION SOLVER

To develop a diffusion model that maximally utilizes training data sub-optimal labels, we propose
a objective-guided diffusion model, which approximates P (Gx | G, f(x | G)), incorporating the
objective value f(x | G)) as a separate condition. The diffusion model for modelling P (Gx |
G, f(x | G)) follows the discrete diffusion formulation in Sun & Yang (2023) for its forward process.
W.L.O.G, we only present the process for generating edges in Gx, generating nodes is similar.

Categorical noise is progressively added to Ex sampled from P (Ex | G) by formula (3), generating
a sequence of latents Ex

0 := Ex,Ex
1:T := Ex

1 ,E
x
2 , · · · ,Ex

T s.t.

q
(
Ex

t | Ex
t−1

)
= Cat

(
Ex

t ; p = Ex
t−1Qt

)
and q (Ex

t | Ex) = Cat
(
Ex

t ; p = ExQt

)
, (3)

where Cat(·, p) denotes categorical distribution, Qt’s are transition kernel for categorical variables
and Qt = Q1 . . .Qt. More mathematical details can be found in Appendix§ B.

The backward denoising process of our model is objective conditioned, which denoises Ex
t to gen-

erate the preceding variable Ex
t−1, based on 4 inputs: the current state Ex

t , the problem instance G,
the objective f(x | G) and the time step t. The denoiser is learned by model ϕθ, aiming to align its
prediction to the input solution Ex

0 , thus the loss for training ϕθ is:

min
θ

Et∼Unif((0,T ]) [cross-entropy (ϕθ(E
x
t ,G, f(x), t),Ex

0 )] . (4)

The architecture of objective-guided denoiser ϕθ will be introduced in §3.2.3. During inference, we
first set a target objective ftar and start the backward diffusion process by sampling ET from the uni-
form distribution. Then iteratively at each time step t, denoting the prediction of ϕθ(Et,G, ftar, t)
as Ê0, the one-step predecessor Et−1 can be generated from the following posterior distribution:

Et−1 ∼ Cat

(
Et−1; p =

Ê0Q
⊤
t ⊙ Ê0Q̄t−1

Ê0Q̄tEt
⊤

)
. (5)

After T iterations, the recovered solution graph G0 is expected to have the same distribution as
P (Gx | G, ftar) so that the solution decoded out from G0 has objective equal to ftar, if the diffusion
model approximates the ground truth distribution well. A theoretical choice of ftar is the optimal
objective for the original problem, f∗ = minx f(x | G). In practice, one can take ftar as a model
hyper-parameter and grid search for proper ftar with validation set (§ 4.2).
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3.2.2 GUIDE-REINFORCED DIFFUSION SOLVER

The performance of objective conditioning can be further enhanced by guidance mechanism (Ho
& Salimans, 2022; Nisonoff et al., 2024). In the sequel, we propose a classifier-free guidance for
categorical diffusion model with discrete state, compatible with our objective-conditioned diffusion
model (Alg.1).

The denoiser of objective-conditioned diffusion approximates the distribution P (Gx
0 | Gx

t ,G, f∗),
and Bayesian rule suggests:

P (Gx
0 | Gx

t ,G, f∗) ∝ P (Gx
0 | Gx

t ,G) · P (f∗ | Gx
t ,G), (6)

where P (Gx
0 | Gx

t ,G) on the RHS is the unconditioned probability to denoise Gx
t . This property sug-

gests a way to further enhance the guidance of objective by denosing with the following probability
at each step:

1

Z
· P (Gx

0 | Gx
t ,G, f∗)

(
P (Gx

0 | Gx
t ,G, f∗)

P (Gx
0 | Gx

t ,G)

)γ

. (7)

In (7), Z is a normalizing factor and γ ≥ 0 controls the strength of guidance. Detailed derivation
for (7) is provided in § B.2. To facilitate the classifier-free guidance as (7), we jointly train an
unconditioned denoiser to approximate P (Gx

t−1 | Gx
t ,G) together with the original conditioned

one. Therefore, for training an objective-directed diffusion model with classifier-free guidance, we
modify the previous loss in (4) to be

min
θ

Et∼Unif((0,T ]),s∼Bernoulii(p) [I{s = 0} · cross-entropy (ϕθ(Gx
t ,G, f(x), t),Gx

