A Overview and proof techniques

In this section, we present an overview of the ideas that go into the proofs of our main theorems
[Theorem 3.1|and[Theorem 3.2| To do this, we develop a general meta-theorem that will enable us
to show SoS lower bounds for a general class of “noisy” problems and simply invoke it for PCA.
We take this approach because we expect this meta-theorem to be applicable to other problems of
interest.

To show SoS lower bounds, we have to exhibit a feasible SoS solution, i.e. a pseudo-expectation
operator [, for our program that satisfy the constraints. A natural starting point for us is to apply the
technique of pseudo-calibration [19] to construct a candidate SoS solution and then argue that it’s
feasible. We will cover this technique formally in[Appendix B|but the basic idea is as follows.

Pseudo-calibration Consider a problem where we are trying to extract a structure (such as a
sparse principal component in the case of Sparse PCA) from an input distribution (henceforth called
the random distribution in this context). Then, pseudo-calibration proposes that we construct a
“maximum entropy” planted distribution of inputs which has the given structure. Using this, we can
construct candidate pseudo-expectation values | so that as far as low degree polynomials (of the
input) are concerned, [ for the random distribution mimics the behavior of the given structure for the
planted distribution. This gives a candidate SoS solution.

Therefore, the first step is to construct a suitable planted distribution. For the problems of Sparse
and Tensor PCA, we use the most natural distributions where we take a completely random input and
“plant” the desired structure. We describe this formally next and state the results that we show in this
appendix, from which our main theorems immediately follow as corollaries.

Random and planted distributions Instate the notations of[Theorem 3.1|and|Theorem 3.2} For
the Wishart model of Sparse PCA, we use the following distributions.

- Random distribution v: vy, ..., v, are sampled from N (0, I;) and we take S to be the
m X d matrix with rows vy, ..., Up,.

- Planted distribution z: Sample u from {—ﬁ, 0, ﬁ}d where the values are chosen with

probabilites 2%, 1- 57 Q—kd respectively. Then sample vy, . . ., v, as follows. Foreach i € [m),
with probability A = d~©(), sample v; from A/ (0, I; + Auu™) and with probability 1 — A,
sample v; from N (0, I;). Finally, take S to be the m x d matrix with rows vy, ..., vp,.

In we compute the SoS solution obtained by pseudo-calibration. We prove the
following theorem.
Theorem A.1. There exists a constant C > 0 such that for all sufficiently small constants € > 0, if
m < d;s m < k;a, and there exists a constant A such that 0 < A < i, d*A < k< d'~4¢ and
% < d=4¢, then with high probability, the SoS solution given by pseudo-calibration for degree

dCs
Sum-of-Squares is feasible.
For Tensor PCA, we use the following distributions. Let k¥ > 2 be an integer.

- Random distribution v: Sample A from N(0, Ij,jx).
- Planted distribution z: Let A, A = n=®() > (. Sample u from {—

the values are taken with probabilites %, 1— A, %
N(O,I[n]k) Set A = B 4 \u®*,

In|Appendix D} we apply pseudo-calibration and we prove the following theorem.
Theorem A.2. Let k > 2 be an integer. There exists a constant C > 0 such that for all sufficiently

small constants € > 0, if A < ni <, then with high probability, the SoS solution given by pseudo-
calibration for degree n®c Sum-of-Squares is feasible.

\/ﬁ, 0, ﬁ}” where
respectively. Then sample B from

We remark that in the planted distribution, we resample the coordinates with probability 1 — A.
This resampling and the conditions involving the constant A in|Theorem A.1|are needed for technical
reasons, see|Remark J.5|and|Remark K.8|
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The two distributions discussed for each problem might remind the reader of hypothesis testing.
Indeed, pseudo-calibration harnesses the intuition that it’s hard for efficient algorithms to solve the
natural hypothesis testing analogue where we have to distinguish between an alternative and a null
hypothesis. We now present an overview of the proof techniques.

A.1 Proof techniques

To show feasibility, it will be convenient to work with the notion of a moment matrix for a given
pseudo-expectation operator.

Definition A.3 (Moment Matrix of E). Given degree d pseudo-expectation values E, define the
associated moment matrix A to be a matrix with rows and columns indexed by monomials p and q
such that the entry corresponding to row p and column q is

Alp,q] :==E[pq].

It is easy to verify that|Item 3|in[Definition 2.1equivalent to A = 0, which is in fact why SoS
relaxations can be solved via semidefinite programming.

To show feasibility of our constructed SoS solution, we develop a general meta-theorem to show
that A is PSD. The other constraints follow easily from pseudo-calibration (see. To
show PSDness of A, we construct certain coefficient matrices from A and give conditions on these
coefficient matrices which are sufficient to guarantee that A is PSD with high probability. We now
give an informal sketch of our main techniques. Some of these ideas are a generalization of the
techniques used to prove the SoS lower bound for planted clique [19] but apart from generalizing their
work, we needed to develop various other analysis techniques necessary to handle Gaussian inputs.
Importantly, the notion of coefficient matrices are conceptually new and turn out to be essential for
us.

Shapes and graph matrices We start by describing shapes and graph matrices, which were
originally introduced by [19/|86] (also used in the planted clique SoS lower bound [19]) and later
generalized in [ 1] (which we use here). They will be covenient for our analysis.

Shapes « are graphs that contain extra information about the vertices. Corresponding to each
shape a, there is a matrix-valued function M, (i.e. a matrix whose entries depend on the input)
that we call a graph matrix. Graph matrices are analogous to a Fourier basis, but for matrix-valued
functions that exhibit a certain kind of symmetry. In our setting, A will be such a matrix-valued

function, so we can decompose A as a linear combination of graph matrices A = 3" ., Aa Ma.

Shapes and graph matrices have several properties which make them very useful to work with.
First, || M, || can be bounded with high probability in terms of simple combinatorial properties of the
shape a.. Second, if two shapes o and $ match up in a certain way, we can combine them to form a
larger shape v o 5. We call this operation shape composition. Third, each shape « has a canonical
decomposition into three shapes, the left, middle and right parts of c, which we call o, 7, and ¢’ T
For this canonical decomposition, we have that « = g o7 0 o'" and My ~ MyM.M_,r. This
decomposition is crucial for our analysis.

A general framework for SoS lower bounds We now sketch our strategy.

1. Decompose the moment matrix A as a linear combination A =
matrices M,,.

shapes o AaM, of graph
2. For each shape o, decompose « into a left part o, a middle part 7, and a right part o’ T

3. Based on the coefficients A\, and the decompositions of the shapes « into left, middle, and
right parts, construct coefficient matrices H;q4,, and H,.

4. Based on the coefficient matrices H 4, and H, obtain an approximate PSD decomposition
of A.

5. Show that the error terms (which we call intersection terms) can be bounded by the approxi-
mate PSD decomposition of A.

The strategy is similar to the work of [19] who showed SoS lower bounds for the planted clique
problem but they do it in an ad-hoc manner, without defining or using coefficient matrices. As we
will see, this abstraction makes the meta-theorem versatile.
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We show that this analysis will succeed by distilling it as three conditions on the coefficient
matrices. We have attempted to keep our meta-theorem general enough so that it can be used in other
SoS lower bounds. The rough blueprint to use our theorem to prove SoS lower bounds is as follows.

1. Construct a candidate moment matrix A.

2. Decompose the moment matrix A as a linear combination A = 37, .., Ao M of graph
matrices M, (akin to Fourier decomposition) and find the corresponding coefficient matrices.

3. Verify the required conditions on the coefficient matrices.

A.1.1 A sketch of the intuition behind the conditions

We now motivate and sketch the conditions we present in our meta-theorem.

Giving an approximate PSD factorization As discussed above, we decompose the moment matrix

A as a linear combination A = Zshapes o AaM,, of graph matrices M,,. We then decompose each o

into left, middle, and right parts o, 7, and o’ T We now have that

A= E )\O'OTOO'/T cotoo’T

a=cgotoo’T
We first consider the terms ), Ajoor Myoor = Y. o/ Apoorr Mo M, where T corre-
sponds to an identity matrix and can be ignored (which are called trivial shapes).

If there existed real numbers v, for all left shapes ¢ such that \,,,r = v,v,/, then we would

have
> Aoat Mo My = 0500 Mg Myr = (3 0oMy) (> veMy)" = 0

o,0’ o0’

which shows that the contribution from these terms is positive semidefinite. In fact, this turns out to
be the case for the planted clique analysis. However, this may not hold in general. To handle this, we
note that the existence of v, can be relaxed as follows: Let H be the matrix with rows and columns
indexed by left shapes o such that H(c, ¢’) = Ajoqr. Up to scaling, H will be one of our coefficient
matrices. If H is positive semidefinite then the contribution from these terms will also be positive
semidefinite. In fact, this will be the PSD mass condition of our main theorem, see[Theorem C.37]

Handling terms with a non-trivial middle part Unfortunately, we also have terms
Agorog'T Myoroer Where T is non-trivial. Our strategy will be to charge these terms to other
terms. For the sake of simplicity, we will describe how to handle one term. A starting point is the
following inequality. For a left shape o, a middle shape 7, a right shape o', and real numbers a, b,

(aM, —bMy M.7)(aM, — bMy M )T =0
which rearranges to
ab(My M, Myr + (Mg My M,7)T) < a®> My Mz + b* My Mr M, M,
j GQMUMUT + b2 ||M-,—||2 MO"MO"T

If A2 r IM;]]? < AgosTAgrogrr, then we can choose a,b such that a? <

ApooT, b ||MT||2 < Agrogrr and ab = Ao 047 This will approximately imply

T
Agoroo!T (Maoroa/T + M ,T) = ApooT Myogt + Agrogrt M grogir

[ogokalelon

which will give us a way to charge terms with a nontrivial middle part against terms with a trivial
middle part.

While we could try to apply this inequality term by term, it is not strong enough to give us our
results. Instead, we generalize this inequality to work with the entire set of shapes o, o’ for a fixed 7.
This will lead us to the middle shape bounds condition.
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Handing intersection terms There’s one technicality in the above calculations. Whenever we

decompose « into left, middle, and right parts o, 7, and ¢’ T MyM. M, r is only approximately
equal to M, = M, 7. All the other error terms have to be carefully handled in our analysis. We

oOoTOO0O

call these terms intersection terms.

We exploit the fact that these intersection terms themselves are graph matrices. Therefore, we
recursively decompose them into o5 o 75 o 4! and apply the previous ideas. To do this methodically,
we employ several ideas such as the notion of intersection patterns and the generalized intersection
tradeoff lemma (see [Appendix G). Properly handling the intersection terms is one of the most
technically intensive parts of our work. This analysis leads us to the intersection term bounds
condition.

A.2 Organization of the appendix

The remainder of this appendix is organized as follows. In we describe pseudo-
calibration in more detail. In[Appendix C| we present the qualitative statement of the main theorem.
In|Appendix D|and|Appendix E} we qualitatively verify the conditions for tensor PCA, and sparse
PCA respectively. In|Appendix F| we introduce more formal definitions and state a quantitative
version of the main theorem, with the proof following in the next few appendices. In[Appendix J]and
we complete the proofs of our applications and in particular, we obtain the quantative
tradeoffs we desire.

B Pseudo-calibration

Psuedo-calibration is a heuristic introduced by [19] to construct candidate pseudo-expectation values
on instances of an optimization problem in order to exhibit SoS integrality gaps. It does this almost
mechanically by considering a planted distribution supported on instances of the problem with large
objective value and uses this planted distribution as a guide to construct the pseudo-expectation
values. This has been successful for various high-degree SoS lower bounds in the literature, e.g.,
Sherrington-Kirkpatrick [45]|87], Planted Clique [19], Max-k-CSPs [71}|103], Max-Cut [87], etc. A
variant was used in the problem of Independent set [64].

For our applications, psuedocalibration is used to obtain a candidate pseudoexpectation operator
[E. from the random vs planted problem. This will be the starting point for all our applications. Here,
we do not attempt to motivate and describe it in great detail. Instead, we will briefly describe the
heuristic, the intuition behind it and show an example of how to use it. A detailed treatment can be
found in [19].

Let v denote the random distribution and p denote the planted distribution. Let v denote the
input and x denote the variables for our SoS relaxation. The main idea is that, for an input v sampled
from v and any polynomial f(z) of degree at most the SoS degree, pseudo-calibration proposes
that for any low-degree test g(v), the correlation of E[f] should match in the planted and random

distributions. That is, _
E [E[f(@)]g)] = E [f(z)g(v)]

vy (z,0)~p

Here, the notation (x,v) ~ p means that in the planted distribution p, the input is v and z
denotes the planted structure in that instance. For example, in Sparse PCA, x would be the sparse
principal component. If there are multiple, pick an arbitrary one.

Let F denote the Fourier basis of polynomials for the input v. By choosing different basis
functions from F as choices for g such that the degree is at most n° (hence the term low-degree
test), we get all lower order Fourier coefficients for E[f(x)] when considered as a function of v.
Furthermore, the higher order coefficients are set to be 0 so that the candidate pseudoexpectation
operator can be written as

Efte)= Y  EEF@lg@lgw)= Y E [f@)]g)g)

v~vY ~
9EF ger (@vvn

deg(g)<n°® deg(g)<n®

The coefficients E ()~ [[f(2)]g(v)] can be explicitly computed in many settings, which there-
fore gives an explicit pseudoexpectation operator [E.
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One intuition for pseudo-calibration is as follows. The planted distribution is usually chosen to
be a maximum entropy distribution which still has the planted structure. This exploits our intuition
that random instances are hard for SoS, such as the Gaussian distribution for Tensor PCA. By
conditioning on the lower order moments matching such a planted distribution, pseudo-calibration
can be interpreted as sort of interpolating between the random and planted distributions by only
looking at lower order Fourier characters. This intuition has proven to be successful, since pseudo-
calibration been successfully exploited to construct SoS lower bounds for a wide variety of dense as
well as sparse problems.

An advantage of pseudo-calibration is that this construction automatically satisfies some nice
properties that the pseudoexpectation £ should satisfy. It’s linear in v by construction. For all
polynomial equalities of the form f(x) = 0 that is satisfied in the planted distribution, it’s true that
E[f(x)] = 0. For other polynomial equalities of the form f(z,v) = 0 that are satisfied in the planted
distribution, the equality E[f(x,v)] = 0 is approximately satisfied. In most cases, | can be mildly
adjusted to satisfy these exactly.

In our applications, we have E[1] = 1 + o(1) due to the bounds on the signal-to-noise ratio (this
is where the actual bounds kick in!). Once we have this, we simply set our final pseudoexpectation
operator to be [’ defined as | [f(x)] = E[f(z)]/E[1].

B.1 Tensor PCA

We will now pseudo-calibrate with respect to the pair of random and planted distributions described
for Tensor PCA (Appendix A}|Random and planted distributions). Let the Hermite polynomials be
ho(z) = 1,hy(x) = 2, hy(x) = 22 —1,.... For a € NI"" and variables A, for e € [n]*, define
ha(A) = Tlepnr he(Ac). We will work with this Hermite basis, which is a standard basis for
—Cac

Gaussian inputs (which is what we consider here). Define the slack parameter to be A = n for

a constant Ca > 0.

Lemma B.1. Ler I € N*,a € N"*, Fori e [0, let di = 3 ccepn)
such that I; + d; is nonzero. Then, if I; + d; are all even, we have

1] de
£l )] = ) I ((Azﬁ)

x Qe. Let ¢ be the number of i

Else, E,[u’hq(v)] = 0.
Proof. When A ~ y, for all e € [n]*, we have A, = B, + A [Ti< e, where B, ~ N(0,1). Let’s

analyze when the required expectation is nonzero. We can first condition on u and use the fact that
for a fixed ¢, Egn(0,1) [k (g + t)] = t* to obtain

E [wh(A)]= E [ [[ O]Jue)*l= E [T] «**] [T A*
e€[n]®

(uiswe)~p (ui)~p cein]k i<k (ui)~p ic(n]

Observe that this is nonzero precisely when all I; + d; are even, in which case

Ii+d 1 Dizn litdi 1 ] 1 e
o ([T ()7 () |
(ui)Nu[ H ) ] vVAn VAn eel[_[n]k (An)%

i€[n]

where we used the fact that Zee[n] Qe =k Zie[n] d;. This completes the proof. |

B.2 Sparse PCA

We will pseudo-calibrate with respect to the random and planted distributions for Sparse PCA (Ap;
[pendix Al,[Random and planted distributions). We will again work with the Hermite basis of polyno-
mials. For a € N""*@ and variables v; ; for i € [m], j € [n], define ha(v) := [L;c(n) jepn) Ptai; (Vig)-

For a nonnegative integer ¢, define t!! = (j;)t! =1x3 x...xtiftis odd and 0 otherwise. Define

the slack parameter to be A = d~¢2¢ for a constant C'p > 0.
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Lemma B.2. . Let I € N% a € N™*4 Fori € [m), let e; = > jea) @iy and for j € [d], let
fi=1; + Zie[m] ai;. Let ¢y (resp. co) be the number of i (resp. j) such that e; > 0 (resp. f; > 0).
Then, if e;, f; are all even, we have

Efulha(v)] = (jg)m (’;) a -] g

" i€[m]

Else, E,[ulhy(v)] = 0.

Proof. vy, ...,vm ~ jcanbe written as v; = g;+v/Ab;l;u where g; ~ N(0,1;),1; ~ N(0,1),b; €
{0, 1} where b; = 1 with probability A. Let’s analyze when the required expectation is nonzero. We
can first condition on b;, ;, u and use the fact that for a fixed t, Egn(0,1) [k (g9 + t)] = t* to obtain

E  [h(@]= E [ [[(VNbidiu)™)= & [T] G [T uPI[[VA™

(w,lisbi,gi)~p (wlibi)~p 5 (wlisbi)~p ooy jeid) i

For this to be nonzero, the set of ¢; indices ¢ such that e; > 0, should not have been resampled
otherwise b; = 0, each of which happens independently with probability A. And the set of c¢o indices
J such that f; > 0 should have been such that u; is nonzero, each of which happens independently
with probability %. Since [;, u; are have zero expectation in v, we need e;, f; to be even. The
expectation then becomes

s () T I = () (2) e T e s

i€[m] JE€[d] i, i€[m]

The last equality follows because, for each j such that u; is nonzero, we have u§ = (%)t and

e

Egno,1)lg’] = (t — 1)!Nif  is even. [

C Informal Description of our main theorem

In this section, we informally describe our general theorem for proving sum of squares lower bounds
on planted problems. Our goal for this section is to qualitatively state the conditions under which we

can show that the moment matrix A is PSD with high probability (see[Theorem C.37). For simplicity,

in this section we restrict ourselves to the setting where the input is {—1, 1} > (e.g. arandom graph
on n vertices).

C.1 Fourier analysis for matrix-valued functions: ribbons, shapes, and graph matrices

For our approach, we need the definitions of ribbons, shapes, and graph matrices from [1].
C.1.1 Ribbons

Ribbons lift the usual Fourier basis for functions {f : { il}(g) — R} to matrix-valued functions.

Definition C.1 (Simplified ribbons — see [Definition F.22). Let n € N. A ribbon R is a tuple
(ERr, AR, BRr) where Er C ([Z]) and AR, By, are tuples of elements in [n]. R thus specifies:

1. A Fourier character X g,,.

2. Row and column indices Ar and Bp.

We think of R as a graph with vertices
V(R) = { endpoints of (i,j) € Er } UARr U Bgr
and edges E(R) = Eg, where A, Br are distinguished tuples of vertices.

Definition C.2 (Matrix-valued function for a ribbon R). Given a ribbon R, we define the matrix

valued function Mg : {:I:l}(g) — RO=TARD X G=TERT 10 have entries MRr(ARr, Br) = X, and
Mgr(A', B") = 0 whenever A’ # Ag or B’ # Bg.
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The following proposition captures the main property of the matrix-valued functions My — they
are an orthonormal basis. We leave the proof to the reader.

Proposition C.3. The matrix-valued functions Mg form an orthonormal basis for the vector space
of matrix valued functions with respect to the inner product

(MM) = E [T (M@GMG)T)].
Grfx132

We don’t directly utilize this proposition in our work but this gives insight on to the structure

of the matrix valued functions we define and motivates the definition of graph matrices, that we use
extensively.
Example C.4. In consider the ribbon R as shown. We have Ar = (1,3), B = (4),V(R) =
{1,2,3,4}, Er = {{1,2},{3,2},{2,4}}. The Fourier character is xg, = X1.2X32X2.4. And
finally, Mg is a matrix with rows and columns indexed by tuples of length |Ag| = 2 and |Br| = 1
respectively, with exactly one nonzero entry Mg((1,3),(4)) = xgp. Succinctly,

column (4)

Ribbon R Shape «

Figure 2: Example of a ribbon and a shape

C.1.2 Shapes and Graph Matrices

As described above, ribbons are an orthonormal basis for matrix-valued functions. However, we will
need an orthogonal basis for the subset of those functions which are symmetric with respect to the
action of S,,. For this, we use graph matrices, which are described by shapes. The idea is that each
ribbon R has a shape o which is obtained by replacing the vertices of R with unspecified indices. Up
to scaling, the graph matrix M, is the average of M (r) over all permutations 7w € .S,,.

Definition C.5 (Simplified shapes — see|Definition F.34). Informally, a shape o is just a ribbon R
where the vertices are specified by variables rather than having specific values in [n]. More precisely,

a shape o = (V (), E(«), Uy, Vy,) is a graph on vertices V («), with
1. Edges E(a) C (V(QO‘))

2. Distinguished tuples of vertices Uy, = (u1,us, ... ) and Vo, = (v1,v3,...), where u;, v; €
V().
(Note that V («) and V, are not the same object!)

Definition C.6 (Shape transposes). Given a shape o, we define o to be the shape o with U, and V,,
swapped i.e. U, =V, and V,+ = U,. Note that M,~ = M, where M is the usual transpose
of the matrix-valued function M.
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Definition C.7 (Graph matrices). Let o be a shape. The graph matrix M, : {:l:l}(g) —
RG=10a0 X G=1valt s defined to be the matrix-valued function with A, B-th entry

M. (A,B) = Z XEr
R s.t. AR:A,BR:B
Jp:V(a)—[n]:
@ is injective,p(a)=R

In other words, M, =Y, Mg where the sum is over ribbons R which can be obtained by assigning
each vertex in V («) a label from [n].

Example C.8. In|Fig. 2| consider the shape o as shown. We have Uy, = (u1,uz), Vo = (v1), V(a) =
{ur,u9,v1, w1} and E(a) = {{u1, w1}, {ug,w1},{wi,v1}}. M, is a matrix with rows and
columns indexed by tuples of length |U,| = 2 and |V,| = 1 respectively. The nonzero entries
will have rows and columns indexed by (a1, as) and by respectively for all distinct ay, as, by, with
the corresponding entry being Mo ((a1,a2), (01)) = -, cin\{ar,az,b1} Xa1.c1Xaz,c1s Xex by - Here,
the injective map p maps uy,us, w1, v1 to a1, as, c1, by respectively and we sum over all such maps.
Succinctly,

column (by)

Ma =  row (a/la a2) e BEERERRE ZC1€[n]\{a1,a2,b1} Xal,Cl Xa2,01XC1,b1 .........

Remark C.9. The fact that we are summing over all "free" vertices in V (c) \ (Uq U V,,) is how we
are incorporating symmetry into the definition of these graph matrices.

The following examples illustrate that simple matrices such as the adjacency matrix of a graph
and the identity matrix are also graph matrices.

Example C.10 (Adjacency matrix). Let o be the shape with two vertices V(o) = {u1,v1} and a
single edge E (o) = {{u1,v1}}. The tuples Uy, V,, are (uy), (v1), respectively. Then M, has entries
(Ma)i;(G) =Gy ifi# jand (My):; =0. If G € {:I:l}(g) is thought of as a graph, then M, is
precisely its 1 adjacency matrix with zeros on the diagonal.

Example C.11 (Identity matrix). If V(«) = {u} is a singleton, E(a) = 0, and U,, = V, = (u),
then M, (G) is identically equal to the n X n identity matrix, independent of G.

For more examples of graph matrices and why they can be a useful tool to work with, see [1].

Remark C.12. As noted in [|1}], we index graph matrices by tuples rather than sets so that they are
symmetric (as a function of the input) under permutations of [n)].

C.2 Factoring Graph Matrices and Decomposing Shapes into Left, Middle, and Right Parts

A crucial idea in our analysis is the idea from [19] of decomposing each shape « into left, middle,
and right parts. This will allow us to give an approximate factorization of each graph matrix M.

C.2.1 Leftmost and Rightmost Minimum Vertex Separators and Decomposition of Shapes
into Left, Middle, and Right Parts

For each shape o we will identify three other shapes, which we denote by o, 7, o’ T and call (for
reasons we will see soon) the left, middle, and right parts of «, respectively. The idea is that
M, =~ M,M;M_,r. We obtain o, 7, and o’ r by splitting the shape « along the leftmost and
rightmost minimum vertex separators.