0 )

+ I{s = 1} · cross-entropy (ϕθ(Gx
t ,G, ∅, t),Gx

0 )] , (8)

here s is a random seed for determining which samples are held out for training unconditioned
denoiser, and an empirical choice of p is 0.1. It is worth mentioning that both conditioned and
unconditioned training share the same model ϕθ: if a sample is sent to unconditioned training, then
it will go through the forward pass of ϕθ with the objective condition being masked. The pseudo-
code of training and inference in objective-guided diffusion model is provided in Algorithm 1.

Algorithm 1 Training
1: Input: Training dataset: D = {(G,x, f(x))}
2: Initialize: denoising network ϕθ(·),

mask probability p,
T ← total diffusion steps,
{Qt}, {Qt} ← noise transitions.

3: Pre-process the Training Data: represent x as
solution graph Gx = ⟨V x,Ex⟩ as in § 3.1, and
obtain D = {(G,Gx, f(x))}.

4: for each training step do
5: Sample t from [0, T ].
6: Sample s ∼ Ber(p).
7: Add Noise:

q (Ex
t | Ex) = Cat

(
Ex

t ; p = ExQt

)
.

8: Update θ with one gradient step w.r.t loss (8).
9: end for

Algorithm 1 Inference
1: Input: denoising network ϕθ(·), problem G =
⟨V ,E⟩, target objective ftar , guidance strength
γ, decoding algorithm h(·).

2: Initialize: T ← total diffusion steps
N ← # of nodes in G,
{Qt}, {Qt} ← noise transitions,

3: Sample: ET ← {ei,j}N×N , ei,j ∼ Ber( 1
2
).

4: for t = T, T − 1, · · · , 1 do
5: Denoising Step:

Ê0 ∼ ϕθ(G,Et, t, ftar)

(
ϕθ(G,Et, t, ftar)

ϕθ(G,Et, t, ∅)

)γ

,

sample Et−1 with (5).

6: t← t− 1.
7: end for
8: Decode: x← h(Gx), Gx = ⟨V ,E0⟩.

3.2.3 OBJECTIVE-GUIDED DENOISING NETWORK

In (8), our objective-directed denoiser ϕθ(Gx
t ,G, f(x), t) takes as input the noisy solution graph

Gx
t , the problem graph G, the objective value of solution f(x), the time step t, to predict the clean

solution graph Gx
0 . Since the denoiser should support predict both node and edge features in the

solution graph, we adopt an anisotropic graph neural network (Joshi et al., 2019; Qiu et al., 2022;
Sun & Yang, 2023) as the backbone, which can produce embeddings for both nodes and edges.

6
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To incorporate and process the objective information, we propose the following architecture for
objective-directed graph denoiser, which is also illustrated in Fig.4.

Objective-Aware Graph-Based Denoiser. Let hℓ
i and mℓ

ij denote the node and edge features at
layer ℓ for node i and edge ij. To process timestep t and objective f(x), we adopt the positional
encoding (Vaswani, 2017) and denote: t = pos(t) and f = pos(f(x)). The features at the next
layer is propagated with an anisotropic message passing scheme, engaging the positional encodings
of both timestep t and objective f(x):

m̂ℓ+1
ij = P ℓmℓ

ij +Qℓhℓ
i +Rℓhℓ

j ,

mℓ+1
ij = mℓ

ij +MLPm(BN(m̂ℓ+1
ij )) +MLPt(t) +MLPf (f),

hℓ+1
i = hℓ

i + α(BN(U ℓhℓ
i +Aj∈Ni

(σ(m̂ℓ+1
ij )⊙ V ℓhℓ

j))),

Figure 4: Architecture of
objective-directed denoiser.

where in layer ℓ, U ℓ, V ℓ, P ℓ, Qℓ, Rℓ ∈ Rd×d and MLP(·) are learn-
able. MLP(·) with subscripts m, t, f all denote a 2-layer multi-
layer perceptron. α, BN, A, σ denote the ReLU (Krizhevsky
et al., 2010) activation, batch normalization (Ioffe, 2015), aggrega-
tion function SUM pooling (Xu et al., 2018) and sigmoid function,
respectively. ⊙ is the Hadamard product, Ni denotes the neighbor-
hoods of node i. We use 12 layers with hidden dimension d = 256
following Sun & Yang (2023). Lastly, a Sigmoid activation is ap-
plied to the final layer embeddings of nodes or edges, which is then
to predict a binary cross entropy loss between candidate solution
graph vs. input solution graph.

Double Graph Conditioning. It is worth noticing that our de-
noiser ϕθ(Gx

t ,G, f(x), t) takes two graphs as input: the prob-
lem graph G and the noisy solution graph Gx

t . To pass both graphs into the anisotropic
GNN above, we concatenate the positional encoding of node/edge features in both graphs:
suppose G = ⟨V ,E⟩ and Gx

t = ⟨V x
t ,Ex

t ⟩, we pass h0
i = (pos(V(i)),pos(V

x
t,(i)))

and m0
ij = (pos(E(i,j)),pos(E

x
t,(i,j))) into the GNN layers. More implementation de-

tails for concatenating input graphs in specific problems are provided in Appendix C.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Figure 5: Effectiveness of
guidance strength on TSP-
50 and Weight MIS-100.

Please note experiments are conducted for scenarios where training data
is labelled by heuristics but not exact solvers. The setup for data collec-
tion, including the choice of heuristics, and baselines for comparison are
specified in separate subsections for each problem. Hyper-parameters
are as follows.

Hyper-parameters in diffusion models. Following DIFUSCO (Sun
& Yang, 2023), the models for all problems are trained with 1000 de-
noising steps, i.e., T = 1000, while during inference, we adopt 50 infer-
ence steps. We provide in § 4.2 an ablation study on the choices of other
two important hyper-parameters for inference: the guidance strength and
the target objective value.

4.2 ABLATION STUDY

Guidance Strength. We investigate the effectiveness of guidance
strength γ in (7). To efficiently evaluate this choice, we utilize the TSP-
50 and Weighted MIS-100 benchmarks and train both models with 12800 instances. We evaluate
the model performance on test set, varying the guidance strength by setting γ ∈ {0, 1, 2, · · · , 10}

7
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and taking denoising step with guidance as (7) specifies; evaluation results across 5 random seeds
are plotted in Fig.5. When γ = 0, the model degrades to the basic objective-conditioned diffusion
model (Alg. 1), it can be seen from Fig.5 that enlarging guidance γ improves the baseline perfor-
mance reported at γ = 0. It demonstrates that guidance effectively enhances the model performance,
guiding the denoising process towards high-objective value region in the solution space.

Target Objective Value. We also evaluate the impact of target objective value ftar at inference
time. Fig. 6 is a heat-map on the average objective of generated solutions when jointly varying
target ftar and strength γ. Recall from § 3.2, a theoretical choice of ftar is the optimal objective
value f∗. While empirically, we observe that good choices of ftar live in a wild range above f∗ (for
maximization) or below f∗ (for minimization), see Fig. 6. Here we provide an reference practice
for choosing ftar: replace f∗ with the average optimal objective value in a small validation set
and search the multiplication factor from [1.1, · · · , 1.5] for maximization or [0.5, 0.6, · · · , 0.9] for
minimization and fix the ftar for inference. The best choice of ftar and γ is model specific, one can
jointly search the two and freely decide how many values to search. ftar and γ will be fixed during
inference. All experiment results for GuideCO with guidance enabled is reported under fixed ftar
and γ for all testing instances.

4.3 EXPERIMENTS ON TSP

Figure 6: Joint effectiveness of tar-
get objective and guidance strength.
Tested on Weight MIS-100 bench-
mark.

Datasets. Following the standard procedure adopted by Kool
et al. (2018); Joshi et al. (2019), training and testing instances
of TSP are generated by uniformly sampling n nodes from the
unit square [0, 1]2. In the training dataset, instances are la-
belled by heuristic Farthest Insertion. We experiment
on various problem scales including TSP-50, TSP-100, TSP-
500 and TSP-1000.