Definition C.13 (Vertex Separators). We say that a set of vertices S is a vertex separator of « if every
path from Uy, to V,, in « (including paths of length 0) intersects S. Note that for any vertex separator
S, UsNV, CS.

Definition C.14 (Minimum Vertex Separators). We say that S is a minimum vertex separator of « if
S is a vertex separator of « and for any other vertex separator S’ of av, |S| < |97

25



Definition C.15 (Leftmost and Rightmost Minimum Vertex Separators).

1. We say that S is the leftmost minimum vertex separator of o if S is a minimum vertex
separator of o and for every other minimum vertex separator S’ of «, every path from U,
to S’ intersects S.

2. We say that T is the rightmost minimum vertex separator of o if T is a minimum vertex
separator of o and for every other minimum vertex separator S’ of «, every path from S’ to
V, intersects T..

It is not immediately obvious that leftmost and rightmost minimum vertex separators are well-
defined. For the simplified setting we are considering here, this was shown by [19]. We now describe

how to split « into left, middle, and right parts o, 7, and ¢’ T

Definition C.16 (Decomposition Into Left, Middle, and Right Parts). Let o be a shape and let S and
T be the leftmost and rightmost minimum vertex separators of a. Given orderings Og and O for S
and T, we decompose « into left, middle, and right parts o, T, and o’ T s follows.

1. The left part o of acis the part of o reachable from U, without passing through S. It includes
S but excludes all edges which are entirely within S. More formally,

(a) V(o) ={u € V(a) : thereisapath P from U, to win o such that (V(P) \ {u}) N
}

(b) Uy = U, and V, = S with the ordering Og
(c) E(o) = {{u,v} € E(a) :u,v € V(0),u & Sorv ¢ S}

2. The right part o’ r of ais the part of o reachable from V,, without intersecting T' more than
once. It includes T' but excludes all edges which are entirely within T'. More formally,

(a) V(o'") ={u e V(a): thereisapath P from V, to win o such that (V (P)\{u})N
T =0}

(b) U,r =T with the ordering Ot and Vv = V.
(c) E(c’") = {{u,v} € E(a) :u,v € V(e'T),u & T orv ¢ T}

3. The middle part T of « is, informally, the part of o between S and T (including S and T
and all edges which are entirely within S or within T'). More formally, let U, = S with the
ordering Og, let V; = T with the ordering Or, and let E(7) = E(a) \ (E(c) U E(0”)) be
all of the edges of E(«) which do not appear in E(o) or E(c’). Then V (7) is all of the
vertices incident to edges in E(7) together with S, T.

Remark C.17. Note that the decomposition into left, middle, and right parts depends on the ordering
for the vertices in S and T. As we will discuss later (see Section , we will use all possible
orderings simultaneously and then scale things by an appropriate constant.

Because of the minimality and leftmost/rightmost-ness of the vertex separators S, 7" used to define
o, 7,0, the shapes o, 7,0’ have some special combinatorial structure, which we capture in the
following proposition. We defer the proof until|Appendix F|where we state a generalized version.

Proposition C.18. o, 7, and o’ T have the following properties:
1. V, = S is the unique minimum vertex separator of o.
2. SandT are the leftmost and rightmost minimum vertex separators of T.
3. T = U, r is the unique minimum vertex separator ofa’T.

Based on this, we define sets of shapes which can appear as left, middle, or right parts.
Definition C.19 (Left, Middle, and Right Parts). Let o be a shape.

1. We say that « is a left part if V,, is the unique minimum vertex separator of o, all vertices of
« are reachable from U, without passing through V,, and E(«) has no edges which are
entirely contained in V.

2. We say that o is a proper middle part if U, is the leftmost minimum vertex separator of «
and V,, is the rightmost minimum vertex separator of o
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3. We say that « is a right part if Uy, is the unique minimum vertex separator of «, all vertices
of « are reachable from V,, without passing through U,,, and E(«) has no edges which are
entirely contained in U,,.

Remark C.20. For technical reasons, later on we will need to consider middle parts T where U, and
V. are not the leftmost and rightmost minimum vertex separators of T (these T are called improper
middle parts), which is why we make this distinction here.

The following proposition is also straightforward from the definitions.

Proposition C.21. A shape o is a left part if and only if 0T is a right part

C.2.2 Products of Graph Matrices

We now analyze what happens when we take the products of graph matrices. Roughly speaking,
we will have that if o can be decomposed into left, middle, and right parts o, 7, and ¢’ T then
My~ MeM M.

We begin with a concatenation operation on ribbons.
Definition C.22 (Ribbon Concatenation). If Ry and Ry are two ribbons such that V(R1) NV (Rs) =

Br, = Ag, and either Ry or Ry contains no edges entirely within Br, = Ag, then we define
Ry o Ry to be the ribbon formed by glueing together Ry and Ry along Br, = ARg,. In other words,

1. V(R1 o RQ) = V(Rl) U V(Rg)
2. E(RloRg) ZE(R1)UE(R2)
3. AR10R2 :AR1 (,ll/la'BRloR2 ZBRQ.

The following proposition is easy to check.
Proposition C.23. Whenever R, Ry are ribbons such that Ry o Ry is defined, Mr, Mr, = MR, oR,

We have an analogous definition for concatenating shapes:

Definition C.24 (Shape Concatenation). If oy and oy are two shapes such that V(o) NV (ag) =
Vo, = Uy, and either a;; or o contains no edges entirely within V,,, = U, then we define o o cg
to be the shape formed by glueing together o1 and o along Vi, = U,,. In other words,

1. V(poaz) =V(a) UV (ag)
2. E(agoaz) = E(a1)U E(ag)
3. Unyoay = Uqs, and Vi, 00, = Va,.

The next proposition, again easy to check, shows that the shape concatenation operation respects the
left/middle/right part decomposition.

Proposition C.25. If « can be decomposed into left, middle, and right parts o, T, o’ T then o =
/T
coToo".

We now discuss why My, = M. op7 =~ MyM; M, is only an approximation rather than an

equality. Consider the difference My M M v —M, ., o, 7. The graph matrix M, .., v decomposes
(by definition) into a sum over injective maps ¢ : V(o o7 oo’ T) — [n]. Also by expanding
definitions, the product M, M, M, expands into a sum over triples of injective maps (1, ¢2, ©3),
where 1 : V(o) = [n], 02 : V() = [n],ps3 : V(¢') — [n] where 1 and ¢ agree on V, = U,
and @9 and @3 agreeon V. = U_,r.

If they are combined into one map ¢ : V(o Ut Uo’) — [n], the resulting ¢ may not be injective

because 1 (V (c)), 02(V (7)), ©3(V(c'")) may have nontrivial intersection (beyond (V) and
©2(V;)). We call the resulting terms intersection terms and handling them properly is a major part of
the technical analysis.

Remark C.26. Actually, the approximation My, = M, oo =~ MM M_r is also off by a
multiplicative constant because there is also a subtle issue involving the automorphism groups of
these shapes. For now, we ignore this issue. For details about this issue, see Lemma
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C.3 Shape Coefficient Matrices

The idea for our analysis is as follows. Given a matrix-valued function A which is symmetric under
permutations of [n], we write A = >~ A\, M,. We then break each shape o up into left, middle, and

right parts o, 7, and o'

For this analysis, we use shape coefficient matrices H, whose rows and columns are indexed by
left shapes and whose entries depend on the coefficients A,. We choose these matrices so that

A=Y H.(0,0)Myoropr ~ Y _ Ho(0,0' )My M, M,x

To set this up, we separate the possible middle parts 7 into groups based on the size of U, and whether
or not they are trivial.

Definition C.27. We define Z,,;4 to be the set of all possible U,. Here I,,;q is the set of tuples of
unspecified vertices of the form U = (uq, ..., u) where 0 < k < d.

Definition C.28. We say that a proper middle shape 7 is trivial if E(7) = 0 and (U, NV, | = |U.| =
|V-| (i.e. V- is a permutation of U, ).

For simplicity, the only proper trivial middle parts 7 we consider are shapes Idy corresponding
to identity matrices.
Definition C.29. Given a tuple of unspecified vertices U = (uy, . .., ujy|) We define Idy to be the
shape where V (Idy) = U, Urg, = Via, = U, and E(Idy) = 0.

We group all of the proper non-trivial middle parts 7 into sets M based on the size of U.

Definition C.30. Given a tuple of unspecified vertices U = (u1, ..., u|y|), we define My to be the
set of proper non-trivial middle parts T such that U and V. have the same size as U. Note that U,
and V. may intersect each other arbitrarily.

With these definitions, we can now define our shape coefficient matrices.

Definition C.31. Given U € T,,;4, we define Ly to be the set of left shapes o such that |V,| = |U]|.

Definition C.32. For each U € 1,,;q, we define the shape coefficient matrix Hyq,, to be the matrix

indexed by left shapes 0,0’ € Ly with entries Hyq,, (0,0") = ﬁ oo!T

Definition C.33. For each U € 1,,;q, for each T € My, we define the shape coefficient matrix H,
to be the matrix indexed by left shapes o, 0’ € Ly with entries H,(0,0") = W)\GOTOG/T

With these shape coefficient matrices, we have the following decomposition of A = >~ Ao M,.

Lemma C.34. A = ZUEImM ZO,U’ELU HIdU (07 J/)]\4—000/T +
ZUEIm.id ETEMU EU,U’EEU HT(U’ OJ)Mao-roa’T

We defer the proof of this lemma to|Lemma F.84

For technical reasons, we need to define one more operation to handle intersection terms. We
call this operation the —v, v operation.

Definition C.35. Given U,V € I,,,q where |U| > |V
such that \U,| = |U| and |V, | = |V|.

Definition C.36. Given U,V € I,,,q where |U| > |V|, a shape coefficient matrix Hyq,,, and a

v € T'y,v, we define the shape coefficient matrix H I_dz/ﬁ to be the matrix indexed by left shapes

, we define I'yy v to be the set of left parts v

0,0’ € Ly with entries H ;" (0,0") = H(o 07,0 07)

C.4 Informal Theorem Statement

We are now ready to state a qualitative version of our main theorem. For the quantitative version of
our main theorem, see|{Theorem F.101

Theorem C.37. There exist functions f(7) : My — Rand f(v) : Ty,v — R depending on n and
other parameters such that if A = Y Ao M, and the following conditions hold:
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1. (PSD mass) ForallU € Z,,,;4, Hrq, = 0
2. (Middle shape bounds) For all U € Z,,;4 and all 7 € My,

HIdU f(T)HT
f(r)HT  Hig, =0

3. (Intersection term bounds) For all U,V € Z,,;4 such that |U| > |V|and all v € T'y v,
H[_d’z,:y = f(’Y)HIdUA,

then with probability at least 1 — o(1) over G ~ {:I:l}(g) it holds that A(G) = 0.

Remark C.38. Condition 1 of|Theorem C.37|\will follow from condition 2 but we state it explicitly
since it will correspond to the dominating terms of the approximate PSD decomposition.

Remark C.39. As we will demonstrate in the remainder of this paper, the theorem works well when
the coefficients A\, has some decay for each vertex or edge in the shape. In many settings, this can
be done quite easily by adding noise to the distribution, such as resampling part of the input, or by

lowering the parameters slightly, such as m < n*/*=¢ instead of m < n*/%.

C.5 An application to planted clique

Before we move on, we present an informal example.

Example C.40. When the pseudo-calibration method is applied to prove an SoS lower bound for the
planted clique problem in n node graphs with clique size k, as in [19], the matrix-valued function

which resultsis A =, IV (a)|<t (%) Vi)l M, where t =~ log(n). One may then compute that the

matrices Hyq,, and H, are as follows (at least so long as |V (o)|, |V (7)|,|V(¢')| < t; we ignore
this detail for now). For allr € [0, 4],
1. For U with |U‘ = HIdU (O’, (7/) _ (E)\V(U)H“\V(U ) =r

n
2. For all proper, non-trivial middle shapes T such that U, | = |V;| = r,

E\ V@IV (@) -2
H,(0,0') = ()

n

V(e)l—%

Defining v, to be the vector such that v, (c) = (£) 2, we have that

1. ForU with \U| =1, Hyq, = U‘U|’U|7£J‘

2. For all proper, non-trivial middle shapes T such that |U;| = |V;| = r, H =
(k)|V(T)|—7' T
n 'UT’UT
3. For all left parts ~, Hl—d"Y/KY _ (5)2\V(7)‘—|U7|—\V7| |U,Y\’U?[ﬂjﬂ/|
It turns out in this setting that we can take f(7) to be O(n B ) and f(v) to be O(n!V(M\UA),

Thus, as long as k < +/n,

1. Forany U and all T such that V. # U, with |U,| = |V,| = |U

, f(T)HT j HIdU-
2. For all non-trivial left parts -, H;{:/j = f(’y)Hlde

Remark C.41. This does not quite satisfy the conditions of Theorem|C.37|because there are T such
that V. = U, but which are non-trivial because E(7) # 0. For these T, condition 2 of Theorem
ails. [19] handle this issue by grouping together all of the T where V. = U into the indicator
function for whether V.. = U is a clique. Since this issue is specific to planted clique, we don’t try to
incorporate it into our theorem to avoid losing generality.
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C.6 Further definitions needed for our applications

We will describe some more notations and definitions that will be useful to us to describe the
qualitative bounds for our applications. We make these modifications because sometimes the input is
from a distribution  which is not {—1, 1}. If the entries are labeled by more than 2 indices such as
Tensor PCA where we can have order-3 tensors, then we use hyperedges instead of edges. The other
modification is that we take an orthonormal basis for €2 and give each edge a label corresponding to
the basis element. Finally, there may be ¢ types of indices rather than just one, so the symmetry group
will be S,,, x ... x Sy, rather than S,,. To handle this, we will have shapes with different types of
vertices.

C.6.1 Tensor PCA

We consider the input to be a tensor A € RIM". The input entries are now sampled from the
distribution (0, 1) instead of {—1,1}. So, we will work with the Hermite basis of polynomials.
Let the standard unnormalized Hermite polynomials be denoted as ho(z) = 1, hy(z) = x, ho(z) =
22—1,. ... Then, we work with the basis h,(A) := [Lecpnr he(Ae) overa € NI"", Accordingly, we
will modify the graphs that represent ribbons (and by extension, shapes), to have labeled hyperedges
of arity k. So, an hyperedge e with a label ¢ will correspond to the hermite polynomial h;(A.).

Definition C.42 (Hyperedges). Instead of standard edges, we will have labeled hyperedges of arity k
in the underlying graphs for our ribbons as well as shapes. The label for an hyperedge e, denoted .,
is an element of N which will correspond to the Hermite polynomial being evaluated on that entry.

Note that our hyperedges are ordered since the tensor A is not necessarily symmetric. For
variables x1, . .., x,,, the rows and columns of our moment matrix will now correspond to monomials
of the form [] i<n a:f * for p; > 0. To capture this, we use the notion of index shape pieces and index
shapes. Informally, we split the above monomial product into groups based on their powers and each
such group will form an index shape piece.

Definition C.43 (Index shape piece). An index shape piece U; = (U1, ...,Ui), ;) is a tuple of
indices (U; 1, . ..,U; ) along with a power p; € N. Let V(U;) be the set {U; 1, ..., U;+} of vertices
of this index shape piece. When clear from context, we use U; instead of V (U;).

If we realize U, 1, ..., U, to be indices a1, ...,a; € [n], then, this realization of this index
shape piece corresponds to the monomial ]| i<t xg3

Definition C.44 (Index shape). An index shape U is a set of index shape pieces U; that have different
powers. Let V(U) be the set of vertices U;V (U;). When clear from context, we use U instead of
V(U).

Observe that each realization of an index shape corresponds to a row or column of the moment
matrix.

Definition C.45. For two index shapes U,V , we write U =V if for all powers p, the index shape
pieces of power p in U and V' have the same length.

Definition C.46. Define 1,,;q to be the set of all index shapes U that contain only index shape pieces
of power 1.

In the definition of shapes, the distinguished set of vertices should now be replaced by index
shapes.

Definition C.47 (Shapes). Shapes are tuples « = (Hy, Uy, V.,) where H,, is a graph with hyperedges
of arity k and Uy, V,, are index shapes such that U,,V, C V(H,).

Definition C.48 (Proper shape). A shape o is proper if it has no isolated vertices outside U, UV,
no multi-edges and all the edges have a nonzero label.

To define the notion of vertex separators, we modify the notion of paths for hyperedges.
Definition C.49 (Path). A path is a sequence of vertices uy, . . ., u; such that w;, u; 1 are in the same

hyperedge, forall i <t — 1.

The notions of vertex separator and decomposition into left, middle and right parts are identically
defined with the above notion of hyperedges and paths. In the definition of trivial shape 7, we now
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require U, = V... For U € Z,,;4, My will be the set of proper non-trivial middle parts T with
U, =V, =U and Ly will be the set of left parts ¢ such that V, = U. Similarly, for U,V € Z,,,q4,
Ly,v will be the set of left parts y such that U, = U and V, = V..

In order to define the moment matrix, we need to truncate our shapes based on the number of
vertices and the labels on our hyperedges. So, we make the following definition.

Definition C.50 (Truncation parameters). For integers Dg,s, Dy, Dg > 0, say that a shape «
satisfies the truncation parameters Dsys, Dy, D if

- The degrees of the monomials that U,, and V,, correspond to, are at most DT"

- The left part o, the middle part T and the right part o'F of « satisfy
V(o). V(). [V(e™)| < Dy

- Foreache € E(a), l. < Dg.

C.6.2 Sparse PCA

We consider the m vectors vy, . .., v,, € R to be the input. Similar to Tensor PCA, we will work
with the Hermite basis of polynomials since the entries are sampled from the distribution A/(0, 1). In
particular, if we denote the unnormalized Hermite polynomials by ho(z) = 1, hi(x) = z, he(x) =
22 —1,..., then, we work with the basis h,(v) = [Licimyjepn Pai s (vij) over a € N™*". To
capture this basis, we will modify the graphs that represent ribbons (and by extension, shapes), to
be bipartite graphs with two types of vertices, and have labeled edges that go across vertices of
different types. So, an edge (i, j) with label ¢ between a vertex 4 of type 1 and a vertex j of type 2
will correspond to (v, ;).

Definition C.51 (Vertices). We will have two types of vertices, the vertices corresponding to the m
input vectors that we call type 1 vertices and the vertices corresponding to ambient dimension of the
space that we call type 2 vertices.

Definition C.52 (Edges). Edges will go across vertices of different types, thereby forming a bipartite
graph. An edge between a type 1 vertex i and a type 2 vertex j corresonds to the input entry v; ;.
Each edge will have a label in N corresponding to the Hermite polynomial evaluated on that entry.

We will have variables 1, . .., x,, in our SoS program, so we will work with index shape pieces
and index shapes as in Tensor PCA, since the rows and columns of our moment matrix will now
correspond to monomials of the form [, «¥* for p; > 0. But since in our decompositions into left,
right and middle parts, we will have type 2 vertices as well in the vertex separators, we will define a
generalized notion of index shape pieces and index shapes.

Definition C.53 (Index shape piece). An index shape piece U; = (U; 1, ...,Uit), ti, p;) is a tuple
of indices (U; 1,...,U; ) along a type t; € {1,2} with a power p; € N. Let V(U,) be the set
{Ui1,...,U;} of vertices of this index shape piece. When clear from context, we use U; instead of

V(U,).

For an index shape piece ((U; 1, .., Uis), ti, ;) with type t; = 2, if we realize U;,, ..., U;, to
be indices ay, . .., a; € [n], then, this index shape pieces correspond this to the monomial Hj <n TG
Definition C.54 (Index shape). An index shape U is a set of index shape pieces U; that have either
have different types or different powers. Let V (U) be the set of vertices U;V (U;). When clear from

context, we use U instead of V (U).

Observe that each realization of an index shape corresponds to a row or column of the moment
matrix. For our moment matrix, the only nonzero rows correspond to index shapes that have only
index shape pieces of type 2, since the only SoS variables are z; ..., x,, but in order to do our
analysis, we need to work with the generalized notion of index shapes that allow index shape pieces
of both types.

Definition C.55. For two index shapes U,V , we write U =V if for all types t and all powers p, the
index shape pieces of type t and power p in U and V' have the same length.

Definition C.56. Define Z,,;4 to be the set of all index shapes U that contain only index shape pieces
of power 1.
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Since we are working with standard graphs, the notion of path and vertex separator need no
modifications, but we will now use the minimum weight vertex separator instead of the minimum
vertex separator where we define the weight as follows.

Definition C.57 (Weight of an index shape). Suppose we have an index shape U = {Uy,Us} €
Tnia where Uy = ((Urz,...,Uvuy)),1,1) is an index shape piece of type 1 and Uy =
((Uz2,1,.-,Us1,),2,1) is an index shape piece of type 2. Then, define the weight of this index

shape to be w(U) = \/EIU1 | \/ﬁle‘.

We now give the modified definition of shapes.

Definition C.58 (Shapes). Shapes are tuples a = (H,,, Uy, V) where H,, is a graph with two types
of vertices, has labeled edges only across vertices of different types and U, V,, are index shapes such

that Uy, Vo CV(Hy).
Definition C.59 (Proper shape). A shape « is proper if it has no isolated vertices outside U, UV,
no multi-edges and all the edges have a nonzero label.

In[Appendix F| we will show that with this new definition of weight and shapes, any shape « has
a unique decomposition into o o 7 o ¢’7 where o, 7, 0’7 are left, middle and right parts respectively.
Here, 7 may possibly be improper.

In the definition of trivial shape 7, we now require U, = V... For U € Z,,,;4, My will be the set
of proper non-trivial middle parts 7 with U, = V. = U and Ly will be the set of left parts ¢ such
that V,, = U. Similarly, for U,V € Z,,;q4, Ly, will be the set of left parts y such that U, = U and
V,=V.

Finally, in order to define the moment matrix, we need to truncate our shapes based on the
number of vertices and the labels on our edges. So, we make the following definition.

Definition C.60 (Truncation parameters). For integers Dg,s, Dy, Dg > 0, say that a shape o
satisfies the truncation parameters Dg,s, Dy, D if

- The degrees of the monomials that U,, and V,, correspond to, are at most DT“

- The left part o, the middle part T and the right part o'7 of o satisfy
[V (o), IV(7)l,[V(e"")| < Dv

- Foreache € E(a), l. < Dg.
C.6.3 Relaxing the third condition

In[Theorem C.37] the third qualitative condition we’d like to show is as follows: For all U, V' € ;4
such that |[U| > |V|and all v € TI'y,y, H;dlj = f(v)Hrd,. - For technical reasons, we won’t be
able to show this directly. To handle this, we instead work with a slight modification of H Idy,» 2
matrix H ; that’s very close to H, Idy,, - So, what we will end up showing is: For all U,V € Z,,;4 such

that [U| > |V|and ally € T'y v, H;ij = f(v)H,.
Let Dy, be the truncation parameter. A canonical choice for H, ; is to take

1. H!(0,0") = Hja, (0,0") whenever |V (0 07)| < Dy and [V (0’ 0 y)| < Dy
2. H!(0,0") = 0 whenever |V (0 07)| > Dy or [V(o' o) > Dy.

With this choice, H Q is the same as H Idy, Upto truncation error.
D Application: Tensor PCA

We first decompose the moment matrix into graph matrices and then show the qualitative bounds
needed.

D.1 Decomposition into graph matrices

Define the degree of SoS to be Dg,s = nCsos for some constant C'ps > 0 that we choose later. And
define the truncation parameters to be Dy = n®ve, D = n©®¢ for some constants Cy, Cp > 0.
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Remark D.1 (Choice of parameters). We first set € to be a sufficiently small constant. Based on the
choice of €, we will set the constant Ca > 0 sufficiently small so that the planted distribution is well
defined. Based on these choices, we choose Cy, Cg, Cs,s in that order.

The underlying graphs for the graph matrices have the following structure; There will be n
vertices of a single type and the edges will be ordered hyperedges of arity k. For the analysis of
Tensor PCA, we will use the following notation. For an index shape U and a vertex 4, define deg¥ (i)
as follows: If i € V(U), then it is the power of the unique index shape piece A € U such that
i € V(A). Otherwise, itis 0. Also define deg(U) = >,y 1) deg¥ (7). This is also the degree of

the monomial that U corresponds to. For a shape v and vertex i in o, let deg® (1) = }_,ccep(a) le
and let deg(a) = deg(Uy) + deg(Vy,).

We will now describe the decomposition of the moment matrix A using|Lemma B.1|

Definition D.2. If a shape o is proper satisfies the truncation parameters D5, Dy, Dg and is such
that deg® (i) + degU~ (i) + deg"= (i) is even for all i € V (), define

_ deg(a) R
s ()™ 1L (i
An eega) (An)%

Otherwise, define \,, = 0.
Corollary D.3. A =>" A\, M,,.

D.2 Qualitative bounds
We prove the PSD mass condition and the middle shape and intersection term bounds, by first stating
them and then introducing appropriate notation to prove them all in a unified manner.
Lemma D.4 (PSD mass). ForallU € L4, Hyq, = 0

We define the following quantities to capture the contribution of the vertices within 7, v to the
Fourier coefficients.

Definition D.5. For U € Z,,,;,q and 7 € My, if deg™ (i) is even for all vertices i € V(1) \ U, \ V,
define

L
S(r) = AV T ( A k)
(An)2

ecE(T)

Otherwise, define S(17) = 0. For all U,V € 1,4 where w(U) > w(V') and v € Ty v, if deg”(3) is
even for all vertices i in V() \ U, \ 'V, define

le
— AVt A
S0 =4 H ((An)’zc )

e€E(y)

Otherwise, define S(y) =

We now state the bounds in terms of these quantities.
Lemma D.6 (Middle shape bounds). Forall U € Z,,;q and T € My,

Tty H1do o )HT ]
HTT \Aut(U)\HIdU

We again use the canonical definition of H. ﬁy from|Appendix C.6.3

Lemma D.7 (Intersection term bounds). Forall U,V € Z,,;q where w(U) > w(V)andally € Ty v,

[Aut(V)]| =
[Aut(0)] 5( wHpg” = H,.

33



D.2.1 Proof of PSD mass condition

We introduce some notation which makes it easy to show these bounds and which also sheds light on
the structure of the coefficient matrices. When we compose shapes o, o’, from in order
for Ayoo to be nonzero, observe that all vertices i in Ayo,+ should have deg®°? (i) + degVoeo' (i) +
deg"=0o" (i) to be even. To partially capture this notion conveniently, we will introduce the notion of
parity vectors.

Definition D.8. Define a parity vector p to be a vector whose entries are in {0,1}. For U € T4,
define Py to be the set of parity vectors p whose coordinates are indexed by U.

Definition D.9. For a left shape o, define p, € Py, called the parity vector of o, to be the parity
vector such that for each vertex i € V,, the i-th entry of p, is the parity of degU= (i) + deg® (i), that
is (po)i = deg¥7 (i) + deg® (i) (mod 2). For U € g and p € Py, let Ly, be the set of all left
shapes o € Ly such that p, = p, that is, the set of all left shapes with parity vector p.

For a shape 7, for a 7 coefficient matrix H., and parity vectors p € Py_, p’ € Py, define the
7-coefficient matrix Hr, o as ., (0, 0") = Hr(0,0")if o € Ly, p,0" € Ly, , and 0 otherwise.
The following proposition is immediate.

Proposition D.10. For any shape T and T-coefficient matrix H;, H. = H: o

pEPU,,p €PV,
Proposition D.11. Forany U € Z,,;q, Hia, = ZpePU Hiaypp

Proof. For any 0,0’ € Ly, using[Definition D.2| note that in order for Hy4,, (0, 0”) to be nonzero,
we must have p, = py. [

We define the following quantity to capture the contribution of the vertices within o to the Fourier
coefficients.

Definition D.12. For a shape o € L, if deg? (i) + degV= (i) is even for all vertices i € V(o) \ Vy,

define
Ve 1 deg(Us) A 5
ro=2 ()™ 1 ()
VAn eego) (An)z

Otherwise, define T (o) = 0. For U € I,,;q and p € Py, define v, to be the vector indexed by o € L
such that v,(o) is T(o) if o € Ly, and 0 otherwise.

With this notation, the PSD mass condition is easily shown.

Proof of the PSD mass condmon Forall U € Z,,q4, p € PU, Definition D.2|implies
Hiay.pp= vav Therefore HIdU =2 pepy Hidv,pp = W 2 pepy Vplp = 0.
||

D.2.2 Middle shape bounds

The next proposition captures the fact that when we compose shapes o, 7, 0’7, in order for Ao,/

to be nonzero, the parities of the degrees of the merged vertices should add up correspondingly.
Proposition D.13. ForallU € 1,,,q and T € My, there exist two sets of parity vectors Py, Q. C

‘Pu and a bijection 7w : Pr — Q) such that H, ZpGP 7,0, (p)*

Proof. Using[Definition D.2] in order for H, (o, 0") to be nonzero, in ¢ o 7 o o', we must have that

foralli € U, UV,, deg¥ ( ) + deg”<’ (i) + deg®°T°? T( ) must be even. In other words, for any
p € Py, there is at most one p’ € Py such that if we take 0 € Ly, ,,0' € Ly with HT(U, a’)
nonzero, then the parity of o’ is p’. Also, observe that p’ determines p. We then take P, to be the set
of p such that p’ exists, @ to be the set of p’ and in this case, we define 7(p) = p'. ]

A straightforward verification of the conditions of |[Definition D.2|implies the following proposi-
tion.

Proposition D.14. For any U € T,,;q and 7 € My, suppose we take p € P;. Let 7 be the bijection

from|Proposition D.13|so that w(p) € Q. Then, H, , ~(,) = WS(T)%U;@).
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We can now prove the middle shape bounds.

Proof of the middle shape bounds Let P, Q,, 7 be from Proposmon D.13| For p, p €

Py, let W, , = 'Up(v,, ) Then, Hyq, = pEPY Hiay.pp = W PEPU W,,p and Hy
> per, Heprto) = taarmyp S(7) X pep, Woon(p)- We have

o) Hya, H, St [ Soery Woo  Lyer. W,,ﬂ,(p)}
Hz \Aut(U)| HIdU |AUt<U)‘ ZPEPT Wp,ﬂ'(p) ZpePU Wp,p

We have % > 0 and the matrix is just

[ZPGPU\PT Wop 0 ] n [ 2 pep, W;pap 2 per, Wor(o) }
0 Zpe”PU\QT W ZpEP.,. Wp,ﬂ'(p) ZpeP, W (p)m(p)

We have Y- cp \p. Wop = 2 pepy\p, oty = 0. Similarly, 3 cp o W, >= 0 and so,
[ZpEPU\PT Wop 0
0

the first term in the above expression, W
2 pEPU\Q, "V pip

} is positive semidefinite.
For the second term,
[ ZPGPT Wo.p ZPGPT Wo.x(p) ] — Z { UPUZ Up(”w(p))T } =0

Yoer Wonto Loer Wetraa)] — 22 [ve( (00)" () ()" -

D.2.3 Intersection term bounds

Similar to|Proposition D.13] the next proposition captures the fact that when we compose shapes
a,v,7", o™, in order for Asoyoy'Too'T 10 be nonzero, the parities of the degrees of the merged
vertices should add up correspondingly.

We use the following notation. For all U, V' € Z,,,q where w(U ) > w(V), for 7 € I'y,yv and

parity vectors p, p' € Py, define the v o v -coefficient matrix H, dy p s H; ] (0,0") =

dv PP’
HIdV (0,0")ifo € Ly, 0" € Ly, and 0 otherwise.

Proposition D.15. Forall U,V € I,,;q where w(U) > w(V'), for all v € Ty v, there exists a set of
parity vectors P, C Py such that Hy ;" =37

bl
pEP, HIdVJ’-,P'

T

. — )\ao ovT oo -,
Proof. Take any p € Py. Foro € Ly, 0" € Ly, since Hy ;" (0,0") = =325, Hrg (0,0")

is nonzero precisely when A, ,~o7o, /7 is nonzero. For this quantity to be nonzero, using
we get that it is necessary, but not sufficient, that the parity vector of ¢’ must also be p. And
also observe that there exists a set P, of parity vectors p for which H I_d“"/’f’p o is nonzero and their sum

is precisely H; ™" [ |

For all U,V € I,,;q where w(U) > w(V), for all v € T'yy and parity vector p € Py, define
the matrix H’ Lopas H , (0,0") = H!(0,0")if 0,0" € Ly, and 0 otherwise. The following
proposition is immediate from the deﬁnmon

Proposition D.16. For all U,V € Z,,,;q where w(U) > w(V), fory € Ty y, H EpEP %p o
Proposition D.17. For all U,V € I,,,q where w(U) > w(V), forall v € T'yy and p € P,,

_ |Aut(U)] 2
Higho = o0 (Y VH

Proof. Fix 0,0’ € Ly, such that [V (c07)|, [V (0" 07)| < Dy Note that [V ()| — Yl 4|V (o")| -

|V—§" +2(|V(y)| — W) = |V(0 0y0~T 0o'T)|. Using|Definition D.2| we can easily verify
ut(U

that Aoron7ogr = T(0)T(0")S()?. Therefore, H, ;" Tploa’) = WS(W)2HIdU,p,p(U, a').

Since H!, , (0,0") = Hiqy, p,p(0,0") whenever |V (o o), |V (o’ o y)| < Dy, this completes the

¥:pp
proof. [ ]
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With this, we can prove the intersection term bounds.
Proof of intersection term boundsm We have

[Aut (V)] —, |Aut(V 1 . /
oD S = Z|Aut S i e = 2 Mo = 30 MYy = I,

pEP, pEPU

where we used the fact that for all p € Py, we have H jy pp = > 0. ]

E Application: Sparse PCA

Just as in the earlier application, we decompose the moment matrix into graph matrices and then
show the necessary qualitative bounds.

E.1 Decomposition into graph matrices

Define the degree of SoS to be Dy,s = dC=0=¢ for some constant Cs,s > 0 that we choose later.
Define the truncation parameters to be Dy = d°v¢, D = d°=¢ for some constants Cy-, C > 0.
Regarding the choice of parameters,[Remark D.1|directly applies.

The underlying graphs for the graph matrices have the following structure: There will be two
types of vertices - d type 1 vertices corresponding to the dimensions of the space and m type 2
vertices corresponding to the different input vectors. The shapes will correspond to bipartite graphs
with edges going between across of different types.

For the analysis of Sparse PCA, we will use the following notation. For a shape o and type
t € {1,2}, let V;(«) denote the vertices of V («) that are of type ¢ and let |a|; = |Vi(«)|. For
an index shape U and a vertex i, define deg? (i) as follows: If i € V(U), then it is the power of
the unique index shape piece A € U such that i € V(A). Otherwise, it is 0. Also, let deg(U) =
ZZEV(U) degY (7). This is also the degree of the monomial py. For a shape a and vertex i in «, let
deg® (i) = Y iceep(a) le and let deg(ar) = deg(Ua) + deg(Va). For an index shape U € Z,,;q and
type t € {1,2}, let U; € U denote the index shape piece of type ¢ in U if it exists, otherwise define
U to be (). Also, denote by |U]|; the length of the tuple Uy.

We will now describe the decomposition of the moment matrix A, where we apply
Definition E.1. If a shape « is proper, satisfies the truncation parameters D5, Dy, Dg and is such
that both Uy, V,, only contain index shape pieces of type 1 and deg®(i) + degU= (i) + deg"= (i) is
even for all i € V(«), define

L \des(@) /.y lohs Ui
M() () Aot ] (deg®() -1 J] 2
vk d JEVa(a) ceB(a) VE

Otherwise, define \, =
Corollary E2. A =" A\, M,,.

E.2 Qualitative bounds

In this section, we will prove the main PSD mass condition and obtain bounds of the other two
conditions. As in the prior section, we will state the bounds first, introduce notation and then prove
them all in a unified manner.

Lemma E.3 (PSD mass). ForallU € 1,,;q, Hra, = 0

We define the following quantities to capture the contribution of the vertices within 7, vy to the
Fourier coefficients.

Definition E4. For U € I,,;q and 7 € My, if deg” (i) is even for all vertices i € V(1) \ U, \ V,
define

[Tl —|Ur|1 le
ﬂﬂ—@) Ao T () - T YA
JEVR(T)\U-\V+ ecE(T) \/E
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Otherwise, define S(1) = 0. For all U,V € L;q where w(U) > w(V) and y € Ty v, if deg” (i) is
even for all vertices i in V() \ U, \ 'V, define

[U~nl1+1Vy 11

|'Y|1_ p] 5 5 le
s0)= (%) N S | TR |
JEVa (U Y, cen(y) Vk

Otherwise, define S(y) = 0.

For getting the best bounds, it will be convenient to discretize the Normal distribution. The
following fact follows from standard results on Gaussian quadrature, see for e.g. 34! Lemma 4.3].

Fact E.5 (Discretizing the Normal distribution). There is an absolute constant Cy;s. such that,
for any positive integer D, there exists a distribution € over the real numbers supported on D
points p1, ..., pp, such that |p;| < CaiseN'D forall i < D and Eynelg'] = Egnr(0,1)[9"] for all
t=0,1,...,2D — 1.

Definition E.6. For any shape T, suppose U’ = (U )2, V' = (V, )2 are the type 2 vertices in U,V
respectively. Define R(7) = (Cgiser/Dg)2=iev’ov’ €97 (),

We can now state our bounds.
Lemma E.7 (Middle shape bounds). ForallU € Z,,;q and T € My,

Ty Hig - Hr
HT s g | =0
v [Aut()] 1du

We again use the canonical definition of HZ/ from|Appendix C.6.3

Lemma E.8 (Intersection term bounds). ForallU,V € Z,;q where w(U) > w(V)andally € Ty v,

|Aut(V)] 1 -7,
)] * seRm? iy = H

E.2.1 Proof of the PSD mass condition

Most of the notation and analysis here are similar to the case of Tensor PCA, we just need to
appropriately modify them since there are two types of vertices in the Sparse PCA application. When
we compose shapes o, ¢/, from in order for A\, ., to be nonzero, observe that all
vertices i in Ayo0 should have deg°? (i) + degVzo’ (i) + deg"=>=' (i) to be even. To capture this
notion conveniently, we again use the notion of parity vectors.

Definition E.9. Define a parity vector p to be a vector whose entries are in {0, 1}. For U € T4,
define Py to be the set of parity vectors p whose coordinates are indexed by U, followed by Us.

Definition E.10. For a left shape o, define p, € Pv,, called the parity vector of o, to be the parity
vector such that for each vertex i € V,, the i-th entry of py is the parity of degV= (i) + deg? (i), that
is, (po)i = deg¥7 (i) + deg® (i) (mod 2). For U € L,nq and p € Py, let Ly, be the set of all left
shapes o € Ly such that p, = p, that is, the set of all left shapes with parity vector p.

For a shape 7, for a 7 coefficient matrix H, and parity vectors p € Py._, p’ € Py, define the
T-coefficient matrix H, , ,» as H; , ,(0,0") = H.(0,0")ifo € Ly, ,,0" € Ly, , and 0 otherwise.
This immediately implies the following proposition.

/

Proposition E.11. For any shape T and T-coefficient matrix H,, H, =
Proposition E.12. Forany U € Zp;q, Hria, = .

pEPU, ,p EPV, HTW,/J
pEPU HIdu,p,p

Proof. For any 0,0’ € Ly, using|Definition E.1{ note that in order for Hy4,, (¢, 0’) to be nonzero,
we must have p, = py-. [ ]

We now discretize the normal distribution while matching the first 2Dg — 1 moments.
Definition E.13. Let D be a distribution over the real numbers obtained by setting D = D in
Fact E.5| So, in particular, for any x sampled from D, we have |x| < Cyiser/Dg and fort < 2Dg—1,
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We define the following quantities to capture the contribution of the vertices within o to the
Fourier coefficients.

Definition E.14. For a shape o € L, if deg? (i) + degU (i) is even for all vertices i € V(o) \ V,
define

deg(Uy) ‘U‘l_\Vah I

1 k 2 Voo VA

T(U‘) = () () Alo\z— g I | (deg"(j) _ 1)” I I l
vk d JEVa (N Vs By VE*

Otherwise, define T'(o) = 0.

Definition E.15. Let U € 1,,,q. Let x; for i € Uy be variables. Denote them collectively as xy,.
For p € Py, deﬁne vp v, 10 be the vector indexed by left shapes o € L such that the oth entry is

T (o) HzeU2 xdeg lfa € Ly,, and 0 otherwise.

The following proposition is obvious and immediately implies the PSD mass condition.

Proposition E.16. Forany U € Z,,,4, p € Py, suppose x; for i € Uy are random variables sampled
1
from D. Then, Hiqy, p.p = TAai (0] Be [Vp,20, UZI%].

Proof. Observe that for 0,0’ € Ly, and t € {1,2}, (|o]; — %) + (lo’]s = Yty = |60 67},
The result follows by verifying the conditions of |Definition E.1|and using|Definition E.13 [ ]
Proof of the PSD mass condition|Lemma E.3| We have Hrq,, = > ,cp, Hrdy,p,p = 0 because of
the above proposition. [ ]

E.2.2 Middle shape bounds

The next proposition captures the fact that when we compose shapes o, 7, 0’7, in order for A, o on/T
to be nonzero, the parities of the degrees of the merged vertices should add up correspondingly.

Proposition E.17. For all U € I,,,;q and T € My, there exist two sets of parity vectors P, Q; C
‘Pu and a bijection w : Pr — Q) such that H, EpGP .0, (p)-

Proof. Using|Definition E.1} in order for H, (o, o’) to be nonzero, we must have that, in o o 7 0 ¢’,
foralli € U, UV,, deg¥= (i) + deg o (i) + deg®®™°"" (i) must be even. In other words, for any
p € Py, there is at most one p’ € Py such that if we take 0 € Ly ,, 0’ € Ly with H,(o,0')
nonzero, then the parity of ¢’ is p’. Also, observe that p’ determines p. We then take P to be the set
of p such that p’ exists, @, to be the set of p and in this case, we define 7(p) = p'. ]

Proposition E.18. Forany U € 1,,,q4 and T € My, suppose we take p € P;. Let T be the bijection
fromso that w(p) € Q. Let U' = (U;)2, V' = (V)2 be the type 2 vertices in
U, V. respectively. Let x; fori € U UV’ be random variables independently sampled from D.
Define xy (resp. xvy+) to be the subset of variables x; for i € U’ (resp. i € V'). Then,

_ 1 deg™ (i)
Hy prip) = WS(T)IE l”p,z[ﬂ (iegw ; Un(p)ays

Proof. Foro € Ly,p,0' € Ly and t € {1,2}, we have (7], — |Us |;) + (|0, — Yele) +

|V /\t

+ (o] =
= |0 o T 0 ¢’|;. The result then follows by a straightforward verification of the conditions of
|Deﬁn1t10n E.1{using[Definition E.13| |

We are ready to show the middle shape bounds.

Proof of the middle shape bounds Let P, Q,, 7 be from[Proposition E.17| Let U’ =

(U;)2, V' = (V;)2 be the type 2 vertices in U, V- respectively. Let x; for i € U” UV be random
variables independently sampled from D. Define xy+ (resp. xy-) to be the subset of variables x; for
1€ U (resp.i € V).
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T 1
For p € Py, define Wy, = By, ~pv: [Vo,yi, Upypr, | 50 that Hray p.p =ty Wo.e- Observe
that W, , = E[vpe,,0p,.,] = E[vpa,,vh, ] because zys and vy are also sets of variables
sampled from D and, U’, V' have the same size as U because U, = V, = U.
d
For p,p' € Py, define Y, , = E [val (HzEU’UV’x v ()) vrr(p),xw}' Then, H- =

2per, Hrpr(p) = \Aut%U)P S(7) X pep, Yom(p)- We have

S(T)R(T
\f(lu)t((&)? Hjay, H, L |:R(T) Z;}E'P% W,, ZpEPT Y, 2(p) }
HY SORO g, |~ [AutO)F | Sper, Virgy RO Zpep, Won

We hae ‘Aut(w > 0 and the matrix is just

R(7) {Zpepu\a Wo.p 0 ] i [R(T) ZpEP%WPW ZpEPT Yp,w(p) }
0 ZpGPU\QT Wop ZpEPT Yp,‘rr(p) R(7) ZpGPT WTF(I))JT(P)

o T . .
‘We have ZPEPU\PT W[),l) = ZPEPU\PT E[vp,xU/ /Up,xU/} >__ O SlmllarIY7 ZPEPU\QT WP,I) i O
Also, R(7) > 0 and so, the first term in the above expression is positive semidefinite. And the second
term is just

deg” ()) T

Uﬂ'(p),mv/

T
Z ]E R(T)UP,$U/ Up,wU/ UP»CCU/ (H’LEU' v’ l'
T deg” (i) T
peP. | Yoy (HzeU' v T Un(p),avs R(T)UW(P)WV/”W(;J),%/

We will prove that the term inside the expectation is positive semidefinite for each p € P, and
each sampling of the z; from D, which will complete the proof. Fix p € P; and any sampling of

the z; from D. Let w1 = v x,,, W2 = Vn(p),z,,- Let B = [Licoov x?eg @) We would like to

T T
prove that [R<T)wlw1 Ewiw; T} = 0. For all y sampled from D, |y| < Cy;s.v/DE and so,

Ewfwy  R(T)wawl
|E| < (Cuise/Dp)>seerov "0 = R(r).
If £ > 0, then
R(r)wiw!l  Bwjwl wiw? 0 wiwl  wywd
— — -
[ Ewfwy  R(T)waw? (R(7) = E) 0 wawd +E wiwy  wowd 0
since R(7) — E > 0 Andif E < 0,
R(r)wiwl  FBwwl | wiw! 0 wiwl  —wiwd
[ Ewfwy  R(t)wwl| — (R(7) + E) 0 wowd | E —wlwy  wowd =0

since R(7) + E > 0. [ |

E.2.3 Intersection term bounds

Just as in|Proposition E.17} the next proposition captures the fact that when we compose shapes
1

a,v,7vT,o’", in order for soyoyToo'T tO be nonzero, the parities of the degrees of the merged
ertices should add up correspondingly. Just as in the tensor PCA application, we similarly define

H,;, v p , and H Q o0+ The following propositions are simple and proved the same way.

Proposition E.19. Forall U,V € Z,,,;q where w(U) > w( ), forall v € Ty v, there exists a set of
parity vectors P, C Py such that Hy ;" = ZpEP Idv o

Proposition E.20. For all U,V € Lyiq where w(U) > w(V), fory € Ty, Hy =3 cp H', , .

We will now define vectors which are truncations of v, ;. This definition and the following
proposition are mostly a matter of technicality and they are essentially similar to the PSD mass
condition analysis.

Definition E.21. Let U,V € I,,;q where w(U) > w(V), and let v € T'yy. Let x; for i € Uy be
variables. Denote them collectively as xy,. For p € Py, define v,  to be the vector indexed by

left shapes o € L such that the oth entry is vy, (o) if [V (0 0 7)| S DV and 0 otherwise.
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With this, we can decompose each slice H; """
Idvy,p,p*

Proposition E.22. For any U,V € I,,;q where w(U) > w(V), and for any vy € T'yy, suppose we
take p € P.. When we compose y with y* to get y o 7, let U = (U, oy1)2, V' = (V,0,7)2 be the
type 2 vertices in U, o1, V. o1 respectively. And let W' be the set of type 2 vertices in vy o ~T that
were identified in the composition when we set V., = UT. Let x; fori € U' UW' U V' be random
variables independently sampled from D. Define xy (resp. xvy,xw:) to be the subset of variables
x; fori € U (resp. i € V' i € W’). Then,

—, . 1 2 degwowT(i) _ T
HId’:/’,Yp,p - MS( ) IZE [( p:vU/) ( H Ly (vp,gvz)

i€eU'uwruv’

Proof. Fix 0,0’ € Ly, such that [V (o o 7)],|V (o' 0 y)| < Dy. Note that for t € {1,2}, |o|; —

|V e 4 o7}y — et 4 o(]y), — M) = |ooyoxyT oo'T|;. We can easily verify the equality
usmg [Definition E 1|and|Definition E.13| [ ]

Proposition E.23. For any U,V € I,,;q where w(U) > w(V), and for any v € T'y,y, suppose we
take p € Py. Then, H! , = 7|Aut1(U)| Eyy, ~DU2 {(v;guz)(v;gljz )T}

We can finally show the intersection term bounds.