For TSP-50 and TSP-100, Sun & Yang (2023) uses a total of
1502000 training samples. To measure the data scaling law
in diffusion solver, we conduct training for TSP-50 and TSP-
100 with 3 sizes of training data: 12800, 76800 and 1502000.
For TSP-500/1000, we follow the same number of training in-
stances. The test set for TSP-50/100 is taken from Kool et al. (2018); Joshi et al. (2020) with 1280
instances, and the test set for TSP-500/1000 is with 128 instances for the fair comparison. More
details for data and training can be found in Appendix.

Metrics. To evaluate model performance, we measure these metrics for TSP: (i) Length: the aver-
age length of the solution tour, i.e. the objective of solutions in TSP; (ii) Gap: the average subopti-
mality gap of solutions w.r.t. the optimal/near-optimal solution given by the best solver. To compute
the optimal objective for TSP, we adopt two solvers: the exact solver Concorde(Applegate et al.,
2006) (for TSP-50/100) and the heuristic solver LKH-3(Helsgaun, 2017) (for TSP-500).

Baselines. We compare our method to DIFUSCO (Sun & Yang, 2023) when being trained on the
same dataset, using the same greedy decoding mechanism, and without 2-opt (Lin & Kernighan,
1973) refinement. This setup directly contrasts the effect of diffusion modelling between the two
methods. We include two other baselines: (i) exact solver and (ii) DIFUSCO trained with the same
number of instances labelled by solver. The former is for measuring the suboptimality gap of gen-
erated solutions, the later is to meaure the performance drop of DIFUSCO when trained with low-
qualitiy data labelled by heuristics.

Figure 7: Recall Fig.1.
Compare GuideCO and DI-
FUSCO under varying train
size.

Results and Analysis Experiment results for TSP-50 is summarized in
Table 2 and for TSP-100 is in Table 3 and Table 4 records results for large
scale problems TSP-500/1000. GuideCO outperforms DIFUSCO on all
sizes, when both models are trained with heuristic-labeled instances. No-
tably, despite using heuristic-labelled data, in TSP50, GuideCO outper-
forms DIFUSCO trained with solver-labeled instances, when the number
of training instances is 12800 and 76800. Fig. 7 compares the perfor-
mance to data scaling curve in GuideCO and DIFUSCO: when both are
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Method Data Label TSP-50 (12800) TSP-50 (76800) TSP-50 (1502000)
Length↓ Gap↓ Length↓ Gap ↓ Length↓ Gap ↓

Concorde — 5.60 — 5.60 — 5.60 —

DIFUSCO Solver 6.74 20.36 % 6.29 12.32 % 5.79 3.39 %
GuideCO (γ = 0) Solver 6.67 19.10 % 6.25 11.60 % 5.79 3.39 %
DIFUSCO Heuristic 6.91 23.39 % 6.54 16.79 % 6.26 11.79 %
GuideCO (γ = 0) Heuristic 6.78 21.07 % 6.38 13.93 % 6.15 9.82 %
GuideCO Heuristic 6.55 16.96 % 6.28 12.14 % 6.11 9.11 %

Table 2: Results on TSP-50. γ = 0 corresponds to the basic objective-conditioned model with no
guidance. γ is set to 10, 4, 1 in the last row for the three training sizes.

trained with optimal data, GuideCO (purple) and slightly outperforms DIFUSCO (blue), we test this
case with γ = 0, verifying GuideCO will retain the good performance when trained with optimal
data; when trained with sub-optimal data, GuideCO outperforms DIFUSCO trained with either op-
timal or sub-optimal data in the data-scarce regime between 12800 ∼ 76800. The same data scaling
behaviour is observed in TSP-100. For TSP-500/1000, GuideCO mitigates the performance drop in
DIFUSCO.

Method Data Label TSP-100 (12800) TSP-100 (76800) TSP-100 (1502000)
Length↓ Gap↓ Length↓ Gap ↓ Length↓ Gap ↓

Concorde — 7.68 — 7.68 — 7.68 —
DIFUSCO Solver 9.32 21.35 % 8.87 15.49 % 7.95 3.52 %

DIFUSCO Heuristic 9.86 28.39 % 9.47 23.31 % 8.88 15.63 %
GuideCO (γ = 0) Heuristic 9.69 26.17 % 9.32 21.35 % 8.86 15.36 %
GuideCO Heuristic 9.30 21.09 % 9.08 18.23 % 8.83 14.97 %

Table 3: Results on TSP-100. Guidance strength is set to 4, 4, 3
in the last row.

Method Data Label TSP-500 TSP-1000
Length↓ Gap↓ Length↓ Gap ↓

LKH-3 — 16.54 — 23.18 —
DIFUSCO Solver 18.47 11.67 % 27.44 18.38 %

DIFUSCO Heuristic 21.60 30.59 % 32.46 40.03 %
GuideCO Heuristic 20.73 25.33 % 31.82 37.27 %

Table 4: GuideCO improves the mit-
igates the performance drop of DI-
FUSCO. Results on TSP-500/1000.

4.4 EXPERIMENTS ON MIS

Datasets. Three datasets: Weighted MIS-100, SATLIB (Hoos & Stützle, 2000) and unweighted
Erdos–Rényi (ER) graphs (Erdos et al., 1960) (700 ∼ 800 nodes) are tested for the MIS problem.
Since Sun & Yang (2023) was only applied to unweighted MIS problems, we add a new weighted
MIS-100 dataset consisting of ER graphs with 100 nodes and pairwise connection probability 0.15,
where each node has its weight sampled from N (µ = 5, σ = 2) and rounded to the nearest integer,
we randomly sample 12800/128/1280 graphs as train/validation/test splits. SATLIB1 and ER[700-
800] (pairwise connection probability 0.15) are for large scale experiments. We use the same num-
ber of training data and the same test instances as in Qiu et al. (2022); Sun & Yang (2023); Li
et al. (2024a). The heuristic we choose for labelling training instances is the polynomial algorithm
findMIS from Olmi (2024). For Weighted MIS-100 and SATLIB, we also include experiments on
mixed dataset: 20% Gurobi-labeled data and 80% findMIS-labeled data.

Metrics. Similar to TSP task, we adopt the following metrics to measure model performance for
MIS: (i) Size: the average size of the solutions, i.e. the objective of solutions in corresponding
instances. (ii) Gap: the average suboptimality gap of solutions w.r.t. the optimal/near-optimal
solution given by the best solver. Solvers for MIS we consider are Gurobi2 and Kamis3.

Results and Analysis. Experiment results for MIS are summarized in Table 5. GuideCO outper-
forms DIFUSCO on all datasets, and its performance is significantly improved when optimal data is
mixed into the dataset. In contrast, DIFUSCO experiences performance drop, due to its inefficiency
in incorporating sub-optimal data values in the model. Remarkably, in Weighted MIS-100 and
ER[700-800], GuideCO outperforms findMIS, the algorithm for labelling its training data, by 6%
and 3%. It demonstrates the extrapolation ability of GuideCO and its underlying objective-guided
diffusion model. Notably, in ER[700-800], GuideCO trained with the heuristic dataset surpasses

1https://www.cs.ubc.ca/˜hoos/SATLIB/Benchmarks/SAT/CBS/descr_CBS.html
2https://www.gurobi.com/
3https://github.com/KarlsruheMIS/KaMIS
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Method Data Label Weighted MIS-100 SATLIB ER[700-800]
Size↑ Gap↓ Time↓ Size↑ Gap↓ Time↓ Size↑ Gap↓ Time↓

Kamis — — — — — — — 44.73 — 52.13m
Gurobi — 135.40 — 5.00 m 425.45 — 26.00 m — — —
findMIS — 122.37 9.62 % 0.10 m 421.50 0.93 % 1.45 m 39.47 11.76 % 2.40 m

DIFUSCO Solver 133.60 1.33 % 1.30 m 423.09 0.55 % 0.66 m 40.93 8.51 % 2.72 m

DIFUSCO Heuristic 121.78 10.06 % 1.30 m 420.46 1.17 % 0.66 m 40.77 8.85 % 2.67 m
GuideCO Heuristic 130.66 3.63 % 2.73 m 420.91 1.07 % 1.13 m 41.13 8.04 % 6.11 m

DIFUSCO Mixed (20% Solver) 123.80 8.57 % 1.30 m 420.91 1.07 % 0.66m — — —
GuideCO Mixed (20% Solver) 132.38 2.23 % 2.73 m 421.81 0.86 % 1.13 m — — —

Table 5: Results on Weighted MIS-100, SATLIB, and ER[700-800]. The guidance strength is set
to 10, 0.0001 and 8, respectively. We also report the time consumption of testing of all methods.