Proof of the intersection term bounds Let U’, V', W' be as in|Proposition E.22| We
have

[Aut (V)| L v 3 [ Aut(V)| L—
[Aut(@)] SR g JAuO)] S0PPRM)E T
1 ! - deg” () \ v T
-y - E<w>< M« )W)
2 Ty [ PyTys 1
pEPy [Aut(U)] - R(7)* = [ ’ ieU'uUW/uv’ v

We will now prove that, for all p € P.,

_ deg°7" (4) _
(Up,;YU/) ( H i’ (”p,;cyvl) H:/,pp

€U’ UWw’'uv’

L R
[Aut(U)| R(v)* =

which reduces to proving that

R(i)gzg[u%,)( [T “’) <vw>T]52y E  [(053,) W)

~DU
ieUUW/ UV’ up~D72

= B[ (052,) (052,07 + (02, )05,

where the last equality followed from linearity of expectation and the fact that U’ = V'’ = Us. Since

VoY ;
Hp,.) ', 18 symmetric, we have

_ de 'YOVTZ' _
<vp,zU,>< I = “) (w2 )7

ieU'uw’uv’

s =

_ de 'YOVTi _
<vp,;v,>( I = “) <vp,;,,,>T]

i€U'uUW’uv’

So, it suffices to prove

1 E|(w;2 ) H xdeg”’m’T(i) (v )T+(U—7 ) H IdSQWMT(i) (v )T
R(’)/)2 z p,wU/ [ PyTy 1 LTyt % PyTyr

i€eU'uw’uv’ i€eU'uw’uv’

<E[(052,) 052,07 + 052, )05,)" ]
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We will prove that for every sampling of the x; from D, we have

]_ _ d ‘YO’YTi _ _ d ’YO'YTi _
W<<sz,>< I = “) <vp,zv/>T+<,,,zv,>< [ = ”) <vp,zU,>T>

eU'UwWw’'uv’ eU'UW’/uv’
= (0 w2 )+ (0, ), d )T

Then, taking expectations will give the result. Indeed, fix a sampling of the z; from D. Let

T
deg?°"" (i) -y
E = HzEU’UW’UV’ x; and let wy = v, b P

to show is R(W)Q (wiwd + wow?) < wiw! + wowl'. Now, since |z;| < Cyise/DE for all i, we
oy T (s .
have |E| < TTicpmuwrov: (CaisevV D)™ @ = R(7)*. If B > 0, using 7y (w1 — wa)(w —
wa)T = 0 gives
E T T E T
R)? (wiwy + wowy ) = R)? (wyw] +wowd) < wiw! + wywl

since 0 < E < R(y)?. Andif E < 0, using #;E)z(wl + wa) (w1 + wa)T = 0 gives

wo = v Then, the inequality we need

T

E
< wiw! + wowl) < wiw? + wywl

-E
R s el = e

since 0 < —F < R(y ) Finally, we use the fact that for all p € Py, we have H t 0 which can
be proved the same way as the proof of[Lemma E.3| Therefore,

[ Aut (V)| 1
. EUTHED DRIV DRI
3 Idy 0P — PP v
|A’U4t(U>‘ S(’Y) R( pEP, pEPU

E.3 Intuition for quantitative bounds

In this section, we will give some intuition for the bounds that appear in our main theorem
Wthh is formally proved in|Appendix K| Informally, the theorem states that when m < 5

and m < %3, then A > 0 with high probability.

)\2’

We will try and understand why the inequality A2 T || M, H2 < AgooT Agrogrr holds. Assume
for simplicity that d < n and consider the shapes in|Fig. 3| The assumption d < n is used in this
example since otherwise, if d > n, the decomposition differs from what’s shown in the figure.

Shape sorioa" Shape com oo’ Shape oo
—
/4“/ /‘N\
/NS N\

(it f------5 Fo---- W/ — NF--==== moomoe
1 e : ! : YN\ ‘
! —] — i i f— — !
! AN ! ! N /7 |
: : ! | | i\v”\/ |
1 ! : ! | D G A ‘
: v : ! : oS 1
! — — | ! ! — ! |
1 NG : : N
,,,,,,, | [ 5 E \\_,/ !
Usorieo Vooreor Usoot = Viyour

UaomoaT VoorzoaT

Figure 3: Shapes c o1y o0l , 0o 00 and oo o

4
Firstly, the shape o o 0T has a coefficient of \, ., ~ (ﬁ) (%)2. The first shape o o 71 0 0T

4 4
has a coefficient of \,or, 057 = (ﬁ) (%)4 (%) and with high probability, upto lower order
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2

terms, || M-, || < md (these norm bounds follow from [II). So, the inequality A7 __ - ||

2
M, |” <
AgooT AgooT Tearranges to m < )\%. But this is precisely one of the assumptions on m. Moreover,
this also confirms that we need this assumption on m in order for our strategy to go through.

4 8
The second shape o o 73 o 0T has a coefficient of Aoy, 007 = (ﬁ) (%)4 (%) and with
2
M <

high probability, upto lower order terms, || M-, || < m?d. So, the inequality A2 - ||
ApooT ApopT Tearranges to m? < %. But this is obtained simply by multiplying our assumptions

2
on m, namely m < ’;—2 and m < )\%.

Moreover, consider a shape of the form o o3 ool where 75 is similar to except it has ¢ (instead
of 3) different circle vertices that are common neighbors to the top 2 square vertices. Analyzing our

. . . . 2 =
required inequality, we get for our strategy to go through, m has to satisfy m < % . (k%) 1. By
. . . .. 2 .
taking ¢ arbitrarily large, we can see that the condition m < % is needed.
. . .2
So, we get that for our analysis to go through, the assumptions m < )\i and m < % are
necessary. We will prove that in fact, these are sufficient. To do this, we use an argument that exploits

the special structure of the shapes « that appear in our decomposition of A and their coefficients A,

as we obtained in|Definition E.1| For details, see[Appendix K
F Definitions and Quantitative Main Theorem Statement

F.1 Section Introduction

In this section, we make our definitions and results more precise. We also generalize our definitions
and results to handle problems where one or more of the following is true:

1. The input entries correspond to hyperedges rather than edges.

2. We have different types of indices.

3. Q is a more complicated distribution than {—1,+1}.

4. We have to consider matrix indices which are not multilinear.

Throughout this section and the remainder of this manuscript, we give the reader a choice for

the level of generality. In particular, we will first recall our definition for the simpler case when our

input is {—1, —|—1}(12L) and we only consider multilinear indices. We will then discuss how this simpler
definition generalizes. We denote these generalizations with an asterix .

F.1.1 Additional Parameters for the General Case*

In the general case we will need a few additional parameters which we define here.
Definition F.1.

1. We define k to be the arity of the hyperedges corresponding to the input.

2. We define t,,qz to be the number of different types of indices. We define n; to be the number
of possibilities for indicies of type i and we define n = max {n; : i € [tm(w] 1.

F.2 Indices, Input Entries, Vertices, and Edges

Note: For this section, we use X to denote the input, we use x to denote entries of the input and we
use y to denote solution variables.

Definition F.2 (Vertices: Simplified Case). When the input and solution variables are indexed by one
type of index which takes values in [n] then we represent the index i by a vertex labeled i.

If we want to leave an index unspecified, we instead represent it by a vertex labeled with a
variable (we will generally use u, v, or w for these variables).

Definition F.3 (Vertices: General Case*). When the input and solution variables are indexed by
several types of indices where indices of type t take values in [ni), we represent an index of type t
with value i as a vertex labeled by the tuple (t,i). We say that such a vertex has type t.
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If we want to leave an index of type t unspecified, we instead represent it by a vertex labeled with
a tuple (t,?) where ? is a variable (which will generally be u, v, or w).

Definition F.4 (Edges: Simplified Case). When the input is X € {—1, +1}(;), we represent the
entries of the input by the undirected edges {(i,j) : i < j € [n]}. Given an edge e = (3, j), we take
T = Ty; to be the input entry corresponding to e.

Definition F.5 (Edges: General Case*). In general, we represent the entries of the input by hyperedges
whose form depends on nature of the input. We still take x. to be the input entry corresponding to e.

Example F.6. If the input is an n1 X ny matrix X then we will have two types of indices, one for the
row and one for the column. Thus, we will have the vertices {(1,4) : i € [n1]} U{(2,7) : j € [n2]}.
In this case, we have an edge ((1,1), (2, j)) for each entry x;; of the input.

Example E.7. If the input is an n X n matrix X which is not symmetric then we only need the indices
[n]. In this case, we have a directed edge (i, j) for each entry x;; where i # j. If the entries x;; are
also part of the input than we also have loops (i,1) for these entries.

Example F.8. If our input is a symmetric n X n X n tensor X (i.e. Tyji, = Tikj = Tjik = Tjki =
Trij = Trjs) and x5, = 0 whenever i, j, k are not distinct then we only need the indices [n]. In
this case, we have an undirected hyperedge e = (3, j, k) for each entry x. = x;;}, of the input where
i, J, k are distinct.

Example F.9. [fthe input is an n1 X no X ng tensor X then we will have three types of indices. Thus,
we will have the vertices {(1,4) : i € [n1]} U{(2,7) : j € [n2]} U{(3,k) : k € [n3]}. In this case,
we have a hyperedge e = ((1,1),(2,7), (3, k)) for each entry x. = x;j, of the input.

F.3 Matrix Indices and Monomials
In this subsection, we discuss how our matrices are indexed and how we associate matrix indices
with monomials. We also describe the automorphism groups of matrix indices.

Definition F.10 (Matrix Indices: Simplified Case). If there is only one type of index and we have the
constraints y? = 1 or y? = y; on the solution variables then we define a matrix index A to be a tuple
of indices (ay, . .., a4). We make the following definitions about matrix indices:

1. We associate the monomial Hljill Ya, to A.

2. We define V(A) to be the set of vertices {a; : i € [|A|]}. For brevity, we will often write A
instead of V (A) when it is clear from context that we are referring to A as a set of vertices
rather than a matrix index.

3. We take the automorphism group of A to be Aut(A) = S|a| (the permutations of the
elements of A)

Example F.11. The matrix index A = (4,6, 1) represents the monomial ysysyn = Y1yaye and
Aut(A) = S3

Remark F.12. We take A to be an ordered tuple rather than a set for technical reasons.
In general, we need a more intricate definition for matrix indices. We start by defining matrix
index pieces

Definition F.13 (Matrix Index Piece Definition*). We define a matrix index piece A; =
((@i1, .., aia,]), ti, pi) to be a tuple of indices (a1, . .., a; a,)) together with a type t; and a power
pi. We make the following definitions about matrix index pieces:

1. We associate the monomial p 5, = H‘J‘il‘ yr'; with A;.

2. We define V (A;) to be the set of vertices {(t;,a;;) : j € [|Ai]]}.

3. We take the automorphism group of A; to be Aut(A;) = S|4,

4. We say that A; and A; are disjoint if V(A;) NV (A;) = 0 (i.e. t; # tj or {ai1, ..., a;a,}N
{ajh cee aaj\Aj|} =10)

Definition F.14 (General Matrix Index Definition*). We define a matrix index A = {A;} to be a set
of disjoint matrix index pieces. We make the following definitions about matrix indices:
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1. We associate the monomial pa = [ 4, c o P(Ai) with A.

2. We define V(A) to be the set of vertices Ua,caV (A;). For brevity, we will often write A
instead of V (A) when it is clear from context that we are referring to A as a set of vertices
rather than a matrix index.

3. We take the automorphism group of A to be Aut(A) =[] 4, c 4 Aut(A;)

Example F.15 (*). If A; = ((2),1,1), A2 = ((3,1),1,2), and A3 = ((1,2,3),2,1) then A =
{41, Az, A3} represesents the monomzal p= ylgyf3y%1y21y22y23 and we have Aut(A) Sy %
SQ X S

F.4 Fourier Characters and Ribbons

A key idea is to analyze Fourier characters of the input.
Definition F.16 (Simplified Fourier Characters). If the input distribution is QQ = {—1, 1} then given
a multi-set of edges E, we define xg(X) = [[.c g Te.

Example F.17. If the input is a graph G € {—1, 1}(3) and E is a set of potential edges of G (with
no multiple edges) then x ;(G) = (—1)IP\E(G)],
In general, the Fourier characters are somewhat more complicated.

Definition F.18 (Orthonormal Basis for 2*). We define the polynomials {h; : i € ZN|0, |supp()| —
1]} to be the unique polynomials (which can be found through the Gram-Schmidt process) such that

1. Vi, Eq[h?(z)] =1

2. Vi # j, Eqlhi(z)h;(x)] =0

3. For all i, the leading coefficient of h;(x) is positive.
Example F.19. If ) is the normal distribution then the polynomials {h;} are the Hermite polynomials
with the appropriate normalization so that for all i, Eq[h?(z)] = 1. In particular, ho(z) = 1,

2 3 _

hi(z) =z, he(x) = “‘\/%1, hs(z) = 1\/37?”, etc.
Definition F.20 (General Fourier Characters*). Given a multi-set of hyperedges E, each of which has
alabel l(e) € [[support(2)| — 1] (or N if Q has infinite support), we define xg = [[.c g Pue)(Xe).

We say that such a multi-set of hyperedges E is proper if it contains no duplicate hyperedges, i.e.
it is a set (though the labels on the hyperedges can be arbitrary non-negative integers). Otherwise,
we say that E is improper.

Remark F.21. The Fourier characters are {xg : E is proper}. For improper E, xg can be
decomposed as a linear combination of x g, where each E; is proper. We allow improper E because
it is sometimes more convenient to have improper E in the middle of the analysis and then do this
decomposition at the end.

Definition F.22 (Ribbons). A ribbon R is a tuple (Hgr, Ar, Br) where Hg, is a multi-graph (*or
multi-hypergraph with labeled edges in the general case) whose vertices are indices of the input and
Apg and Bg are matrix indices such that V(Ag) C V(Hpg) and V(Br) C V(Hg). We make the
following definitions about ribbons:

1. We define V(R) = V(HR) and E(R) = E(HR)
2. We define xr = XE(R)-

3. We define Mg to be the matrix such that (Mr)a,B, = Xr and Map = 0 whenever
A 7’5 AR or B 75 BR.

We say that R is a proper ribbon if Hp, contains no isolated vertices outside of Ap U Br and E(R)
is proper. If there is an isolated vertex in (V(R) \ Ar) \ Bg or E(R) is improper then we say that
R is an improper ribbon.

Proper ribbons are useful because they give an orthonormal basis for the space of matrix valued
functions.
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Definition F.23 (Inner products of matrix functions). For a pair of real matrices M, My of the same
dimension, we write (M7, Ms) = tr(MlMgT) (i.e. (M7, Ms) is the entrywise dot product of M,
and Ms). For a pair of matrix-valued functions My, My (of the same dimensions), we define

(My, Ma) = Ex [(M1(X), M2(X))]

Proposition F.24. If R and R’ are two proper ribbons then (Mr, Mg} = 1if R = R and is 0
otherwise.

F.5 Shapes

In this subsection, we describe a basis for S-invariant matrix valued functions where each matrix in
this basis can be described by a relatively small shape . The fundamental idea behind shapes is
that we keep the structure of the objects we are working with but leave the elements of the object
unspecified.

F.5.1 Simplified Index Shapes

Definition F.25 (Simplified Index shapes). With our simplifying assumptions, an index shape U is a
tuple of unspecified indices (u1,- - - ,u|y|). We make the following definitions about index shapes:

1. We define V(U) to be the set of vertices {u; : i € [|U|]}. For brevity, we will often write U
instead of V (U) when it is clear from context that we are referring to U as a set of vertices
rather than an index shape.

2. We define the weight of U to be w(U) = |U/|.

3. We take the automorphism group of U to be Aut(U) = S|y| (the permutations of the
elements of U)

Definition F.26. We say that a matrix index A = (a1, ..., a|4|) has index shape U = (uy, . .., ujy|)
if {U| = |A|. Note that in this case, if we take the map ¢ : {u; : j € [|U|]} = [n] where ¢(u;) = a;
then p(U) = (¢(u1), ..., o(uu)) = (a1, ..., a|A‘) =A

Definition F.27. We say that index shapes U = (uq, . .. ,u|U|) andV = (vy,... ,UM) are equivalent
(which we write as U = V) if (U| = |V|. If U = V then we can set U =V by setting v; = u; for all
J €[]}

Example F.28. The matrix index A = {4,6,1} has shape U = {u1, ua, us} which has weight 3.

F.5.2 General Index Shapes*

In general, we define general index shapes in the same way that we defined general matrix indices
(just with unspecified indices)

Definition F.29 (Index Shape Piece Definition). We define a index shape piece U; =
((wirs - - -, uqu,))s ti, pi) to be a tuple of indices (i, . .., u;a,|) together with a type t; and a
power p;. We make the following definitions about index shape pieces:

1. We define V (U,) to be the set of vertices {(t;,wi;) : j € [|Us]]}-
2. We define w(U;) = |U;|logn (nst,)
3. We take the automorphism group of U; to be Aut(U;) = Sy,

Definition F.30 (General Index Shape Definition). We define an index shape U = {U;} to be a set
of index shape pieces such that for all i’ # 1, either ty # t; or p;y # p;. We make the following
definitions about index shapes:

1. We define V (U) to be the set of vertices Uy, cuV (U;). For brevity, we will often write U
instead of V(U) when it is clear from context that we are referring to U as a set of vertices
rather than an index shape.

2. We define w(U) to be w(U) = 1, iy w(Ui)
3. We take the automorphism group of U to be Aut(U) = [[;, <y Aut(Us;)
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Remark F.31. For technical reasons, we want to ensure that if two index shapes U and U’ have the
same weight then U and U’ have the same number of each type of vertex. To ensure this, we add an
infinitesimal perturbation to each n; if necessary.

Definition F.32. We say that a matrix index A has index shape U if there is an assignment of
values to the unspecified indices of U which results in A. More precisely, we say that A has
index shape U if there is a map ¢ : {u;j} — N such that if we define p(U;) to be o(U;) =
((p(uin), - o(uiu,|)), ti, pi) then o(U) = {p(Ui)} = {Ai} = A.

Definition F.33. If U and V are two index shapes, we say that U is equivalent to V (which we write
asU =V)ifU and V have the same number of index shape pieces and we can order the index shape
pieces of U and V' so that writing U = {U;} and V' = {V;} where U; = ((us1, - .., usu,|), ti, Pi)
and Vi = ((vi1, . . ., vi|v;|), t}, D), we have that for all i, |V;| = |U;|, t; = t;, and pj = p;. If U =V
then we can set U =V by setting u;; = v;; for all i and all j € [|U;]].

F.5.3 Ribbon Shapes

With these definitions, we are now ready to define shapes and the matrices associated to them.

Definition F.34 (Shapes). A ribbon shape o (which we call a shape for brevity) is a tuple a =
(Hu, Uq, Vo) where H,, is a multi-graph (*or multi-hypergraph with labeled edges in the general
case) whose vertices are unspecified distinct indices of the input (*whose type is specified in the
general case) and U, and V,, are index shapes such that V (Uy) C V(H,) and V (V) C V(H,).
We make the following definitions about shapes:

1. We define V(o) = V(H,,) (note that V («) and V,, are not the same thing) and we define
E(a) = E(H,).

2. We say that a shape « is proper if it contains no isolated vertices outside of V(U,) UV (V,,),
E(«) has no multiple edges/hyperedges and edges in E(a) do not have label 0. If there is
an isolated vertex in V(o) \ V(Uy) \ V (Vo) or E(a) has a multiple edge/hyperedge then
we say that v is an improper shape.

Note: For brevity, we will often write Uy, and V,, instead of V(U,,) and V (V,,) when it is clear from
context that we are referring to U,, and V,, as sets of vertices rather than index shapes.

Definition F.35 (Trivial shapes). We say that a shape « is trivial if V(a) = V(Uy) = V(V,,) and
E(a) = 0. Otherwise, we say that o is non-trivial.

Remark F.36. Note that all trivial shapes can do is permute the order of the vertices in V (U,) =
V (V).

Definition F.37. Informally, we say that a ribbon R has shape « if replacing the indices in R with
unspecified labels results in o.. Formally, we say that R has shape « if there is an injective mapping
v : V(a) = [n] (*or [tmaz] X [n] in the general case) such that p(a) = R, i.e. ¢(Hy) = Hp,
o(Uy) = Ag, and (V) = Bg

Definition F.38. We say that two shapes o and [ are equivalent (which we write as o = 3) if they
are the same up to renaming their indices. More precisely, we say that o = [ if there is a bijective
map w: V(Hy,) — V(Hg) such that m(H,) = Hg, m(Uy) = Ug, and 7(Vy) = V3.

Definition F.39. Given a shape o and matrix indices A, B of shapes U, and V,, respectively, we
define R(«, A, B) to be the set of ribbons R such that R has shape o, Ar = A, and B = B.

Definition F.40. For a shape «, we define the matrix-valued function M, to have entries M, (A, B)
given by

(Ma)ap(X) = > xr(X)
ReR(a,A,B)
For examples of M, see [1].

Proposition F.41. The M, ’s for proper shapes o are an orthogonal basis for the S-invariant
functions.

"Because of orthogonality of the underlying Fourier characters, it is not hard to check that when o # o and
M, M, have the same dimensions, (Mqs, M) = 0.
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Remark F.42. Conceptually, one may think of forming an orthonormal basis for this space with

the functions M, /\/{(My, M,,), but for technical reasons it is easiest to work with these functions
without normalizing them to 1. By orthogonality and the fact that every Boolean function is a
polynomial, any S-invariant matrix-valued function A is expressible as

(M)
DT TAREL

In the proof of our main theorem, we encounter improper shapes. We can handle them by
decomposing them into proper shapes using basic Fourier analysis. For now, we will illustrate how
this can be done via an example.

F.6 Composing Ribbons and Shapes

Definition F.43 (Composing Ribbons). We say that ribbons R, and Ry are composable if Br, =
ARr,. Note that this definition is not symmetric so we may have that Ry and Ry are composable but
Ro and R, are not composable.

We say that Ry and Ry are properly composable if we also have that V(R1) N V(Rsy) =
V(BRr,) = V(AR,) (there are no unexpected intersections between R, and Ry).

If Ry and Ry are composable ribbons then we define the composition of Ry and Rs to be the
ribbon Ry o Ry such that

1. AR10R2 :ARl andBR1032 :BR2
2. V(R0 Ry) =V(R)) UV (Ry)
3. E(R1 o Rg) = E(Rl) U E(Rg) (and thus XRioRy = XR1XR2)

We say that ribbons Ry, . . ., Ry, are composable/properly composable if for all j € [k—1], Ryo...o0R;
and R; 1 are composable/properly composable. If R, ..., Ry are composable then we define
Rio...oRgtobe Rio...oR,=(Ryo...0R;_1)0 Ry

Proposition F.44. Ribbon composition is associative, i.e. if R1, Ro, R3 are composable/properly
composable ribbons then Ra, Rz are composable/properly composable, Ry, (Rz o R3) are compos-
able/properly composable, and Ry o (Ry o R3) = (Ry o Ry) o R3

Proposition F.45. If R; and Ry are composable ribbons then Mg, r, = Mg, MR,.

We have similar definitions for composing shapes.

Definition F.46 (Composing Shapes). We say that shapes o and 3 are composable if Ug = V,,. Note
that this definition is not symmetric so we may have that « and 3 are composable but 3 and « are
not composable.

If a and [ are composable shapes then we define the composition of o and 3 to be the shape
a o 3 such that
1. Ugop = Uy and Voo = Vp
2. After setting Ug = V,,, we take V(avo 8) = V(a) UV (S)
3. E(aof)=E(a)UE(p)

We say that shapes o, . . ., oy, are composable if for all j € [k — 1], aq o ... 0 o and ajyq are
composable. If oy, . . ., oy, are composable then we define the shape a1 0. ..oa tobe ajo...oa, =
(1o0...0ap_1)0

Proposition F.47. Shape composition is associative, i.e. if a1, as, ag are composable shapes then
ag, a3 are composable, oy, (g o az) are composable, and oy o (ag 0 az) = (a1 0 ag) © g

Example F.48. |Fig. 4|illustrates an example of shape composition. We have two types of vertices
that we diagrammaticaly represent by squares and circles. Observe how the shapes o o o'T and

o o1 o0o'T are obtained from the shapes o, T and o'".
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Figure 4: Illustration of shape composition and decomposition.

F.7 Decomposition of Shapes into Left, Middle, and Right parts

In this subsection, we describe how shapes can be decomposed into left, middle, and right parts based
on the leftmost and rightmost minimum vertex separators, which is a crucial idea for our analysis.

Definition F.49 (Paths). A path in a shape o is a sequence of vertices vy, . .. ,v; such that v;, v;41
are in some edge/hyperedge together. A pair of paths is vertex-disjoint if the corresponding sequences
of vertices are disjoint.

Definition F.50 (Vertex separators). Let o be a shape and let U and V' be sets of vertices in a. We
say that a set of vertices S C V() is a vertex separator of U and V' if every path in « from U to V
contains at least one vertex in S. Note that any vertex separator S of U and V' must contain all of
the vertices in U N'V.

As a special case, we say that S is a vertex separator of v if S is a vertex separator of U, and
Va

We define the weight of a set of vertices S C V(«) in the same way that weight is defined for
index shapes.

Definition F.51 (Simplified Weight). When there is only one type of index, the weight of a set of
vertices S C V(a) is simply |S|.

Definition F.52 (General Weight*). In general, given a set of vertices S C V («), writing S = U;S;
where S is the set of vertices of type t in S, we define the weight of S to be w(S) =Y, |S¢|logn (nt)

Remark F.53 (*). Again, if necessary, we add an infinitesimal perturbation to ni,na,...,ny,, .. SO

that if two separators S and S’ have the same weight then S and S’ have the same number of each
type of vertex.