DIFUSCO trained on the solver dataset, lifting the need of labeling data with solver in this case.
For both SATLIB and ER, with classifier-free guidance enabled, GuideCO spends roughly twice
the time as DIFUSCO. Taking account for the inference time difference, we evaluate DIFUSCO by
taking the maximum performance of two independently sampled solutions for each test instances,
the results are 420.54 for SATLIB trained with heuristic-labeled data, 420.98 for SATLIB trained
with mixed data, and 40.80 for ER700-800, all being outperformed by GuideCO. In addition, ob-
serving that DIFUSCO baseline trained on heuristic data also improves findMIS in ER[700-800],
suggesting the benefit of the generate-then-decode strategy in the presence of imperfect data.

5 RELATED WORK

Machine Learning for Combinatorial Optimization(ML4CO). ML4CO has been as a signifi-
cant area of research over the past decade: previous methods are can be catogorized into autoregres-
sive solver models (Vinyals et al., 2015; Bello et al., 2016; Kool et al., 2018), non-autoregressive
solver models (Joshi et al., 2019; Qiu et al., 2022) and reinforcement learning-based improvement
heuristics (Wu et al., 2021; Chen & Tian, 2019). Recently, diffusion model has demonstrated its
potential in solving CO and DIFUSCO (Sun & Yang, 2023) has achieved the state-of-the-art per-
formance when applied for solving TSP. Li et al. (2024a) and Yoon et al. are two recent works
also trying to improve DIFUSCO from a perspective of making the backward generation process
in diffusion solver objective-aware. However, in contrast to GuideCO focusing on improving the
“pre-training” stage of diffusion solver, their methods take the pre-trained model as a starting point,
and make improvement in the “post-training” stage by searching and fine-tuning.

Optimization Powered by Diffusion Models. In addition to the recent progress in applying gen-
erative models to CO reviewed in the paragraph above, we want to cover some representative works
on “reward-improving diffusion models”, the reward therein is a direct analogy to the objective
in optimization context. A line of works propose to train a reward-conditioned diffusion model, for
generating samples with higher rewards at inference time. This paradigm has demonstrated superior
performance in black-box optimization (Krishnamoorthy et al., 2023; Li et al., 2024b) and trajec-
tory optimization in reinforcement learning (Ajay et al., 2022). More generally, to improve diffusion
models for generating sample quality of high quality measured by an external reward (which could
be a white-box, black-box or first-order oracle), guidance methods including classifier-free guid-
ance (Ho & Salimans, 2022) and variants of classifier guidance (Chung et al., 2022; Guo et al.,
2024; Bansal et al., 2023), as well as fine-tuning (Clark et al., 2023) methods are good candidates.
In this paper, we adopt a discrete version of classifier-free guidance. Nisonoff et al. (2024) proposes
a similar “predition-free guidance” for categorical data but with continuous time steps.

6 CONCLUSIONS

In this paper, we identified an exponential data scaling law in training diffusion solvers for CO,
and their performance highly depends on data quality. To address this challenge, we proposed
GuideCO, an objective-guided training framework of diffusion solvers. GuideCO is based on a two-
stage generate-then-decode strategy, featuring an objective-guided diffusion model that is further
reinforced by classifier-free guidance to better utilize imperfect training instances labelled by poly-
nomial heuristics. Experimental results showed that GuideCO outperformed the baseline DIFUSCO
when trained with heuristic-labeled data, and notably GuideCO outperformed DIFUSCO trained
with solver-labeled instances when abundant number of training instances is not accessible.
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A RIGOROUS DEFINITIONS OF CO PROBLEMS: TSP AND MIS

A.1 DEFINITION OF TSP

Problem 1 (Travelling Salesman Problem (TSP)). TSP is defined on a fully connected undirected
graph G, where node feature vi ∈ R2 is the 2D coordinate of node i and edge feature eij is the
Euclidean distance between node i and j. eij = eji given G is undirected. The goal of TSP is to
find the tour x covering all nodes that minimizes the total travelling distance. Thus, the constraints
ci’s in (1) require x to be a permutation over all nodes in G; and the objective f(x | G) to minimize
in (1) is defined by formula

∑n−1
i=1 ex(i),x(i+1) + ex(n),x(1), counting total travelling distance in x.