Definition F.54 (Leftmost and rightmost minimum vertex separators). The leftmost minimum vertex
separator is the vertex separator S of minimum weight such that for every other minimum-weight
vertex separator S', S is a separator of U,, and S’. The rightmost minimum vertex separator is the
vertex separator T of minimum weight such that for every other minimum-weight vertex separator T",
T is a separator of T' and V,
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We now have the following crucial idea. Every shape a can be decomposed into the composition
of three composable shapes o, 7, o’ " based on the leftmost and rightmost minimum vertex separators
S, T of a together with orderings of S and 7.

Definition F.55 (Simplified Separators With Orderings). Under our simplifying assumptions, given a
set of vertices S C V() and an ordering Og = sy, . . ., 5|5| of the vertices of S, we define the index
shape (S, Ogs) to be (S,0s) = (s1,. .., 5|5])-

Definition F.56 (General Separators With Orderings*). In the general case, we need to give an
ordering for each type of vertex. Let S C V («) be a subset of the vertices of « and write S = U; S,
where Sy is the set of vertices in S of type t. Given Os = {O:} where Oy = s4,..., 5419,
is an ordering of the vertices of Si, we define the index shape piece (St,O;) to be (St,O:) =
((s¢1,- -+, 5¢s,)): t, 1) and we define the index shape (S, Os) to be (S,Os) = {(S¢, Oy)}.
Proposition F.57. The number of possible orderings O for S is equal to | Aut((S, Og))|
Definition F.58 (Shape transposes). Given a shape o, we define o to be the shape o with U, and
Vo swapped i.e. Uyr =V, and V,r = Us,.

Definition F.59 (Left, middle, and right parts). Let a be a shape. Let S and T be the leftmost and
rightmost minimal vertex separators of « together with orderings Og, Ot of S and T.

- We define the left part o, of o to be the shape such that

1. H,_ is the induced subgraph of H,, on all of the vertices of o reachable from U,
without passing through S (note that H,_ includes the vertices of S) except that we
remove any edges/hyperedges which are contained entirely within S.

2. Uy, =UqyandV,_ = (S,05s)
- We define the right part o’ 5 of a to be the shape such that

1. H_ 7 is the induced subgraph of H, on all of the vertices of a reachable from V,,
without passing through T' (note that H ;. v includes the vertices of T') except that we
remove any edges/hyperedges which are contained entirely within T..

2. VU,Z = Va and UO.IE = (T, OT)

- We define the middle part 7, of o to be the shape such that

1. H,_ is the induced subgraph of H, on all of the vertices of o which are not reachable
from U, and V,, without touching S and T (note that H,  includes the vertices of S
andT). H._ also includes the hyperedges entirely within S and the hyperedges entirely
within T'.

2. U;, =(5,05)and V,;, = (T,Or)

Example F.60. illustrates an example decomposition. We have two types of vertices that we
diagrammatically represent by squares and circles. In this example, we assume that the set containing
a single circle vertex has a lower weight compared to a set of two square vertices.

1. If we start with the shape o o o'T, then it can be decomposed uniquely in to the composition
of the left shape o, the right shape o'T. In this case, the middle shape (not shown in this
figure) is trivial.

2. Ifwe start with the shape coToc’", then it can be decomposed uniquely into the composition
of the left shape o, the middle shape T and the right shape o', which are all shown in this
figure.

Proposition F.61. Ifo, 7,0’ T are the left, middle, and rights parts for o for given orderings Og, Or
of Sand T thena = goToo'”.

Remark F.62. One may ask which ordering(s) we should take of S and T. The answer is that we
will take all of the possible orderings of S and T' simultaneously, giving equal weight to each.

Based on this decomposition and the following claim, we make the following definitions for
what it means for a shape to be a left, middle, or right part.
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Claim F.63 (Proved in Section 6.1 in [19]).

- Every shape o which is the left part of some other shape o has that V,; is its left-most and
right-most minimum-weight separator.

- Every shape o™ which is the right part of some other shape o has that U,z is its left-most
and right-most minimum-weight separator.

- Every shape T which is the middle part of some other shape « has U, as its left-most
minimum size separator and V. as its right-most minimum-weight separator.
Definition F.64.
1. We say that a shape o is a left shape if o is a proper shape, V,, is the left-most and right-most

minimum-weight separator of o, every vertex in V(o) \ V, is reachable from U, without
touching V,,, and o has no hyperedges entirely within V.

2. We say that a shape T is a proper middle shape if T is a proper shape, U is the left-most
minimum-weight separator of T, and V; is the right most minimum-weight separator of T.
In the analysis, we will also need to consider improper middle shapes T which may not be
proper shapes and which may have smaller separators between U, and V..

3. We say that a shape o7 is a right shape if 6T is a proper shape, U,z is the left-most and
right-most minimum-weight separator of o™, every vertex in V(o1') \ U,r is reachable
from V,r without touching Uz, and o has no hyperedges entirely within U, r.

Proposition F.65. For all shapes o, o is a left shape if and only if o™ is a right shape.

Remark F.66. As the reader has likely guessed, throughout this section we use o to denote left parts
and T to denote middle parts. Instead of having a separate letter for right parts, we express right
parts as the transpose of a left part.

F.8 Coefficient matrices

We will have that A = )~ Ao M,. To analyze A, it is extremely useful to express these coefficients
in terms of matrices. To do this, we will need a few more definitions. We start by defining the sets of
index shapes that can appear when analyzing A.

Definition F.67. Given a moment matrix A, we define the following sets of index shapes.

1. We define Z(A) = {U : 3 matrix index A : A'is a row index of A, A has shape U} to be the
set of index shapes which describe row and column indices of A.

2. We define wimay 10 be Wipar = max{w(U) : U € Z(A)}.
3. With our simplifying assumptions, we define L,,;q to be Liq = {U : |U| < Wz}
3% In general, we define L4 to be Tiqa = {U : w(U) < wiae, VU; € U,p; = 1}

We also need to define the sets of shapes which can appear when analyzing A.

Definition F.68 (Truncation Parameters). Given a moment matrix A = ) Ao M,, we define
Dy, Dg to be the smallest natural numbers such that for all shapes o such that A\, # 0, decomposing

aasa=corog”,
1. |[V(0)| < Dy, |V(7)| < Dy, and |V (¢')| < Dy.

2.% Forall edges e € E(0) UE(T)U E(¢’), le < Dg.

Remark F.69. Under our simplifying assumptions, all edges have label 1 so we will take D = 1
and ignore conditions involving Dg.

Definition F.70. Given a moment matrix A, we define the following sets of shapes:
1. L={o0:0isaleft shape,U, € T(A),V, € Tpni4,|V(0)| < Dy,Ve € E(0),l. < Dg}
2. Given'V € Lpyiq, wedefine Ly ={c€e L:V, =V}

"The proof in [19] only explicitly treats the case when the shapes « are graphs, but the proof easily generalizes
to the case when the « are hypergraphs.
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3. Given U € ZI,;q, we define My = {7 : 7 is a non-trivial proper middle shape, U, =
V:=U,|V(r)| < Dy,Ve € E(7),l. < Dg}

Definition F.71. Given a moment matrix A, we define a A-coefficient matrix (which we call a

coefficient matrix for brevity) to be a matrix whose rows and columns are indexed by left shapes
!

o,0' € L.

We say that a coefficient matrix H is SOS-symmetric if H(o, o) is invariant under permuting the
vertices of U, and permuting the vertices of U, (*more precisely, for the general case we permute
the vertices within each index shape piece of U, and permute the vertices within each index shape
piece of Uy ).

Definition F.72. Given a shape T, we say that a coefficient matrix H is a T-coefficient matrix if
H(o,0") = 0 whenever Vo, 2 U, or V; £ Upir.

Definition F.73. Given an index shape U, we define Idy; to be the shape with Urq,, = Viq, = U,
no other vertices, and no edges.

Given a shape 7 and a 7-coefficient matrix H, we create two different matrix-valued functions,
Mot (H) and M2 (H). As we will see, we can express A in terms of M °"*" but to show PSDness
we will need to shift to M/ /!, We analyze the difference betweem M /%t and M°"*" in subsections

C2[C3] and[GA)

Definition F.74. Given a shape T and a T-coefficient matrix H, define

Mt (H) = > H(o,o')M,M,M],

o€LyY, ,0'ELY,
Proposition K.75. For all A and B with shapes in Z(A),
(MIee(H)) (A, B) =
> H(o,0') Y > Mg, (A, A"YMg,(A’, B YMg,(B', B)

UGﬁUT ,O"GﬁVT A’,B’ RieR(c,A,A"),RoeR(T,A’,B’),
R3eR(o'T,B',B)

If Ry, Rs, R3 are properly composable then R = R o Ry o R3 has the expected shape coTo0’ T
Otherwise, R; o Ry o R3 will have a different shape. We define M°"*"( H) to be the same sum as
M7t (H) except that it is restricted to properly composable ribbons Ry, Ry, Rs.

Definition F.76. We define M°"*"(H) so that for all A and B with shapes in Z(A),
(M7 (H)) (A, B)
= > H(oo) D > Mg, (A, A)Mg, (A, BYMg,(B', B)

o€Ly,,0'€Ly, A",B’ Ry ER(0,A,A"),Ry€R(r,A’,B),
R3€R(o'T,B’,B),Rq,Rq, Ry are properly composable

Z H(O’, O’l) Z Z MRloRgoRg(AaB)

oc€Ly,,0'€ELy, A’,B’ Ry€R(0,A,A’),RyeR(,A!,B"),
Rs€R(o'T ,B’,B),Rq,Ro, Ry are properly composable

It would be nice if we had that M°"*"(H) = Yoery. orery. H(0,0")Myqoroqr. However,
this is not quite correct because there is an additional term related to automorphism groups.

Definition F.77. Given a shape «, define Aut(a) to be the set of mappings from « to itself which
keep U, and V., fixed.

Example F.78. Consider the shape o where U, = (u1,u2,us), Vo = (v1,v2,v3), and V(o) =
Uy UV, U {wy, we, w3} with edges
E(Oé) :{(u17 wl)a (uQ, wl)a (Ug, wl)a (ula wQ)a (Ug, w2)a (u37 w2)7 (ulv w3)7 (u27 ’LU3)7 (’LL3, w3)}

U {(wlavl)a (wlaUQ)a (w2,’U1), (w2; 1}2)7 (UJ3,U1), (’LUg,UQ)}

where all edges have label 1. Then, Aut(c) = Aut(c”) = S3 and Aut(o o o¥) = S3 x Sy x Ss.
Note that in this case Aut(o o o1)/(Aut(c) x Aut(cT)) = So. The last computation will be useful
for the definition that follows.
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Definition F.79. Given composable shapes o, 7,0’ T we define
Decomp(a,7,0") = Aut(o o 7 0 0') /(Aut(c) x Aut(r) x Aut(c’"))
Remark F.80. Each element m € Decomp(o,T,0’) decomposes o o T o o’ T into o, 7, and '™

by specifying copies (), (t), m(c'") Ty =

T T
m(coToc") =0coTo0"". Thus,
/T

of o, 7, and o'" such that (o) o 7(7) o 7(o

Decomp(o,T,0")| is the number of ways to decompose
T .
ocoTodo'” intoo, T, and o

Lemma F.81.

M;—)Tth (H) = Z H(Ua 0-/) |Decomp(a, 7, OJT) |M<TOTOG"T
oc€Ly, ,0'ELY,

Proof sketch. Observe that there is a bijection between ribbons R with shape o o 7 0 ¢’ T together
with an element m € Decomp(o, 7, 0”’) and triples of ribbons (R;, Ry, R3) such that

1. Ry, Ro, R3 have shapes o, 7, and ¢’ T, respectively.

2. V(R)NV(Ry) = Ag, = Bp,, V(R2) NV (Rs) = Ag, = Bg,,and V(R1) NV (R3) =
AR2 mBB2

To see this, note that given such ribbons R;, Ro, R3, the ribbon R = R; o Ry o R3 has shape

o o7 odo'" and the ribbons Ry, Ry, R specify a decomposition of o o 7 0 ¢’ T into o, T,and o’ T
Conversely, given R and an element 7 € Decomp(c, T,0’), 7 specifies how to decompose R

into ribbons Ry, Ry, R3 of shapes o, 7, and T |

Remark F.82. As this lemma shows, we have to be very careful about symmetry groups in our
analysis. For accuracy, it is safest to check that the coefficients for each individual ribbon match.

Given a matrix-valued function A, we can associate coefficient matrices to A as follows:
Definition F.83. Given a matrix-valued function A = AaMy,

oo is proper

1. For each index shape U € Z.,;q and every o,0' € Ly, we take Hpg,(0,0') =
A

coo’'T

1
[Aut(U)]
2. For each U € Ty, 7 € My and o,0/ € Ly, we take H,(0,0') =
1
AWt TAw(V

LemmaF.84. A=, , MIO(;Z,h(HIdU) + D vez, 0 2oreMy M2t (H)

Proof. We check that the coefficients for each individual ribbon R match. There are two cases to
consider.

cgotoo’T

If R has shape o where « has a unique minimum vertex separator .S, then there is a bijection
between orderings Og for S and pairs of ribbons Ry, Ry such that R; o R = R and the shapes

o, T of R1, Ry are left and right shapes respectively.

To see this, observe that when we concatenate R; and Rq, this assigns the matrix index B, =
Ag, to S, which is equivalent to specifying an ordering Og for S. Conversely, given an ordering Og
for S, we take R; to be the part of R between Ag and (S, Og) and we take Ry to be the part of R
between (5, Og) and Bg.

From this bijection, it follows that the coefficient of Mg is A, on both sides of the equation.

Similarly, if R has shape o where o does not have a unique minimal vertex separator, then there
is a bijection between orderings Og, O for the leftmost and rightmost minimum vertex separators
S, T of R and triples of ribbons Ry, Ry, R3 such that Ry o Ry o R3 = R and the shapes o, 7, o’ T of
Ry, Ry, R3 are left, proper middle, and right shapes respectively.

To see this, observe that when we concatenate R, Ro, and Rg, this assigns the matrix index
Bpr, = Ag, to S and assigns the matrix index Bgr, = Ap, to T, which is equivalent to specifying
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orderings Og, Op for S, T. Conversely, given orderings Og, Op for S, T, we take R; to be the part
of R between Ag and (5, Og), we take Rs to be the part of R between (.5, Og) and (T, Or), and
we take R to be the part of R between (T, Or) and Bg.

From this bijection, it again follows that the coefficient of My is A, on both sides of the
equation. [ ]

F.9 The —v, —v operation and qualitative theorem statement

In the intersection term analysis (see subsections and , we will need to further
decompose left shapes o as ¢ = 02 o v where g5 and ~y are themselves left shapes. Accordingly, we
make the following definitions

Definition F.85. Given a moment matrix A, we define the following sets of left shapes:
1. T = {v : visanon-trivial left shape, U, V., € L4, |V(7)| < Dy,Ve € E(7),le <
Dg}
2. Given U,V € I,niq such that w(U) > w(V), defineTyy ={yel':U,=U,V, =V}
3. GivenU € L4, definel'y . ={yeT:U, =U}
4. Given'V € L;q, definel',y ={yeI:V, =V}

Remark F.86. Under our simplifying assumptions, I is the same as L except that I excludes the
trivial shapes. In general, while L requires that U, € Z(A), I requires that U, € I,,;4. Note that
Z(A) and I,,,;q may be incomparable because

1. There may be index shapes U € L,,;q such that no matrix index of A has shape U.
2. All index shape pieces U; for index shapes U € 1L,,;q must have p; = 1 while this is not the
case for Z(A).
We now state our theorem qualitatively after giving one more definition.

Definition F.87. Given a shape T, left shapes v € Ty and ' € T v, and a T-coefficient matrix
H, define H=7"" to be the (yoTo *y’T)-coejﬁcient matrix with entries

1. B (0,0") = H(c 0 7,0" 07') if [V (00 7)| < Dy and |V (o’ 04')| < Dy.
2. H (0,0") = 0if [V(0 0 y)| > Dy or [V (o' 0+')| > Dy.
Remark F.88. For the theorem, we will only need the case when ' = ~

Our qualitative theorem statement is as follows:

Theorem F.89. Let A = Y, ;  MP"(Hray,) + Y per. . Y rem, M (H;) be an SOS-

symmetric matrix valued function.

There exist functions f(7) and f(vy) depending on n and other parameters such that if the
following conditions hold:

1. ForallU € T4, Hrq, = 0
2. ForallU € 1,,;q and all T € My,

HIdU f(T)HT

JEOHT Hpg, |7

3. Forall U,V € Tpiq where w(U) > w(V) and all v € Ty, Hy," < f(v)Hray

then with high probability A > 0

Remark F.90. Roughly speaking, conditions 1 and 2 give us an approximate PSD decomposition
for the moment matrix M. Condition 3 comes from the intersection term analysis, which is the most
technically intensive part of the proof.
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F.10 Quantitative theorem statement

To state our theorem quantitatively, we will need a few more things. First, the conditions of the
theorem will involve functions By,orm (), B(7y), N (), and ¢(«). Roughly speaking, these functions
will be used as follows in the analysis:

1. Bjorm () will bound the norms of the matrices M,
2. B(v) and N () will help us bound the intersection terms (see Section.

3. ¢(«) will help us sum over the possible «y and 7.

Second, for technical reasons it turns out that comparing H I_d“"/;* to H Idy, doesn’t quite work. Instead,
we compare [ I_d?/] to a matrix ff of our choice where Hﬁy is very close to Idy,, (Hﬁy will be the
same as H Idy., up to truncation error).

Definition F.91. Given a function Bporm(a), we define the distance d.(H., H.) between two

T-coefficient matrices H, and H_. to be

d-(H-,H.)= Y |H.(0,0") = He(0,0")|Brorm(0) Bnorm(T) Brorm ()

oc€Ly, ,0'€Ly,

Third, we need an SOS-symmetric analogue of the identity matrix.
Definition F.92. We define I1dgy, to be the matrix such that

1. The rows and columns of 1d sy, are indexed by the matrix indices A, B whose index shape
isin Z(A).

2. IdSym(A7B) =1 lpr =PB andIdSym(A7B) =0 lpr #pB

Proposition F.93. If M has SOS-symmetry and the rows and columns of Idgy., are indexed by
matrix indices A, B whose index shape is in Z(A\) then M < || M|| Idsym

Corollary F.94. For all T and all SOS-symmetric T-coefficient matrices H, and H.,
ML (L) + MIE (HL ) — ME®!(H,) = M2 (Hx) < 2d, (H,, H.)Ids,m
Note that if T, H, and H_. are all symmetric then

MI*U(HL) — MI%°Y(H,) < d.(H,, H.) [ dsym

Finally, we need a few more definitions about shapes «.
Definition F.95 (M’). We define M’ to be the set of all shapes o such that
1. |V(a)| < 3Dy
2.*% Ye € E(a),l. < Dg
3.% All edges e € E(«) have multiplicity at most 3Dy, .
Definition F.96 (S,). Given a shape «, define S, to be the leftmost minimum vertex separator of a
Definition F.97 (I,). Given a shape «, define I, to be the set of vertices in V (a) \ (U, U V) which

are isolated.

Our main theorem will require the choice of several functions and parameters
¢, Boertea, Bedge(€), Brorm (), B(77), N(7), c(«) satisfying certain conditions. Beqg. is not needed
in the simplified case. For simplicity, we defer the formal conditions to the next section.

Definition F.98 (e-feasible parameters).  For € > 0, define
¢, Buertews Bedge(€), Brorm (), B(7), N(7), () to be e-feasible parameters if they satisfy
the conditions in|Theorem G.1

For our applications, we can work with the parameters as given by the following lemma, justified
in|Appendix H

Lemma F.99. For all € > 0, the parameters
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1. g =3 [Dyin(n) + "$ + Dyin(5) + 3D} in(2)

2. Byertea = 6Dy V4 26

[V (a)\Uq ‘+‘V(o¢)\v‘ W(V(a))+W(1cx) w(Sa)
3. Bnorm( ) Bvertem

1% U |+|V V. w(V(y)\Uy)
4 B(y) = BV

5. N(7) = (3Dy )2IVONVAIHIVO\U;|

6. c(a) = 100(3Dy )| Ue\ValHVa\Ua |[+2|E() 9]V ()\(UaLVa)|

are e-feasible.

Remark F.100. In our applications, we show SoS lower bounds for n® degrees of SoS, where input
size is n°W). In this setting, we take Dy, D, to be of the order of n°©). Therefore, for simplicity,
we can interpret the parameters as

'w(V(a))er;Ia)fw(Sa)

q= nO(E)’ Bve?'tew = nO(E)’ Bnm'm(a) - nO(E)\V(a)\n

B(y) = nPOW M "2 N () = nP@IVO ¢(q) = nO@IV(@)]

)

We can now state our main theorem.

Theorem F.101. Given the moment matrix A = D UeTi }’gfjh(H 1dy) T

D UeT,u dreMy MCTth(H,), for all ¢ > 0, if we take e-feasible parameters, and we
have SOS-symmetric coefficient matrices { H ,’Y : v € T'} such that the following conditions hold:

1. (PSD mass) For all U € Z,q, Hrq,, = 0
2. (Middle shape bounds) For all U € Z,,;q and 7 € My,

HIdU Bnorm (T)H‘l’ -0

1
[Aut(U)e(T)
Hirq, | —

norm (T)H W
3. (Intersection term bounds) For all U, V' € Z,,,;g where w(U) > w(V) and ally € T'y v,
c(V)’N(7)*B(y)*Hy” = H,
then with probability at least 1 — ¢,

1 e dray (H',, Hray,)
A>2< > szdut(HldU> o> W Idsym

UTmia UeZ~ely.. ()

(Truncation error bounds) If it is also true that whenever || M, || < Bporm () forall « € M/,

> M} (Hray) = 6 S>>

U€Zmia UeZI~vely,«

dra, (H, HIdU)

Idgym
|Aut(U)|e(7y) Y

then with probability at least 1 — ¢, A > 0.

F.10.1 General Main Theorem

Before stating the general main theorem, we need to modify a few definitions for o and give a few
definitions for €2

Definition F.102 (S, i, and Sy jnaz). Given a shape o € M/, define Sy min to be the leftmost
minimum vertex separator of « if all edges with multiplicity at least 2 are deleted and define S, a4
to be the leftmost minimum vertex separator of « if all edges with multiplicity at least 2 are present.

Definition F.103 (General 1,,). Given a shape o, define I, to be the set of vertices in V(o) \ (UaUV4)
such that all edges incident with that vertex have multplicity at least 2.
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Definition F.104 (Bg). We take Bq(j) to be a non-decreasing function such that for all j € N,
Egla’] < Ba(j)’

Definition F.105 (h;r). For all j, we define h;r to be the polynomial h; where we make all of the
coefficients have positive sign.

Lemma F.106. I[fQ = N(0, 1) then we can take Bq(j) = +/j and we have that
i
b <+t < (S e)
=5 =\

For a proof, see |1, Lemma 8.15]. We again give a choice of e-feasible parameters used in our
applications, justified in|Appendix H

Lemma F.107. For all € > 0, the parameters
1. ¢ = [3Dvylin(n) + In() + (3Dv)*in(Dg + 1) + 3Dy in(5)]
2. Bverte:r = GqDV

le.
3. Bedge(e) = 2hZ(BQ(6DVDE)) max;e(0,3Dy D] {(h;r(BQ(%j))) mextited }

As a special case, if @ = N(0,1) then we can take Beqge(€) = (400D%D%q)le

"-U(V("‘))"”w(]a)*w(soc,wnn)
2

4. Bnorm( ) 2e Bi‘;‘:rgf;)z\Ua‘-i_IV(a)\v °! (HCEE((X) Bedge(e)) n

V()\Uqy [HV ()\ VS
5. BOy) = Blogn VOV (T] ) Beage(€) )

6. N(v) = (3Dy )2V O3 IV,

w(V(N\Uy)
2

7. ¢(a) = 100(3tag Dy )1 Ve \Val HIVe\Ual+k E(@) (94 AIV(@\UaLVa)
are e-feasible.

Similar to|[Remark F.100| in our applications, we can interpret the above parameters in a much
simpler manner. Just as in all our applications, assume we work with the Gaussian distribution
Q= N(0,1), k is a constant and we work with SoS degree n°. Then, we think of each vertex or
edge of the shape « or «y essentially contributing a factor of n°. Therefore, we can interpret

E
q= nO(E)a Bvertea: = nO(E); Bedge = nO(E)| (@)

Buorm () = nCEV (@B, “HEG = Baminy by ) 0@V (DIHE), "G

N(y) = nPEVOI ¢(q) = nCEIV@IHE@)

Theorem F.108. Given the moment matrix A = >ver,., Mg "MHra,) +
D UET, iy 2reMy MCTth(H,), for all ¢ > 0, if we take e-feasible parameters and we

mid

have SOS-symmetric coefficient matrices {HﬁY : v € T'} such that the following conditions hold:
1. (PSD mass) ForallU € 7,4, Hrq, = 0
2. (Middle shape bounds) For all U € Z,,;4q and 7 € My,

1
e s Brorm(MH- |
Brorm(T)H; WHMU -

3. (Intersection term bounds) For all U, V' € Z,,,;4 where w(U) > w(V) and all v € T'y v,
()’ N()*B(y)*H; " < H,
then with probability at least 1 — ¢,

ac d H )
< Z MIdet(HIdU> Z Z IlleUt—MJ Idsym

A=
U€ZLnia UeZ ~vely, FY)

DN =
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(Truncation error bounds) If it is also true that whenever || M, || < Bjorm () forall « € M/,

> M (Hiay) = 6

2 2

UEZmid U€Lmia vElY,

then with probability at least 1 — e, A = 0.