A.2 DEFINITION OF MIS

Problem 2 (Maximum Independent Set (MIS)). MIS is to find the largest independent set for any
given undirected graph G. An independent set of G is defined as a subset of its nodes where nodes are
pair-wisely disconnected. We consider both unweighted and weighted versions of MIS: for weighted
MIS, vi ∈ N∗ is an integer recording the weight of node i; for unweighted case, vi = 1 for all
nodes. Edges in G are binary: eij = 1 means node i and j are connected otherwise disconnect. The
ci’s in (1) constraint that ex(i),x(j) = 0 are satisfied for all node pairs in x; and f(x | G) in (1) is
defined as

∑
x(i)∈x vx(i), counting the (weighted) size of x.

B OBJECTIVE-GUIDED DIFFUSION MODEL

B.1 DETAILED FORWARD PROCESS

Following the forward process of discrete diffusion models (Vignac et al., 2022; Igashov et al.,
2024), categorical noise is progressively add to the clean data Ex sampled from P (Ex | G)
in the training dataset by formula (3), generating a sequence of latents Ex

0 := Ex,Ex
1:T :=

Ex
1 ,E

x
2 , · · · ,Ex

T :

q
(
Ex

t | Ex
t−1

)
= Cat

(
Ex

t ; p = Ex
t−1Qt

)
and q (Ex

t | Ex) = Cat
(
Ex

t ; p = ExQt

)
,

(3 recall)
where Cat(·, p) denotes categorical distribution, Qt’s are transition kernel for categorical variables
and Qt = Q1 . . .Qt. In (3), Ex denotes the edge features in the solution graph and each Ex

t
(including Ex) is organized as an n × n × de tensor with entries being one-hot vectors of de cat-
egories. In the case where edge features are binary, de = 2 and [Qt]i,j = q

(
Ex

t = j | Ex
t−1 = i

)
for i, j ∈ {0, 1}. A common choice of Qt is αt

[
1 0
0 1

]
+ (1− αt)

[
1
2

1
2

1
2

1
2

]
with cosine scheduling

{αt}, transitioning the data distribution to the uniform one. In backward process, for binary case,
each entry in ET is sampled as the one-hot vector of a Bernoulli variable with probability 1

2 .

B.2 DERIVATION FOR GUIDANCE

Ideally, we want to generate from P (Gx | G, f∗) with f∗ being the optimal objective for problem
G. Diffusion model approximates this distribution by iteratively sampling from P (Gx

t−1 | Gx
t ,G, f∗)

for discrete time steps t ∈ [T ], to achieve this, P (Gx
0 | Gx

t ,G, f∗) is the key quantity to learn by
diffusion model as demonstrated in (5). P (Gx

0 | Gx
t ,G, f∗) contains the information about objective

value and Bayesian rule suggests:

P (Gx
0 | Gx

t ,G, f∗) ∝ P (Gx
0 | Gx

t ,G) · P (f∗ | Gx
t ,G), (6 recall)

where P (Gx
0 | Gx

t ,G) on the RHS is the unconditioned probability to denoise Gx
t . (6) shows the

difference between conditioned and unconditioned denoising probability is P (f∗ | Gx
t ,G). Thus,

P (f∗ | Gx
t ,G) suggests the the direction to improve the optimality of generated solutions and quan-

titatively it equals to P (Gx
t−1|G

x
t ,G,f∗)

P (Gx
t−1|Gx

t ,G) , which can be easily seen by dividing the denominator from (6)

on both sides. Given that Alg.1 already approximates P (Gx
t−1 | Gx

t ,G, f∗), this property provides a
way to further enhance the performance of Alg.1 by denosing with the following probability at each

14
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step:
1

Z
· P (Gx

0 | Gx
t ,G, f∗)

(
P (Gx

0 | Gx
t ,G, f∗)

P (Gx
0 | Gx

t ,G)

)γ

. (7 recall)

In (7), Z is a normalizing factor and γ ≥ 0 controls the strength of guidance.

C INPUT GRAPHS CONCATENATION IN GNN

TSP. In TSP, the problem graph G = ⟨V ,E⟩ contains both node and edge features, where
node feature is the node coordinate on 2D and edge is the distance between a pair of nodes
(Problem 1). As another input to GNN, the noisy solution graph Gx

t = ⟨V ,Ex
t ⟩ has only the

edges to predict (§ 3.1), so we concatenate the edge features in both graph as input: by setting
m0

ij = (pos(E(i,j)),pos(E
x
t,(i,j))), here the dimension of sinusoidal embedding for both E and

Ex
t is 128, half of the model hidden dimension. h0

i is initialized as pos(V(i)). Given the distance
information in E is already encoded in node coordinates vi, in experiments we observe that con-
catenating E into input edge embedding does not have significant advantage on model performance,
compare to set m0

ij = pos(Ex
t,(i,j)).

MIS. In a MIS problem G = ⟨V ,E⟩, V records the weights of nodes and E indicates the exis-
tence of edges (Problem 2); and the noisy solution graph Gx

t has only the nodes to predict (§ 3.1). So
we concatenate the node features in both graph as input by setting h0

i = (pos(V(i)),pos(V
x
t,(i))).

The dimension of both pos(V(i)) and pos(V x
t,(i)) is 128. m0

ij is initialized as pos(E). Unlike the
case in TSP, concatenating V into input node embedding is essential for solving weighted MIS.

D ADDITIONAL TRAINING DETAILS

Hardware. Models are trained with NVIDIA A100 GPUs or H100 GPUs. Models for TSP-50
(with 12800/76800 training instances), TSP-100 (12800 training instances) and MIS-100 are trained
with one GPU, models in other cases are trained with 4 GPUs with data parallelism.

Training Details. All GuideCO and DIFUSCO models are trained with a cosine learning rate
schedule starting from 2e−4 and ending at 0.

• TSP-50: We test using 12800, 76800, 1502000 random instances labelled by heuristics to
train GuideCO and DIFUSCO models, for 50 epochs.
Experiments with 12800 instances are trained on 1xA100 GPU with batch size 128;
Experiments with 76800 instances are trained on 1xA100 GPU with batch size 128;
Experiments with 1502000 instances are trained on 4xH100 GPUs with effective batch size
1024.

• TSP-100: We use 12800 76800 or 1502000 random instances labelled by heuristics to train
GuideCO and DIFUSCO models, for 50 epochs. Training 12800 is with batch size 64, in
other cases, batch size is 256.

• TSP-500: We use 128000 random instances labelled by heuristics to train GuideCO and
DIFUSCO models, for 50 epochs with a batch size of 64.

• TSP-1000: We use 64000 random instances labelled by heuristics to train GuideCO and
DIFUSCO models, for 50 epochs with a batch size of 16.

• MIS-100 (Weighted): We use 12800 randomly sampled training instance and train
GuideCO and DIFUSCO for 50 epochs with a batch size of 32. Tested on one A100 GPU.

• SATLIB: We use the training split of 39500 examples from [46, 92] and train GuideCO and
DIFUSCO for 50 epochs with a batch size of 64. Tested on four A100 GPUs.

• ER-[700-800]: We use 163840 random instances with heuristic lables and train GuideCO
and DIFUSCO for 50 epochs with a batch size of 16. Tested on four H100 GPUs.
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E ADDITIONAL PLOTS

An additional interesting observation in TSP-50 experiment is that the best guidance strength level is
shifting left and the improvement of guidance is fading as the number of training instances increases.

(a) 12800 instances (b) 76800 instances (c) 1502000 instances

Figure 8: Guidance effect curve under varying the number of training instances. Reported on
TSP-50.
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