F.11

Choosing H iy and Truncation Error

A canonical choice for H ; is to take

1. H!(0,0") = Hya,(0,0") whenever [V (0 07)| < Dy and [V (0’ 07)| < Dy

dray, (H, HIdU)

|Aut(U)le(7)

2. H!(0,0") = 0 whenever |V (0 07)| > Dy or [V(o' 05)| > Dy.

With this choice, the truncation error is

dIdU'v (HIdUW’H'IY) = Z

Bnorm (U)Bnorm (O-I)HIdU,Y (U;

U,U’ELU’Y:V(U)SDV.V(U’)SDV,
[V(c0ov)|>Dy or|V(c/ovy)|>Dy,

G Proof of the Main Theorem

Idsy'm

a’)

In this section, we prove the main theorem under the assumption that the functions B, (@), B(7),
N(7), and ¢(«) have certain properties. More precisely, we prove the following theorem.

Theorem G.1. Foralle > Oandalle’ € (0

720]

A= > MpM(Hpg,) +

U€Znmia

1. With probability at least (1 — €), for all shapes o € M, || My|| < Brorm ().

for any moment matrix

Z z M:_)rth (H

U€EZLpia TEMuyu

if Brorm/(@), B(7), N(v), and c(«) are functions such that

2. Forallt e M,y €T u,, v €T v,, and all intersection patterns P € P,

Bnorm (TP) S B(V)BC}/)BHOTW (T)

’
ST

Note: Intersection patterns and P~ , ~ will be defined later, see Deﬁnitionsand

3. For all composable v1,72, B(v1)B(y2) =

b

1
\a% S Imida Z'yel—‘*,v W <

NS W

2. 2 11

J>0 1,90, v GEL 41, By is non-trivial

NHNG)

VU G Imid? Z'}/GFU,* W < 8/

&J

VU € Lmid: Doremy \Aut(é)|c(7) <e€
Forallt e M', vy €Ty y. U{ldy. }, and~ € Ty y. U{Ildy.},

1

|Aut(U

’Yi)

< 1., i
( |A’U/t(U,Y) |) ~ is non-trivial (

Aut ( UA/, ) | ) 1’7’ is non-trivial

B(71 ©72).

II

i:y] is non-trivial

Note: I'y ~+ ; will be defined later, see Definition

1

i

|Aut(Us;)

Py

,Pj:P; P

’
Vi TP _q Vi

and we have SOS-symmetric coefficient matrices { H ﬁ/ : v € '} such that the following conditions

hold:

1. ForallU € T4, Hra,, »= 0
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2. ForallU € Ipiqand T € My,
WHIdU Brorm (T)HT

=0
Buorm(T)HI traritryiersy Hidw

3. ForallU,V € I,;q where w(U) > w(V) and all v € Ty v,
c(V)’N(7)*B(y)*Hy" = H,
then with probability at least 1 — ¢,

dra, (HY, Hiqy,)
Mt (H v\ Py ldu) ) pg
( 2 M ““’ [Aut(U)le(z) |~

UEZLmid UEIm d ’YGF

l\3\>—~

If it is also true that whenever || M || < Bporm(&) forall o € ./\/l’

ac dld Hld )
> i =o| 33 el ),

UE€Zmia U€Zpmiavely,
then with probability at least 1 — e, A > 0.

Throughout this section, we assume that we have functions By,orm (), B(7y), N(7), and ¢(«).
If Voo € M’ ||My]|| < Brorm(c) then we say that the norm bounds hold. For the other properties of
these functions, we will either restate these properties in our intermediate results to highlight where
these properties are needed or just state that the conditions on these functions are satisfied for brevity.

G.1 Warm-up: Analysis with no intersection terms

In this subsection, we show how the analysis works if we ignore the difference between M 72 and
Morth

Theorem G.2. Forall &' € (0, ] if the norm bounds hold and the following conditions hold
1. ForallU € T4, Hra,, »= 0
2. ForallU € T,;qandall T € My

1
MAaOfel) dy Brorm (T)H;

1 =0
norm T)HT [Aut(U)[c(r) HIdU
1
3. VU € Tonias ety Troreyiocy < €
then
S M Hg )+ Y0 > MINH) = (1-2¢) > M{{(Hia,) = 0
UeIand UeIm,i,d TGMU Uel-nwd

Proof. We first show how a single term M, M, M_,r plus its transpose M, M_rM,r can be
bounded.

Lemma G.3. If the norm bounds hold then for all 1 € M’ and shapes o, 0’ such that o, T, o' are
composable, for all a,b such that a > 0, b > 0, and ab = Byorm (7)2,

MMM, + My M rM,r X aMsM,r + bMo-/Mo./T

Proof. Observe that
T
b b
0= <\/5MJ - \[()MU,MTT> <\/5Ma - B\[MG,MTT> _
T

Bnorm norm (T)

b

aMO-MO.T - M(TMTMO'/T - MG-/MTTMO.T + mMU/MTTMTMU’T j
norm T
b
aMyM,r — MM, Mw — My M r M, + WMU/(BnOTm(T)zfd)Ma/T
norm T
Thus, M, M M v + My M v Msr = aMzM,r + bMy M, 7, as needed. |
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Unfortunately, if we try to bound everything term by term, there may be too many terms to
bound. Instead, we generalize this argument for vectors and coefficient matrices.

Definition G.4. Let T be a shape. We say that a vector v is a left T-vector if the coordinates of v are
indexed by left shapes o € L. We say that a vector w is a right T-vector if the coordinates of w are
indexed by left shapes o' € L.

Lemma G.5. Forall 7 € M’, if the norm bounds hold, v is a left T-vector, and w is a right T-vector
then
ML () + ME (woT) 2 Buorm (7) (M5 (00T) + M5 (wT))
and . .
~ ML wwT) = MIE wo") X Borm(7) (Mg (00" + Mg (wu™))

Proof. Observe that

T
wUM MT w[,/M MT
O%(ZUU P ) <ZUU' o’ $erm(7_)> =

norm (T)

( o 0/)
Z(UUUU')MUMU’T :FZB:T’L:L(T)

0,0 0,0

M, M, M,

Vo’ 1
F Z MMUM r My + o3 Z (Vovor) Mo My Mox My

ool Bnorm(T) T Bnorm (T)

Furthel‘ obseI‘Ve that Zo’,o” (’UO_UO./) MO-MO./T = Mjf:ll;jt (’U’UT>, Zg’,a‘l (Uo'wo-/) MUMTMO—/T =
MZaCt(’U’U}T), Za,a’ (wo—vfr’) MoM rM,r = MfgCt(va) and

T
> (wower) My M, Myr M,z = (Z wUMU> M, M, <Z w(,M[,>
o,0 o o .
=< (Z wJMJ> Brorm(7)*1d <Z ngg>

= Brhorm (T)QMIf;\if (ww™)

Putting everything together implies the result. [ ]
Corollary G.6. For all T € M’, if the norm bounds hold and Hy and Hy are matrices such that
HU Bnorm (T)HT
|: Bnorm( )HT HV EO
then M1 (H,) + M7 (H.r) < M{;* (Hy) + M35 (Hy)
HU Bnorm (T) HT

Proof. If } > 0 then we can write it as Y, (v;, w;)(vi, w;) 7.

Brorm (T)HT

p

Hy
Since the M /¢ operations are linear, the result now follows by summing the equation
ML ) + ML (i) X Buorn (7) (M5! (vi0]) + MEGe" (wiu]) )

over all 7. u

Theoremnow follows directly. For all U € Z,,,;4 and all T € My, using Corollary-w1th
Hy = Hy = Gty Hiao,
1 1
Mfact H, Mfact H = M fact H

P A M ) 2 ey e i) Gme)

Summing this equation over all U € Z,,,;4 and all T € MU, we obtain that

S S M) <2 Y M)
U€Zmia TEMy U€Zmia

as needed. |

M5 (Hq,)
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G.2 Intersection Term Analysis Strategy

As we saw in the previous subsection, the analysis works out nicely if we work with M /e, Unfortu-
nately, our matrices are expressed in terms of M°"*"_ In this subsection, we describe our strategy for
analyzing the difference between M7t and M.

Recall the following expressions for (M (H)) (A, B) and (M2"*"(H)) (A, B) where A has
shape U, and B has shape V:

(MﬂfaCt<H)) (A,B) = Z H(Ua U/) Z Z MR, (A’ A,)MRz(A/7B/)MR3(BlvB)
€Ly, ,0'€Ly, A’,B’" R1€R(0,A,A"),Ry€R(7,A’,B'),
R3eR(a'T,B’,B)

(M7 (H)) (A, B)
= Z I{(O'7 O'/) Z Z MR1(A7A/)MRz(A/’B/>MRS(B/7B)

o€Ly,,0'€Ly, A",B’ Ry ER(0,A,A"),RyeR(r, A", B),
R3eR(o'T ,B’,B),Ry,Rg,R3 are properly composable

This implies that (M/°“*(H)) (A, B) — (M2"*"(H)) (A, B) is equal to

> H(oo) > > Mg, (A, AYMg, (A, BYMg,(B', B)

oc€Ly,,0' €Ly, A’,B' RyeR(c,A,A"),Ry€R(7,A’,B’),and RgeR(c'T ,B’,B)
R1,Rg,Rg are not properly composable

Thus, to understand the difference between M¥%ct and M°"*" we need to analyze the terms
XRiXR:XRs = XRioRs0Rs fOr ribbons Ry, Ro, R3 which are composable but not properly com-
posable. These terms, which we call intersection terms, are not negligible and must be analyzed

carefully. In particular, we decompose each resulting ribbon R = R; o Ry o R3 into new left, middle,
and right parts. We do this as follows:

1. Let V. be the set of vertices which appear more than once in V(R; o Ry o R3). In other
words, V, is the set of vertices involved in the intersections between R;, Ry, and R3 (not
counting the facts that B, = AR, and Br, = AR, because we expect these intersections).

2. Let A’ be the leftmost minimum vertex separator of Ag, and Br, UV, in Ry. We turn A’
into a matrix index by specifying an ordering O 4/ for the vertices in A’.

3. Let B’ be the leftmost minimum vertex separator of A, UV, and Bg, in Ry. We turn B’
into a matrix index by specifying an ordering Op- for the vertices in B’.

4. Decompose Ry as Ry = R’y U Ry where R/; is the part of R; between Ag, and A’ and Ry
is the part of Ry between B’ and Br, = Ag,. Similarly, decompose R3 as R3 = R5 U R’
where Ry is the part of R3 between Br, = Agr, and B’ and R’j is the part of R3 between
B’ and Bg,.

5. Take Ry = R4 0 Ry o Ry and note that R} o R} o Ry = Ry o Ry o R3. We view R}, R}, Rj
as the left, middle, and right parts of R = R o Ry 0 R3

While we will verify our analysis by checking the coefficients of the ribbons, we want to express
everything in terms of shapes. We use the following conventions for the names of the shapes:

1. As usual, we let o, 7, and o' be the shapes of Ri, Ro, and Rs.

2. We let v and »/ T be the shapes of R4 and Rs.

3. We let 0, 7p, and 0" be the shapes of R}, R}, and Rj. Here P is the intersection pattern
induced by R4, Ro, and R5 which we define in the next subsection.

Remark G.7. A key feature of our analysis is that it will work the same way regardless of the shapes
o9, JéT of R} and Rj. In other words, if we replace oo by 02, and oy by o), for a given intersection
term, this just replaces o = oo Uy with 0, = 02, U~y and o' = oy U~ with o/, = o}, U~'. This
allows us to focus on the shapes v, T, and ' T and is the reason why the —~, 7y operation appears in
our results.
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G.3 Intersection Term Analysis

In this section, we implement our strategy for analyzing intersection terms. We begin by defining
intersection patterns which describe how the ribbons R;, R9, and R3 intersect.

Definition G.8 (Rough Definition of Intersection Patterns). Given T € M’, v € T, y. U{ldy, },

v €T, v, U{ldy.}, and ribbons Ri1, Ry, and R3 of shapes v, T, and ' T \hich are composable
but not properly composable, we define the intersection pattern P induced by Ry, R, and Rs and
the resulting shape Tp as follows:

1. Wetake V(P) =V (yoTo 'y'T).

2. We take E(P) to be the set of edges (u,v) such that u, v are distinct vertices in V (coToc’")
but u and v correspond to the same vertex in R o Ry o R3

3. We define 7p to be the shape of the ribbon R = Ry o Rs o R3

Definition G.9. GivenT € M,y € Iy, U{ldy, }, and~' € Ty, U{ldy, }, we define P., . ./t

to be the set of all possible intersection patterns P which can be induced by ribbons Ry, Rs, and R3
of shapes ~, T, and v'" .

Remark G.10. Note that ify = Idy, and~' = Idy, then P, , ..v = () as every intersection pattern

must have an unexpected intersection so either v or ' must be non-trivial.

It would be nice if the intersection pattern P together with the ribbon R allowed us to recover
the original ribbons R;, Rs, and R3. Unfortunately, it is possible for different triples of ribbons to
result in the same intersection pattern P and ribbon R. That said, the number of such triples cannot
be too large, and this is sufficient for our purposes.

Definition G.11. Given an intersection pattern P € P., . .,r, let R be a ribbon of shape Tp. We
define N (P) to be the number of different triples of ribbons Ry, Ra, Rs such that Ry o Ry o R3 = R

and Ry, Ra, R3 induce the intersection pattern P.

Lemma G.12. For all intersection patterns P € P., v, N(P) < |V (7p)|IV O\ HIVENU/|

Proof sketch. This can be proved by making the observations that Az, = Ar and Br, = Bg, all
of the remaining vertices in V' (R;) and V' (R3) must be equal to some vertex in V' (R), and once
R; and Rj3 are determined, there is at most one ribbon Rs such that R;, Ry, R3 are composable,
R = Ry o Ry 0 R3, and Ry, Ro, R3 induce the intersection pattern P. |

With these definitions, we can now analyze the intersection terms.

Definition G.13. Given a left shape o, define e, to be the vector which has a 1 in coordinate o and
has a 0 in all other coordinates.

Lemma G.14. Forallt e M, 0 € Ly_,and o' € Ly,

1
M eeq) =M™ eoeo) = DL gy 2 NEIMEMeoer)
o2€L,yET:050y=0 v PEP%T,IdVT
1
- N(P Morth o T/
+ Z |Aut(U7/)| Z ( ) TP (6 60-2)
oheL,y' €l:0loy =0’ PEPIdUT,T,’Y’T

! ort
' % 2 | Aut(U,)] - [Aut(Uy )] Y. NEP)MZ M (epely)

o2€L,y€lo30v=0 oheL,y' €T:0hoy' =0 1:’673,Y s

Proof sketch. This lemma follows from the following bijection. Consider the third term

! ort
% 2 , [Aut(U,)] - [Aut(U,)] Y. N@MIM(eqer,)

o2€L,y€lio30v=0 oheL,y' €T:0hoy' =0 PeP T

¥,y

On one side, we have the following data:
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1. Ribbons Ry, Rs, and R3 of shapes v, 7,7’ T such that R, Ry, R3 are composable but R;
and Ry o R3 are not properly composable (i.e. [?; has an unexpected intersection with Ry
and/or R3) and R; o Ry and Rj3 are not properly composable (i.e. R3 has an unexpected
intersection with R; and/or R»).

2. An ordering O 4, on the leftmost minimum vertex separator A’ of Ag, and V.. U Bg, (recall
that V is the set of vertices which appear more than once in V(R o Ry o R3)).

3. An ordering Op- on the rightmost minimum vertex separator B’ of V,, U Ag, and Bg,.

On the other side, we have the following data

1. An intersection pattern P € P, .~ where 7y and 7' T are non-trivial.

2. Ribbons R}, Rf, Rj of shapes o2, Tp, O'/2T which are properly composable

3. A number in [N (P)] describing which possible triple of ribbons resulted in the intersection
pattern P and the ribbon R).

To see this bijection, note that given the data on the first side, we can recover the ribbons R}, Rj, and
R}, as follows:

1. We decompose R; as Ry = R o Ry where Bpr, = Ag, = A’ with the ordering O 4.

2. We decompose R3 as R3 = Rj o R, where where B, = A R, = B’ with the ordering
Op'.

3. We take Ry, = Ry 0 Ry o Rs.

The intersection pattern P and the number in [N (P)] can be obtained from Ry, Ry, and Rj.

Conversely, with the data on the other side, we can recover the data on the first side as follows:

1. R} gives an ordering O 4+ for A" = Ap, and an ordering Op/ for B’ = Bp;.

2. The ribbon R, intersection pattern P, and number in [N (P)] allow us to recover Ry, Ro,
and Rs.

3. We take Ry = R} o Ry and R3 = Rj5 o Rj,.

Thus, both sides have the same coefficient for each ribbon.

The analysis for the the first term is the same except that when ~/ is trivial, we always take v/ =
Idy, . Thus, we always have that B’ = Bpr;, = Bg, (with the same ordering) and R, =R3 =Idp.
Because of this, there is no need to specify Rs, R}, Rs, or an ordering on B'.

Similarly, the analysis for the the second term is the same except that when -y is trivial, we
always take v = Idy, . Thus, we always have that A’ = Ap, = Ag, (with the same ordering) and
R} = R; = Idy. Because of this, there is no need to specify Ry, R}, R4, or an orderingon A’. H

Applying Lemmal|G.14]for all o and ¢’ simultaneously, we obtain the following corollary.

Definition G.15. For all U,V € I,,,q4, given a v € 'y v and a vector v indexed by left shapes
o € Ly, define v=7 to be the vector indexed by left shapes o4 € Ly such that v=7(o3) = v(og 07)
ifogory € Ly and v~ (02) = 0 otherwise.

Proposition G.16. For all composable 2,71 € I' and all vectors v indexed by left shapes in Ly,
(U*’Yl)*"m — p~2oMm
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Corollary G.17. For all T € M/, for all left T-vectors v and all right T-vectors w,

1
Mgrth(UwT) — M.faCt(U’LUT) _ Z - Z N(P)M:_);th(vf'wa)
|Aut (U )|
vels U, PePy r 1ay,_
1 orth —N\T
> Thawy 2 NPMEete )
vy €l v, v PGPIdU ! T
1 ’
-y % S NPIMI (0 (w7 )T
ST, ey, AU [AutUy)] g~ "’

Applying Corollary iteratively, we obtain the following theorem:

Definition G.18. Given v,7 € T U {Idy : U € L4} and j > 0, let T, -/ j be the set of all
Y1715 5V € DU{Idy 2 U € Lyia} such that:

1. 7j,...,v1 are composable and y; o ...o~vy =1y

2. 9}, ..., 7 are composable and ;o ..oy =7/

3. Foralli € [1, j], v; or v is non-trivial (i.e. v; # Idy, or~y; # Ideé ).
Remark G.19. Note that if v = Idy and v' = Idy then forall j >0, T ; = 0.
Theorem G.20. For all T € M/, left T-vectors v, and right T-vectors w,

MOt (puwT) = MEet (pwT)+

3 3 (1) > 11 |Aut<1U> I

el U, U{ldy } v €l v, U{ldy, }: 5>0 VLV iV EL 1 5 i ds non-trivial 12y} is non-trivial

~ or ~' is non-trivial

3 (H N(B-)> MEeH (0™ (w7

Ph'”’Pj:PiEP’YivTP,ifla’Yl =1

where we take Tp, = T.

G.4 Bounding the difference between M/ 7t and MO"th

In this subsection, we bound the difference between M (H.,) and M2"*"(H.). Recall conditions
2,5,7 of|Theorem G.1|for B(v), N(v), and ¢(y). With these conditions, we can now bound the
difference between M7t and MTth,

Lemma G.21. If the norm bounds and the conditions on B(~), N(v), and c(v) hold then for all
T € M/, left T-vectors v, and right T-vectors w,

(M‘I]_‘act(va) +M7J_‘;zct(va)) . (Mfrth(”UU/T) + Mg;th(va)) <

B(W)QN(’Y)QBnorm(T)C(’Y) act ¢ —v () —7\T
|Aut(U,)| MIdeW(U (= ))+

Eanon(T)MIf;;t (vo?) 42 Z

vyE€l« U,
B(Y)’N(v)?Brorm(1)e(v) VP
/ fact T norm fact T
€ Bnorm (T)MIdVT (ww ) i 2716FZ |Aut<U’y/)‘ MIdU*/ (w ! (’LU ! ) )
«,Vir
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Proof. By Theorem|G.20} taking 7p, = T,
Mfrth(UwT) _ Mzact(va)+
1

; 1
5 Sy Y I Gewy I e

YET, U, U{Idy, } A €Dy v, U{Idy, }: >0 Y1y ,yj,n,;.ervﬁ,’j 4:7y; i non-trivial iy} is non-trivial
~ or ~/ is non-trivial

> (HN ) Mgt ™ (w™)T)

Py, ,P;:P,€P i=1

Vi TPy 174

Taking the transpose of this equation gives
Morth( ) _ Mngt(w’UT)+
1

i 1
> POCED S U RTINS

YET, U, U{ldy, } v/ €Dy v, U{Idy, _}: >0 Y1,V s ,’yj,’y‘;-el—‘,yy,y/’j 4:7; is non-trivial iy} is non-trivial
~ or ~/ is non-trivial

> (HN ) M (w™ (™))

Py, ,P;:P,€P i=1

VTP 107

Now observe that by Lemma|G.5| if the norm bounds hold,

(M0 (V) 4+ M ()T ) =

TP7

Fact NO)BM)e) NO)BO)e(Y) ( —yyT
M ((\/N('y’)B(’y/)C(’Y') ) (\/ N()B(y)e(v) w™) )) *

fact NO)B()e(r'), — NMBMe(y) oyt
Mo ((\/ N()B()0) ) (\/ NGB ) )
- NOBM)e®) y rsact )~ —nyTy o+ NODVBON) § fact (= 0y=7'\T
Brarm70,) (S Mt (00T 4 Ml w0 w )

Combining these equations,

(M‘I]_‘act(,uwT) _’_qur}ct(va)) _ (M;;rth(va) _|_M7(—)’;th(va)) <

1 1
> > X I ey ey

VET, U, U{Idy, Yy €Ty v, U{Tdy, }: 5>0 vy 97, va/_j,'}/; Erw,w’,j 4:7, is non-trivial Vi i:'y; is non-trivial

~ or ~/ is non-trivial

Z <H N(Pz)> Bnorm(TPj)

Py, ,P;:P;€P, =1

~
~

~

"
Q

—~

YirTP; 107

NMBMeO) o rract (v, NO)BOeWO) o rract (v
(ReBrety s, @) + LA )
Putting these equations together,

(M‘I)_‘act(va) + Mf?Ct(va)) _ (Mgrth(v,wT) _’_MTo;th(va)) <

3 B()2N(7)2Borm (T)c(7) fect
M Y™
(‘AUt(U'y)DL"iS "°“'"i"ia](|Aut(U,y/)|)1'y’ is non- [l’l\lalc(fy/) IdUA/ (’U (’U ) )+

'YGF*YUT U{IdUT }'W/GF*YVT U{IdVT }:
~ or v/ is non-trivial

B(' )’ N(')*Brorm()e(?') fact o =y (=T
2 (w0 )] e [Aut (U ) oy (7 (00

Vel v, V{ldy, ) v €T v, Uildy, }:
~ or ~/ is non-trivial
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Now observe that

B(7>2N(’7)23norm(7-)c(,7) fact —Y (0 —Y\T
2 (A0, ) e At (U ) o) 1 070 2

YET, U, U{ldy, } v/ €Dy v, U{Idy, }:
~ or ~/ is non-trivial

1
TA - 2/TT Nl /-7 Bnorm Mfact T
2 TRty | P MM 00+

vy el v,

1 B('Y)QN(’Y)QBnOTM(T)C(’Y) fact [ —~ [ —ANT
M v (v =<
Z Z (| Aut (U, )| )L snonivia () (|Aut(U,)|) L isnonvia szW( (v™)7) =

velvu, \V€Tx v, U{ldv, }

& B (T M2 (00T) 42 3 B(7)2N(7)2Bporm (1)c(7) M{;[jj (0= (0=)T)

Id
o [Aut(U,)]
Following similar logic,
Z B(Y')’N(Y')?Bnorm(7)e(v') ppfact (w 77,(11)77/)71) )

g S (‘Aut(U’Y)|)1»yisnon-lri\'ia](lAut(U}y,)Dl’y’ 1snonm\1alc(,y> Idy !
T 'yor:;’ isnon-lrivi'(;] i i

ac B ’Yl N 'Y/ 2Bnorm T)C ac —
E/Bnorm(T)M]fdv_f(wa)'i_Q Z ( ) |(A1it(U’y,” ( ) ( )M{dUt/( o' (w vy )T)

v'Elw v,

Putting everything together implies the result. [ ]

Using Lemma|G.2T]we have the following corollaries:

Corollary G.22. For allU € Z,,;q, if the norm bounds and the conditions on B(vy), N(v), and c(7)
hold and Hpq,, > 0 then

act T act c(rY) act -,
M (Hiay) — ME (Hpay) < @M1 (Hiag) 42 Y W%fde%m
vyels,

Corollary G.23. ForallU € T,,;q and all T € My, if the norm bounds and the conditions on B(7),
N (7), and c(vy) hold and

1
Moo Hdu Brorm () Hy
Bnorm(T HT WHIdU

then

(Mfect(Hy) + MEU(HE) ) = (M (H) + M2 (HT)) =

/ 1 act B(’y ( ) (’Y) act Y,
a0y M (rac) +47§ ()] TAut0y e Moo, Hia) )

G.5 Proof of the Main Theorem

We now prove the following theorem which is a slight modification of Theorem and which
implies Theorem|G.1]

Theorem G.24. Forall e > 0 and all €' € (0, 5], for any moment matrix
A= Z Mmth HIdU) + Z Z M7(_)7'th(H
U€Lnia U€Lynia TEMuyU

if the parameters are e-feasible and moreover, for all o« € M’ ||My|| < Bporm(a), and we have
SOS-symmetric coefficient matrices { H '/7 : v € T'} such that the following conditions hold:
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1. ForallU € T,,;a, HIdU =0
2. ForallU € 1,,;q and T € My,
[ raoyer Hido Buorm(7) Hr

1 =0
norm T)HT WHMU

3. Forall U,V € I,,q where w(U) > w(V)andally € Ty v,
()’ N()*B()*Hpy " = HY,
then

1 fact dIdU HIdU)
2( Z Mg, HIdu)) -3 Z Z |Aut(U Tdsym

U€Lmia U€Lmia 7€lu,« (’Y)

If it is also true that

dray (H., Hray )
fact U U
> ) so| Yy el ) g,

UZmia U€ZLyia 7€l 0 - el
then A = 0.
Proof. We make the following observations:
1. By Theoremm
D Mg (Hia)+ Do Y MIUH) = (1-2) 37 My (Hiay)
U€Lmia U€ZLmia TEMy U€Lnmia
2. By Corollary|G.22]
fact (H )
fact orth facf IdU
> (MIdU (Hray) — Miq, (Hfdu)_ > M (Hiap)+2 ) Z O Au(T.)]
UELmid U€Tmia U€Lmia 7€l &,
3. By Corollary[G.23]
Z Z Mfact Morth(H )) <
UEZLmia TEMy
2¢’ t B(7)’N(7)*c(v) fact [ yy—
Yo 20 | e Mids (Hray) + 4 Z Mgt (Hpg") | =
p 2\ TAu(O)]e(r) " T 2 TAuU )] TAut(U) e(r) T,
f;“% )
2e” N M (Hipgy) +4e Y Z |AUut i8]
U€Znia U€Zpia vET «,
4.
ac act act fact
> Z };Uj(H) vy MY (Hia,) + (Mg (H) = Mg (Hya,,))
0T veray CONAWUN] & el Aut(U)]
ppfact
Z Z 155 (Hlduv)_i_ Z Z dray,, ( HIdU) Id <
UeZ,, d’y€F |AUt )| UeZ,, d’yGF |AUt (f}/) e
e dra HId )
> MM Hug) + [ Y Z AUW D2 Idgym
vz, vér | Aut(Un)e(v)
mid mid YET U,
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Putting everything together,

A= S M Hu)+ S S Mot

U€Lmia U€EZLpia TEMu
act t act th
S M) Y Y M) S (M ) M)+
U€ZLnia U€Lnia TEMuU U€Zmia

Z Z Mfact Morth(H )) -

U€Lmia TEMU
fact ( )

’ 2 fact IdU
(1 -3¢ —2¢7) Z Mg (Hyay ) — (2 +4€') Z Z )| Aut(U. )|>.

U€E€Znmia U€ZLnmia vEr «,

dray., (H'), Hray, )
! /2 fact / U U
(1 — be’ — 6¢ ) E MIdU (HIdU) — (2 + 4e ) E E |A;t (7)7 Idsym >~

U€ZLnia U€ZLyiavely,

ac dIdU HIdU )
Z MIdet(HIdU) -3 Z Z |Aut(US)|c(v) Tdaym
UTmia UEZmia velD, e

H Choosing the functions B,,,.,,,(a), B(7y), N(7), and ¢(«)

In this subsection, we give functions B,,orm (), B(7y), N (), and c(a) which are e-feasible thereby
proving[Lemma F.99|and[Lemma F.107|and completing the proof of our main theorem.

H.1 Choosing By,orm ()

We need matrix norm bounds which hold for all &« € M’. To obtain such norm bounds, we start with
the norm bounds in the graph matrix norm bound paper. We then modify these bounds as follows:

1. We make the bounds more compatible with the conditions of our theorem. To do this, we
upper bound many of the terms in the norm bound by BLZT(?@)I\U“H‘V(O‘)\V“‘ where Byertex
is a function of our parameters. In general, we will also need to upper bound some of the

terms by [ [, ¢ (o) (Bedge (€)) Where Beage (€) is a function of I, €2, and our parameters.

2. We generalize the bounds so that they apply to improper shapes as well as proper shapes.
Under our simplifying assumptions, all we need to do here is to take isolated vertices into
account. In general, we also need to handle multi-edges.

H.1.1 Simplified B,, ;-1 (@)
Under our simplifying assumptions, we start with the following norm bound from the updated graph
matrix norm bound paper [1]:

Theorem H.1 (Simplified Graph Matrix Norm Bounds). Under our simplifying assumptions, for all
€ > 0 and all proper shapes «, taking co, = |V () \ (Us U Va)| + |Sa \ (Us N VL),

Pr (1Mol > 21V \ (U 1 Va) VNV (20) F <e

n(Sa)
where ¢ = 3 Pn( )—‘

3ca

w(V(a))—w(SQ))
2

Corollary H.2. For all shapes o and all € > 0,

IV(@\Ual FIV(@\Val (v () 4w(ln)—w(Sa
pr (el > (21721 /2a) g )

3ca

nw(Sa)
where ¢ = 3 Pn()—‘
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Corollary H.3. Forall z € Nand all € > 0, taking " = ==557» With probability at least 1 — £ we
have that for all shapes o such that |V ()] < z,

1Ml < (21Val /200

Aw(Sa)
where ¢ = 3 [ln(f")—‘

3ca

w(V(a))-HuéIa)—w(Sa)

) [V(@)\Ua|+|V()\Va|
n

Proof. This result can be proved from Corollaryusing a union bound and the following proposi-
tion:

Proposition H.4. Under our simplifying assumptions, for all z € N, there are at most 5* 27 proper
shapes o such that V(a) < z.

Proof. Observe that we can construct any proper shape « with at most m vertices as follows:

1. Start with z vertices vy, ..., ;.

2. For each vertex v;, choose whether v; € V(a) \ Uy \ Vi, vi € Uy \ Vi, v; € Vi, \ Ua,
v; € Uy NV, 0rv; ¢ V().

3. For each pair of vertices v;, v; € V (), choose whether or not (v;,v;) € E(«)

Corollary H.5. Forall Dy € N and all € > 0, taking

ln( 53Dy 99D3 3Dy )

qg=3 £ =3 [Dvln(n) +

in(z)
3

3 + Dyin(5) + 3D%,ln(2)—‘ ,

Byertex = 6Dy \4/ 2€Qy and

- [V (@)\Uq|+|V (@)\Va| wV(a)+wla)—w(Sa)
Brorm (O‘) - Buev'tex n 2 ’

with probability at least (1 — €) we have that for all shapes o € M’,

M, | ‘ < Bnorm(a)

Proof. This follows from Corollary[H.3Jand the fact that for all & € M', w(S,) < [V (a)| < 3Dy
|

H.1.2 General B, ., (@)

In general, we start with the following norm bound from the updated graph matrix norm bound paper

(L]

Theorem H.6 (General Graph Matrix Norm Bounds). For all € > 0 and all proper shapes «, taking
w(Sa)

q = [In(*——)]

(w(V(a))Z—w(Sa))

P [ ||Ma| > 2e(2q|V (a))VNCVIL L TT B (Bo(24le)) | m
e€E(a)

Corollary H.7. Foralle > 0, forall 2,14, m € N, taking " =
least 1 — ¢, for all shapes o such that

W, with probability at

1. V(o) <z
2. All edges in E(«) have label at most 1y, 4.
3. All edges in E(«) have multiplicity at most m.
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Le
I <26V (@) VNV (T 20 (Batmian)) {15 (Ba(20i)) ™ 07 |
¢ J€0,mlmaq
e€E(x)

wV(e)+wla)—w(Sq,min)
n 2

U’(Samna.'lr)
where ¢ = [ln (”ﬁ)-‘

Proof. Observe that for each o which has multi-edges, we can write M, = ZZ ¢; M, where each
«; has no multiple edges. We first upper bound ), |c;|.

Lemma H.8. For any ay,...,am € NU{0}, taking pmaez = Y ivq a; and writing [~ ha, =

e cphi,
Pmazx m m
Z |Ck| S (pmaa: + 1) H h; (BQ(meam)) S H Qh; (Bﬂ(zpmaz))
k=0 i=1 i=1

Proof. The result follows by Cauchy-Schwarz using the fact that hj, form an orthonormal basis B

Corollary H.9. For any shape « such that every edge of o has multiplicity at most m and label
at most lyag, if we write Mo = Y. ¢;M,, where each o; has no multi-edges then ), |c;| <

[ec () 201 (Ba(2mlnaz))
The result now follows from Theoremand the following observations:
L V() \ (Ua NVa)| < [V(a) \ Ual + [V () \ Val-
2. For any «, writing M, = ZZ ¢iM,,; where each o; has no multi-edges, for all o,
w(V (i) + w(la,) = w(Sa;) < w(V(a)) +w(la) — w(Sa,min)
3. Forany ay,...,a;, € NU{0} such that Vi’ € [m],ay < e, forall j € [0, mlynaz]
h BQ 2q] H h+ BQ 2(]] )) max{ja5} < H max {(hj, (BQ(2qj/))) max {j",a;/} }

] J'€l0,mlmaq]

Proposition H.10. For all z,1,,., € N, there are at most 5% (1,40 + 1)Zk proper shapes o such that
|V ()| < z and every edge in E(c).

Proof. This can be proved in the same way as before. [ ]

From this, the first condition of e-feasibility follows as an easy corollary.

H.2 Choosing B(7)

We now describe how to choose the function B(+y) so that conditions 2, 3 of e-feasibility hold. The
most important part of choosing B(+y) is to make sure that the factors of n are controlled. For this,
we use the following intersection tradeoff lemma. Under our simplifying assumptions, this lemma
follows from [19] Lemma 7.12]. We defer the general proof of this lemma to the end of this section.

Lemma H.11 (Intersection Tradeoff Lemma). For all v, T,~' and all intersection patterns P €
rP%TW”

w(V(7p))+w(lrp ) =w(Srp,min) < w(V(T))"HU(IT)_w(ST,min)+w(v(7)\Uv)+w(V(7/)\U7’)

Based on this intersection tradeoff lemma, we can choose the function B(~) as follows.
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Corollary H.12. Ifwe take

Bnorm(a) — C . BL‘;‘T(?;L\UL!PF‘V(Q)\VQ' H Bedge(e) n'w(V(Dt))#*wéla)*w(Sa)
e€E(a)

for some constant C > 0 and take

w(V(v)\Uy)
B(y) =BG VOV T Beage(e) | n =+
e€E(y)

then the 2nd and 3rd condition of e-feasibility hold.

Proof. We have that

[V (rp)\Urp |+|V (72)\ Vs | w(V(rp))+wlrp)—w(Srp)
BnOTm<TP) = Bvertew ol F Bed e(e) n 2
g
ecE(Tp)
and
/ [V ONUS [HIV DNV [V (YONU7 [V (YO [+ V(DU [+ V (1)\ V|
B(V)B(’y )BWOTW(T) = Bve'rtea: K K
w(V()\Uy)+w(V (YU ) +w(V (1) +w(lr)—w(Sr)
H Beage(e) | n 2

e€E(v)UE(y)UE(T)
The first condition now follows immediately from the following observations:
1.
VN\NUL |+ VNV +H VO Uy [+ V)N Vol + V) \NUs | + V(1) \ V|
= V(o107 )\ Uyoroyr|+ [V(yor oy )\ Vigroyr| > [V(7p) \ Urp | + [V(7p) \ Ve
2. E(TP) = E(’y) U E(T) U E('YIT) SO HEGE(TP) Bedge(e) = HeGE(’Y)UE('Y/)UE(T) Bedge (6)
3. By the intersection tradeoff lemma,
w(V (1p))+w(lr,)—w(Sy,) < w(V(7))+w(l;)—w(S;)+w(V (y)\Uy)+w(V (y)\U,)
The second condition follows from the form of B(7). [ |
H.3 Choosing N (v)

To choose N (7), we use the following lemma:

Lemma H.13. For all Dy € N, for all composable v, 7,~'" such that [V(7)] < Dy,
and |V (v")| < Dy,

1 1 J
% i i 0wy, 0, 2 (T

>0 51,7750 75,V €Ty 4 5 417i is non-trivial i:7y] is non-trivial i

V(r)| < Dy,

(3DV)2(|V(“/)\V7 IV NV DAV (O [+HIV (YONU/ 1)

( | Aut ( U, ) | ) Ly is non-trivial ( | Aut ( Uy ) | ) L7 is non-triviat

Proof. Observe that aside from the orderings (which are canceled out by the |Aut(U.,,)| and
| Aut(U.,,)| factors), the intersection patterns {F; : i € [j]} are determined by the following data on

each vertex v € (V(y) \ V) U V(') Vr):

1. The first i € [j] such that v € (V(v;) \ V4,) U (V(%T) \ V,r). There are at most j
possibilities for this.
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2. A vertex u (if one exists) in V(y;_j0...0y; 070 %T ...0 72_1T) such that » and v are
equal. There are at most 3Dy, possibilities for this.

Using these observations and taking jmqe. = [V (7) \ V4| + [V(¥) \ V4],

1 1
DS I ey U mewy, 2

’
I>0 31,71, 7Y €L oy i s non-trivial i:7y; is non-trivial K Py Py eP Th_y T

Jmaz SJD )IV(v)\%,\+\V(v’)\V/\
Z |Aut 1 is non-trivial (|Aut(U’y,)|)1~,' is non-trivial

9\ Jmaz (3DV)2(|V(’Y)\Vw|+\V(’Y')\V D
§ jmax (>
3 (|Aut(U’y)Dl'yls non-trivial (|Aut(U,Y/ ) |)1’Y/ is non-trivial

(3DV)2(|V(7)\V~f|+\V(’Y')\V )
<
(|AUt(U’Y) ‘ ) 1’7 is non-trivial (|AUt(UnY/ ) |)1’Y/ s non-trivial

Now recall that for any ~v;,7p, ,, Ayz and any intersection pattern P; € P
V(i)\Uq, |4V (¥)\U,
|V(7—Pi)‘| (i) \Ux; [+IV (V)\U.; |

IA

7 N(F)

isTP; 157

. Thus, forany Py, ,P; : P, e P o, [[l; N(P)

Vi
(3Dy)IVONUHIVONU | Putting everything together, the result follows.

| VAN

The last condition of e-feasibility follows as a direct corollary.

H.4 Choosing c(«)

In this section, we describe how to choose ¢(«). For simplicity, we first describe how to choose c(«)
under our simplifying assumptions. We then describe the minor adjustments that are needed when we
have hyperedges and multiple types of vertices.

Lemma H.14. Under our simplifying assumptons, for all U € T,,;q,

1
2. [Aut(U 1 V)| (3D U= \VaTHVa\Ua R B @IV N e V)] <

a:Uq =U,a is proper and non-trivial
Proof. In order to choose «, it is sufficient to choose the following:
1. The number j; of vertices in U, \ V,,, the number j5 of vertices in V,, \ Uy, and the number

Js of vertices in V() \ (Uy U V).

2. A mapping in Aut(U, NV, ) determining how the vertices in U, NV, match up with each
other.

3. The position of each vertex u € U, \ V,, within U,, (there are at most |U,| < Dy choices
for this).

4. The position of each vertex v € V,, \ U, within V, (there are at most |U,| < Dy choices
for this).

5. The number j4 of edges in E(«).
6. The endpoints of each edge in E(«).

This implies that for all j1, j2, j3,J4 > 0

1

E — — <1

@ Ua=U|Ua\Va |=i1:| Va \Ua |=j2 | Aut(Ua 0 Va)|(Dy )7 +72(Dy )25
V(N (Ua UVa) | =ja | E(e) =i
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Using this, we have that

1
2 [Aut(Ua 1 V)| 3Dy ) Ta\Va F1Va\Ua F2IB@)T2IV @\ (Ve UV

a:Uqy =U,a is proper and non-trivial

1 3\? 9
< 2 3+92§2<2) g 1<5

J1,32,33,J4ENU{0} 51 +jo+j3+ja>1

This implies conditions 4, 5, 6 of e-feasibility.

H.4.1 Choosing c(«) in general*
When we have multiple types of vertices and hyperedges of arity k, Lemma|H.14|can be generalized
as follows:
Lemma H.15. Under our simplifying assumptons, for all U € L4,
1

P AN A BN AN A A UA RS TOYSIS AN CAT AT

a:Uqn=U,« is proper and non-trivial
Proof sketch. This can be proved in the same way as Lemma[H. 14|with the following modifications:
1. In addition to choosing the number of vertices in Uy, \ Vo, Vi \ Uq, and V() \ (Uy N V4,),

we also have to choose the types of these vertices.

2. For each hyperedge, we have to choose &k endpoints rather than 2 endpoints.
|

This implies the same conclusion regarding e-feasibility. For technical reasons, we will need a
more refined bound when the sum is over all shapes v of at least a prescribed size.

Lemma H.16. For all ¢’ > 0, for the same choice of c(«) as above, for any U € T,,;q and integer
m > 1, we have

1 g
2 Aut(D)]e(r) = 5201

YET Y|V (M[2|U]+m

Proof sketch. The proof is similar to the proof of e-feasibility, but we now have the extra condition

j2 + j3 > m in the proof of|Lemma H.14| Then,

1 1 27 1
371132974273 Z 2m3j1Qja 16 - 2m om—1
J1,32+93,Ja€ENU{0}:j2+53>m J1,54€NU{0}

H.5 Proof of the Generalized Intersection Tradeoff Lemma

We now prove the generalized intersection tradeoff lemma, which in particular generalizes [19|
Lemma 7.12].

Lemma H.17. For all v, 7,~" and all intersection patterns P € P, ; ./,
w(V (7)) +w(lrp) =w(Srp,min) < w(V(7))+w(l7)—w(Srmin)+w(V(Y)\Us)+w(V(y)\Uy)
Proof.

Definition H.18.

1. We define Iy, to be the set of vertices which, after intersections, touch -y and T but not ~' T
In particular, I p; consists of the vertices which result from intersecting a pair of vertices in
V() \ V4 and V(1) \ U; \ V; and the vertices which are in U, \ V; and are not intersected

with any other vertex.
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2. We define 1R to be the set of vertices which, after intersections, touch T and ' T but not 5.
In particular, IR consists of the vertices which result from intersecting a pair of vertices

inV(r)\ Uy \ Vs and V(v'") \ U.,r and the vertices which are in V. \ U, and are not

intersected with any other vertex.

3. We define IR to be the set of vertices which, after intersections, touch vy and ~' T but not .
In particular, I, r consists of the vertices which result from intersecting a pair of vertices in

V) \ Vy and V(y") \ Uyr.

4. We define IR to be the set of vertices which, after intersections, touch v, T, and 'y’T. In
particular, Iy, \rr consists of the vertices which result from intersecting a triple of vertices in

V() \ V4, V(T)\ U\ V;, and VN U., i, intersecting a pair of vertices in V() \ 'V,

and V, \ Uy, intersecting a pair of vertices in U, \ Vy and V(v'") \ U,r, and single
vertices in U NV,.

The main idea is as follows. A priori, any of the vertices in Iz U Inyr U ILg U I g could
become isolated. We handle this by keeping track of the following types of flows - Flows from U,
to Il Ulnr U Ipyg, flows from I U Iy g U Inyg to V’Y/T’ and flows from I to I k. For
technical reasons, we also view vertices in I psr as having flow to themselves. We then observe that
flows to and from these vertices prevent these vertices from being isolated and can provide flow from
U, to V., which gives a lower bound on w(S;, ).

We now implement this idea.

Definition H.19 (Flow Graph). Given a shape o, we define the directed graph H,, as follows:
1. For each vertex v € V(«), we create two vertices vy, and voy;. We then create a directed
edge from vy, 10 Voyr with capacity w(v)

2. For each pair of vertices (v, w) which is an edge of multiplicity 1 in E(«) (or part of a
hyperedge of multiplicity 1 in E(«)), we create a directed edge with infinite capacity from
Vout 10 Wiy and we create a directed edge with infinite capacity from Wyt 10 Vin.

3. We define U, to be Up, = {uwin : u € Uy} and we define Vi to be Vi, = {vout : v €
Va}

Lemma H.20. The maximum flow from U, to Vi, is equal to the minimum weight of a separator
between U, and V,,.

Proof. This can be proved using the max flow min cut theorem. [ ]

Definition H.21 (Modified Flow Graph). Given a shape « together with a set I, C V() of vertices
in o (which will be the vertices in o which are intersected with a vertex to the left of «) and a set
Ir C V() of vertices in o (which will be the vertices in o which are intersected with a vertex to the
right of ), we define the modified flow graph H:t'® as follows:

1. We start with the flow graph H,

2. For each vertex u € Iy, we delete all of the edges into u;, and add u;, to Ug,,

3. For each vertex v € I, we delete all of the edges out of Voyr and add vVoyz to Vi,

4. We call the resulting graph H!t'% and the resulting sets Uyipar and Vyipip

Lemma H.22. The maximum flow from UHIL,IR to VHIL.IR in HItI® js at least as large as the
maximum flow from Uy to Vi in H,

Proof sketch. Observe that if we have a cut C'in H, éL = which separates UHé ».1r and VHCIY oI then
C separates Uy, and Vi, in H, |
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Before the intersections, we have the following flows. We take F7 to be the maximum flow from
U, to V, in 7. Note that I} has value w(V,y). We take F5 to be the maximum flow from U.- to V. in

7. Note that F; has value w(S: ). We take F3 to be the maximum flow from U,Y/T to V,Y/T in fy/T

Note that F; has value w(U,r).

After the intersections, we take the following flows: We take F} to be the maximum flow from
UHg,zLMUILRuzLMR to VH’(\DV,ILIWUILRUILNIR in H,?’ILMUILRUILMR. We take Fj to be the maximum

flow from U HILMUTL MR IMRUTLM R toV, HILMUTLMRIMRYUILM R in HILMUILMR7IMRUILMR We take

InRUILRUTL MR,
F} to be the maximum flow from U IMRUILRUILMR otoV IMRUILRurLMR 0 in H JREILRESLMER 0

Observe that because of how intersection patterns are deﬁned val(F}) = w(Uy) and val(F )=
w(Vyr). By Lemma|H.22| the value of F} is at least as large as the value of I, so val(Fy) >

W O+ min)-

We now consider F| + Fj + F}. As is, this is not a flow, but we can fix this.

Definition H.23. For each vertex v € V(7p), we define fin,(v), fout(V), fehrough(v) to be the
Sflow into vy, flow out of voyt, flow from viy, 10 Vot respectively in F| + Fj + Fj. Also define

fimbalance(v) = |fzn(v) - fout(v)‘ and fexcess(v) = fthrough(v) - max{fin(v)a fout(v)}' With

this information, we fix the flow F| + Fj + Fj as follows. For each vertex v € V (7p),

1 If fin(v) > four(v) then we create a vertex Vsypplemental,out and an edge from vyy; to

vsupplemental,out With CapaCity fimbalance(v) and we route fimbalance (U) OfﬂOW along this
edge. We then add vsyppiemental,out 10 @ set of vertices Vsypplemental-

2. If fin(v) < fout(v) then we create a vertex Usyppiemental,in and an edge from

VUsupplemental,in [0 Vin with capacity fimbalance (U) and we route fimbalunce (U) of flow
along this edge. We then add Vsyppiemental,out 10 a Set of vertices Vsypplemental-

3. We reduce the flow on the edge from vy, 10 Voyt by fepcess(V)

We call the resulting flow F'

Proposition H.24. F’ is a flow from U 015 MUILRUILMR U Usupplemental 10V, HIMROTLRVILM RO U
Vsupplemental With value val(F') = Ual(Fl) + val(Fy) 4+ val(F3) — EUEV(T fewcess(v)
Corollary H.25. There exists a flow F" from UHZ]/,ILNIUILRUILMR to VHI%RUILRUILMR,@ with value

val(F") = val(FY) + val(F3) + val(F3) — ZUEV(T) (feweess (V) + fimbatance (V)

Proof. Consider the minimum cut C' between U HOTLMUILRUILM R and V. IIMRUILRUILJ\/[R,E]. If
we add all of the supplemental edges to C' then this gives a cut C’ between U 015\ UILRUILM R
and V/ IMRUILRUILMR o with capacity CapaCZty(C ) = capacity(C) + Zuev (1) flmbalance( ) >

val(F’) Thus, capacity(C) > wval(F') — ZUEV(T) Simbalance (V) so there exists a flow F”
from U 0.1, 0010 r01000r 10 Vit potspurpag.o With value val(F") = capacity(C) > val(FY) +
ad 1T

val(E3) + val(F}) = 3 ey () (fercess (v) + Fimbatance (v)) m

We now make the following observations:
Lemma H.26.

1. Forallverticesv ¢ Iy Uy rUILRUILMR, fexcess(V) = fimbalance(v) = 0 (and these
vertices can never be isolated).

2. For all vertices v € I 1, fercess(V)
v € I p which are isolated, fepcess(v) =

)

(

_|_

fzmbalance( ) S
fzmbalance(v)

fimbalance( ) S
= fimbalance (v)

( ) Moreover, for all vertices

+\/
IIE

3. For all vertices v € IR, fewcess(v
v € I which are isolated, fepcess(v

(v). Moreover, for all vertices
0.

e

~
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4. For all vertices v € ILR, fexcess(V) + fimbatance(v) < w(v). Moreover, for all vertices
v € I pr which are isolated, feycess(V) = fimbalance(v) = 0.

5. For all vertices v € I pR, fewcess(V) + fimbatance (V) < 2w (v). Moreover, for all vertices
v € Ipprg which are isolated, fepcess(v) = w(v) and fimpaiance(v) = 0.

Proof. For the first statement, observe that for vertices v ¢ Iy U Ipyr U Ipg U IR, neither
Vin NOT U,y 18 €ver a sink or source so the flow into these vertices must equal the flow out of these
vertices and thus f;,(v) = fout(v) = fthrougn(v). For the second statement, observe that for a
vertex v € Iy,

1. F} will have a flow of f;,,(v) into v;;, and along the edge from v;;, t0 Vo

2. Fj will have a flow of f,,;(v) along the edge from v;;, t0 vy, and out of V.

Thus’ fe.'I:cess (’U) = fzn(v) + fout(v) - max{fm(v), fout(v)}- Since fimbalance (U) = ‘flTl (U) -
fout (U)I» fea:cess (U) + fimbalance (U> = fin(v) + fout (U) - min{fin(v); fout(v)} S w(v) Ifvis
isolated then neither F} nor F, can have any flow to v;,, or out of vgys 80 fin(v) = finrougn(v) =
fout(v) = 0 The third and fourth statements can be proved in the same way as the second statement.
For the fifth statement, observe that for a vertex v € Iy g,

1. F}| will have a flow of f;,,(v) into v;;, and along the edge from v;;, t0 Voy:.
2. Fj will have a flow of w(v) along the edge from v;;, t0 Upyt

3. F will have a flow of f,,:(v) along the edge from v;;, t0 Vpy: and out of V.

Thus, fercess (U) = ’LU(’U) + fin(v) + fout (U) - max{fin (U)7 fout (U)} Since f’imbalance(v)
|fzn(v) - fout(v) |’ fea:cess (U) +fimbalance (U) = w(v) + fzn(v) + fout(v) - min{fin(v)7 fout( )%

2w(v). If v is isolated then neither F] nor F} can have any flow to v;;, or out of vpys SO fin(
fout (U) = 0and fthrough (U) = w(v)

| VA

Putting everything together, we have the following corollary:
Corollary H.27.

Z (fexcess(“) + fimbalance(v)) S w(ILM)+w(ILR)+w(IMR)+2’lU(ILMR)_(w(I‘rp)_w(I‘r))
veV(rp)

Combining this with Corollary

w(STp,min) Z Ual(Fl/) + Ual(FQ/) + Ual(Fé) - Z (femcess(v) + fimbalance(v))
veEV (TpP)

> w(Uy) + w(Srmin) + w(Vyr) —w(Ipy) —w(ILr) —w(Iyr) = 2w(Imr) + (w(lr) — w(lr))
Since w(V (7p)) = w(V (7)) +w(V (7)) +w(V(Y)) —w(lrm) —w(Irr) —w(Imr) —2w(ILmR),
W(Srp min) > WUy )+w(Srmin) +w(Vyr ) +w(V(rp)) —w(V (7)) —w(V () —w(V (y) +(w(lr,) —w(l;))

Rearranging this gives the result. [ ]

I Bounding truncation error

Now, we illustrate one way to show truncation error bounds when we apply the general theorem.
Assume || M4 || < Bnorm () for all « € M’. We want to show

> Mig(Hia) =6 >, >,

UEZmid U€Zmia vEl'u,«

dray, (H, HIdU)

Ism
[Aut(O)]e(y) | 1%

To do this, we simply sandwich a factor of Id,,,, between the two terms. Let Dy, be the degree

of the SoS program. We will describe in|Appendix L.1{how to show » ;. M If(;;t(H Idy) =
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1 _ dray (Hiay, ,HY) nK2Dsos
157, Idgym, for a constant K; > 0. We also show ZUGIMd E’YEFU,* e < "sov

for a constant Ky > 0. Along with the fact that /dg,,, = 0, we can choose D, small enough so

1 nK2DSOa‘
that K102, > 5oy

, completing the proof.

We will need the following simple bound that says that if we have sufficient decay for each
vertex, then, the sum of this decay, over all shapes o o ¢’ for 0,0’ € L};, is bounded.

Definition I.1. For U € 1,4, let L; C Ly be the set of non-trivial shapes in Ly.

Lemma L2. Suppose Dy = nfve D = nCee for constants Cy,Cg > 0, are the truncation
parameters for our shapes. For any U € 1,4,

1
Z Z DSDosSosnFs|V(noa/)| < 1

U€Zmia a,o”ellb

for a constant F > 0 that depends only on Cy, Cg. In particular, by setting C, Cr small enough,
we can make this constant arbitrarily small.

Proof. For a given j = |U|, the number of ways to choose U is at most ¢/, ForagivenU € T,,iq4,

max*

we will bound the number of ways to choose o, ¢’ € L{;. This can be done similar to[Lemma H.14
and implies the result. u

L1 General strategy to lower bound Y_, ., M/ (Hpq, )

In this section, we describe how to show that Zvelmid Mttt (Hpg,) = 01dsym for some 6 > 0
where ¢ will depend on n and other parameters. For this, we use a similar strategy as [64]. For each

V' € Tmia, we choose a weight wy € (0,1]. We then observe that since each coefficient matrix
HIdV is PSD,

Z M7 (Hyg,) = Z wy M7 (Hyg,)
VE€TLmia VE€ILmia

By choosing the weights wy appropriately, we can bound the off-diagonal parts by the diagonal parts,
giving us 61/ dgym.

Definition L.3. For all V' € I,;,;q we define Idsym, v to be the matrix such that
1. Idsym,v (A, B) = 1if A and B both have index shape V.
2. Otherwise, Idgym. v (A, B) = 0.
Proposition L4. Idsym =3 ez Idsymv
Definition 1.5. For each V' € I,,;4, we define A\y = |Aut(V')|Hyq, (Idy, Idy).
Theorem L.6. If {wy : V € T4} are weights such that for all V' € T,,;q and all left shapes

an )\U(7
mid‘Bno'rnL(U)Qc(U)2HIdV (‘770') then

UG»CV,IUV§|I

ac 1 1 3
Z MI*(Hyg,) = 5 Z wy AvIdsym,v = 3 mn {wy Av Hdsym
V€Lnia VE€TLmia

Proof. Observe that for each V' € 7,4,

wy Z HIdV (G‘, 0’/)MUMEI = ’wv)\vldsym’v—f—’wv Z Hfdv (O‘, 0'/) <

M,MZT, + My MT )
o,0' €Ly o,0'€Ly:oF#Idy oro’#ldy

2

The first part of the right hand side is a diagonal part that we want to extract. We now show that we
can bound the second part in terms of the diagonal parts.

Proposition 1.7. For all V € 1,,;q and all shapes o,0’ € Ly, for all a,b > 0 such that ab >
Bnorm(0)2Bnorm(al)2: lf”Ma” S Bnorm(o—) and ||M0'/|| S Bnorm(g/) then

My ML + My ME = —aldsymu, — bldsym.u.,
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Corollary 1.8. If Hy4, = O then For any shapes 0,0’ € Ly,

wy Hpay (0,0") (Mo M} + My M) = — C((”,)) (0,0)Brorm (o) Idsym.u,
c(o
- c(OJ)'LUVI—IId (0/; U,)Bnorm(al)2ld5' m,U_/
C(O’) \% ym,U,
Proof. This follows from Proposmonand the observation that since Hyq4,, = 0, forall 0,0’ € Ly,
H]dV(O'O') SHIdV(U U)H[dV(O' O’) | ]

WU, )\Ud on_/ )\Ua'

Since wy < TomialBrorm (@)2c(0 )2 Hray (0.0 and wy < TosalBrorm (0)2c(@ ) Hiay (07,07 Ve
have that
M, M + M, MY wy, Ay, Id
Z wVHIdv (Ua U/) >_ -2 Z Yo 2l Sym.Ue Z
2 |Imzd| )
o,0' €Ly :oF#Idy oro’#Idy oLy o' €Ly :o'#ldy
1
T > wuduldsymu
mi

U€Lmia

Thus, foreach V € 7,4,

1

—_ Auldsym
s X ot

UELmid

wy Myaet(Hray ) = wy AvIdsym,v —

Summing this equation over all V' € V, we have that

. , 1 1
Z Mfa(’t (HIdv) - Z wVMfaCt (Hldv) - 5 Z wvAvfdsym v = 5 VIEnIl}:ld {wVAV}IdSym
Ve€TLmia Ve€TLmia VE€Lnia

as needed. ]

I.1.1 Handling Non-multilinear Matrix Indices*

If there are multilinear matrix indices, then Theorem still holds and it can be shown in a similar
way, but we need to make a few adjustments.

1. We modify the definition of Idsy, v as follows. For all V' € Z,,,,q we define Idgym,, v to
be the matrix such that
(@) Idsym,v(A, B) = 1if A and B have the same index shape U and U has the same
number of each type of vertex as V. Note that B may be a permutation of A and U
may have different powers than V.
(b) Otherwise, Idsym v (A4, B) = 0.
Observe that with this modified definition, we will still have Idg,,, = Zvelmid Idsym,v.

2. Instead of taking Ay = |Aut(V)|Hrq, (Idy,Idy), we define Ay as follows. Letting
H7dy, no expansion b€ the diagonal submatrix of Hyg, indexed by left shapes o such that U,
has the same number of each type of vertex as V' (though the powers may be different), we
take

Ay = |AUt(V)‘m2n{)\ : Hldv,no expansion = )\IdSym,V}

3. We similarly extend the definition of c to left shapes ¢ with multilinear indices in U, so that
1 1
we still have ZUGEV Us)reduceasv 507 < 10

J Tensor PCA: Quantitative bounds

In this section, we will prove the desired tradeoffs in|Theorem A.2] We reuse the notation and bounds

from|Appendix D
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J.1 Middle shape bounds

Lemma J.1. Suppose A < nt=¢. ForallU € Tqand T € My, suppose deg” (i) is even for all
1€ V(r)\U; \ Vs, then

[V (m)|~|U-| 1
< -
vn S(r) < EES SR

Proof. Firstly, we claim that } . gy kle = 2(|V(7)[ — |U-|). For any vertex i € V(1) \ U \ V-,

deg™ (1) is even and is not 0, hence, deg™ (i) > 2. Any vertex ¢ € U, \ V; cannot have deg” (i) =0
otherwise U \ {i} is a vertex separator of strictly smaller weight than U, which is not possible,
hence, deg” (i) > 1. Therefore,

YooKz ) deg’(i)+ ) deg’(i)+ Y deg™(i) = 2([V(r)| - [Unl)
e€E(T) i€V (T\U-\Vs i€U NV i€V \U,
By choosing Ca sufficiently small, we have

[V (1)~ |U-| V(DI =1Usr| A V()= |U~ —E_0.50)l, 1
Vi s (e < AR T a0l < e
ecE(T)

Corollary J.2. ForallU € I,,;q and 7 € My, we have ¢(7)Byorm (7)S(7) < 1.

Proof. Since T is a proper middle shape, we have w(I;) = 0 and w(S; min) = w(U;). This implies
w V() +wlr)—w(Sy min)
)

)-
n 2 = VO gt degm (i) s odd for any vertex i € V(1) \ Uy \ Vi,
then S(7) = 0 and the inequality is true. So assume deg™ () is even for all i € V(1) \ U, \ V,.
As was observed in the proof of every vertex ¢ € V(1) \ Ur ori € V(r) \ V; has
deg™ (i) > 1and hence, [V (T)\Ur[+[V(T)\Vz[ <43 cpir le E(T)| < X cep(r)le and

q = nPMe(Cv+Ce) We can set Cy,, Cg sufficiently small so that, using

(1) Bror (1) S(7) < nOW=(Cv+C) Teepiyle . fplVOIIUrl gy o

We can now show middle shape bounds.
Lemma J.3. ForallU € T,,,,g and T € My,

\Aut(é)|c(7’) Hiay  Brorm(T)H: <0
1 -
Brorm(NVH: praattyetey Hia

Proof. The expression is equal to

1 S(T)BTLOT7YL(T)
(|Aut(U)|c('r) T T TAut(0)] )Hfdu 0
S(7)Brorm(T)

1
0 (|Aut(U)\c(T)_ [Aut(U)] )HIdU

S(r)
+B (T) |Aut(U)\HIdU H:
norm HT 0
T [Aut(Q)] ** Tdv

By|Lemma D.6 [A“g(()])l[HldU S(r i
H, Tty Hia

nite. For the first term, by[Lemma D.4| H;4,, = 0 and by|Corollary J.2 |Aut(é) EGRE S(ql'j)ﬁz(”g;’lm

0, which proves that the first term is also positive semidefinite.

] > 0, so the second term above is positive semidefi-

m Vv
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J.2 Intersection term bounds

Lemma J.4. Suppose A < n'i—<. Forall U,V € Iiq where w(U) > w(V') and forally € Ty v,

1
<
= BV VS e p L)

n“’(V(V)\U“’)S(’y)Q
for some constant B that depends only on Ca. In particular, it is independent of Cy and Cg.

Proof. Suppose there is a vertex i € V(v) \ Uy \ Vy such that deg?(7) is odd, then S() = 0 and the
inequality is true. So, assume deg?(4) is even for all vertices ¢ € V( )\ Uy \ V. We first claim that
k> eer(y) le = 2|V (v) \ U,|. Since v is a left shape, all vertices ¢ in V' (y ) \U have deg” (i) > 1.
In particular, all vertices i € V, \ U, have deg” (i) > 1. Moreover, if i € V() \ U, \ V,, since
deg” (1) is even, we must have deg”( ) > 2.

Let S’ be the set of vertices ¢ € U.,\ V,, that have deg”(7) > 1. Then, note that |S"|+|U, NV, | >
Vy| = |5 > |V4 \ U,| since otherw1se S"U (U, NV,) will be a vertex separator of y of welght
strictly less than V,, Which is not possible. Then,

Z ki, > Z deg” ( Z deg” ( Z deg” (i) > 2|V (y) \ U,|

e€E(y) HEV(M\UL\V, i€UL\V, i€V, \U,

Finally, note that 2[V'(y)| — [Uy| = [V5| = [Uy \ V43| + [Vo N U5 +2[V(9) \ Uy \ V4| 2
[V (7)\ (U, NV,)|. By choosing Cx sufficiently small, we have

w(V(M\Uy) 2 [VONUD A2IV () =1U~ =V —(5+e)le 1
n St <n A IT »© S = (4N GALTA T ES Sy )
e€E(y)
for a constant B that depends only on Ca. |
Remark J.5. In the above bounds, note that there is a decay of n5¢ for each vertex in V (v)\ (U,NV5).

One of the main technical reasons for introducing the slack parameter Ca in the planted distribution
was to introduce this decay.

We can now obtain the intersection term bounds.
Lemma J.6. Forall U,V € L,,,;q where w(U) > w(V)and all vy € Ty, v,

c(v)’N(7)?B(v)*H; ;" = H,,

Proof. By[Lemma D.7| we have

2 2 2 17—y 2 2 2 2 [Aut(U)| )

N B H = N B S —=H

c(V)*NO)*B() Hpgy " = c(v)"N()"B(7)"5S(7) Au(v) o
Using the same proof as in we can see that H! = 0. Therefore, it suffices to prove
that 0(7)2N(7)2B(7)25(7)2 < 1. Since U,V € Lpig, |Aut(U)| = U1, |[Aut(V)| = [V L.

u ! .

Therefore, ‘lﬁuzgggl‘ |U| < DIU”\VWI Also, [E(Y)[ < X ccp(y) le and ¢ = nO)-e(CvH+Ce) 1 et
B be the constant frorn We can set Cy, Cg sufficiently small so that, using[Lemma J.4|

()N (1) B(1)2S(7)? :ﬁg;gg;:

/\

pOW<(Cv+Cm) (VONUZWVDH+ e p) be) L eV (D\U) g ()2

IN

1

J.3 Truncation error bounds

In this section, we will obtain the truncation error bounds using the strategy sketched in|Appendix I
We also reuse the notation. First, we need the following bound on B,orm () Brorm (0')Hray, (0,0
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Lemma J.7. Suppose \ = ni¢ ForallU € Tmiqa and o, 0’ € Ly,

1
/ /
Bnorm(U)Bnorm(U )HIdU (Ua o ) é n0.5€CA|V(GOU/)|ADsosn‘U|

Proof. Suppose there is a vertex i € V(o) \ V, such that deg°(i) + degV~ (i) is odd, then
Hipa,(0,0") = 0 and the inequality is true. So, assume that deg? (i) + degU7 (i) is even for all

i € V(o) \ V,. Similarly, assume that deg® (i) + degU-' (i) is even for all i € V (0”) \ V. Also, if
Po # por, we will have Hpg,, (0,0") = 0 and we’d be done. So, assume p, = po.
Leta = o oo’. We will first prove that } . (o) kle +2deg(cr) = 2|V ()| +2|U]|. Firstly, note

that all vertices i € V() \ (Un U V,,) have deg® (i) to be even and nonzero, and hence at least 2.
Moreover, in both the sets Uy, \ (UsNV,) and V, \ (U, NV, ), there are at least |U | —|U, NV, | vertices
of degree at least 1, because U is a minimum vertex separator. Also, note that deg(a:) > |Uy| + |Va|.
This implies that

Skl +2deg(a) > 2V(@)\ (Ua UVa)| + 20U — [Ua N Val) + 2(|Ua] + [Val) = 21V ()| + 2/U]
e€E(a)
where we used the fact that U, NV, C U. Finally, by choosing Cy, Cg sufficiently small,

1
! /
Bnorm(a>Bnorm (U )HIdU (Ua o ) S nO.SECA ‘V(a)‘ADsosnlU‘
where we used the facts A < 1, deg(a) < 2Dgs. [ |
We now apply the strategy by showing the following bounds.
Lemma J.8. Whenever ||M,|| < Bporm () forall a € M/,
A2DZ,.
act
> Mg (Huay) = Do Ldsym
U€EZmia
Proof. ForV € Z,,:4, A\v = —. We then choose wy = (l) sos =V . For all left shapes o € Ly,
it’s easy to verify wy < ToalB “(’g)z)(‘f(’g)z, o (o) using|Lemma J.7||Theorem I.6{completes the
mi norm Vv
proof. [ ]

dray (Hiag ,H.) 1
Lemma J.9. > yrer, ., 2 very. TAat@lct) < B#Pwratv-

Proof. Using the definition, we get
dray (Hray, HY)

1
Z Z |Aut—fy) Z Z n0-56Ca|V(000’)| ADsos 9min(mo,m,s)—1

U€Zmiav€l'y, U€Lmia 0,0'€L],

where we used 7| Using n0-5CalV(eo0")| > p0.1eCa|V(aoa") 9|V (00|
dIdU (Hra,, H)

ZZW

U€ZmiavEly,

DD 1
vl L’ DDsos nO- 1eCa |V ( JOG’)|A2DSOS2DV
€Lmid 0,0’ €

where we set o, small enough so that D, = nf@es < n® s = L. The final step will be to

argue that > ;7 Za,a'EL’U DPS,osnO-léAeW(aoa’)\ < 1 which will complete the proof. But this

will follow from[Cemma I.2]if we set Cy, C; small enough. [ ]

We can finally complete the analysis of the truncation error.
Lemma J.10. Whenever ||M,|| < Bporm () forall a € M/,

dray, (HY, Hray,)
> il o ¥ 5 Al ),

UEZmia U€Lmia vEly, 7)
Proof. Choose Cl,s sufﬁc1ently small so that D;O: -5——p— Which is satisfied by setting
Csos < 0.5Cy. Then, since Idgsym, = 0,(Lemma J.8 and[Cemma J.9 imply the result. |
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K Sparse PCA: Quantitative bounds

In this section, we will verify the tradeoffs as in|Theorem A.1| We already showed the relevant
qualitative bounds in|Appendix E| We use the bounds and also the notation from that section. In this

section, let n = max(d, m). We just need to verify the conditions of|Theorem F.108

K.1 Middle shape bounds

Lemma K.1. Suppose 0 < A < % is a constant such that % < d=4¢ and ﬁ < d=%A. For all
m such that m < d;—j7 m < ki—;g,for allU € Typq and T € My, suppose deg™ (i) is even for all
i€ V(r)\U: \ 'V, then

ITh=1Urlt —{rla|Us ] .Y
NE Jm S(r) < [T (deg” (i) — D1 EE .
JEVa(PN\UAV;

Proof. Letry = |7|1 —|Ur|1,72 = |T]2 — |U-|2. Since A < 1, it suffices to prove

r ZGEE(T) le
r o (RN (VA 1
E:=vd vm?|-= — < ———
vd'vm <d> (ﬂ) T At e le

We will need the following claim.

Claim K.2. ZeEE(T) le > 2max(ry,r2).

Proof. We will first prove 3 () le > 2r1. For any vertex i € Vi(7) \ Uy \ V7, deg™ (i) is even

and is not 0, hence, deg” (i) > 2. Any vertex ¢ € U, \ V; cannot have deg™ (i) = 0 otherwise
U, \ {i} is a vertex separator of strictly smaller weight than U, which is not possible, hence,
deg™(¢) > 1. Similarly, for i € V, \ U, deg” (i) > 1. Also, since H, is bipartite, we have
Dievi(r) deg™ (1) = D evy () deg” (§) = Xocep(r) le- Consider

Z le > Z deg™ (i) + Z deg™ (i) + Z deg™ (i) > 2r
e€E(T) 1€V (T)\U-\ V- i€(Ur)1\Vr 1€(Vy)1\U~

We can similarly prove > c () le = 272 u

To illustrate the main idea, we will start by proving the weaker bound £ < 1. Observe that our

- - r 2 max(ry,r2)
assumptions imply m < %,m < ’;\—z and also, ' < Vd 1\/5 2 (%) ! (ﬁ) e

T where we

VA —A
used the fact that T <d <1

k2
)\72)

r 2max(ri,rz)
(' (4)

Claim K.3. For integers r1,72 > 0, if m < /\% and m < then,

Proof. We will consider the cases r; > ro and 1 < ro separately. If r; > ro, we have

ava () (7)< (9) () (F) -G =)

And if r; < 79, we have

e () ()= () (2 () ()~
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For the desired bounds, we mimic the same argument while keeping track of factors of d°.

ai—c E2-<
A

Claim K. 4. For integers 11,12 > 0 and an integer r > 2max(ry,r2), if m < 45 and m < =

then,
e () ()< )

The result follows by setting 7 = 3 ) l¢ in the above claim. [ ]

Corollary K.5. ForallU € I,,,;,q and T € My, we have ¢(T)Byorm (7)S(T)R(7T) < 1.

Proof. First, note that if deg” (i) is odd for any vertex ¢ € V(1) \ U; \ V;, then S(7) = 0 and the

inequality is true. So, assume that deg” (i) is even for all ¢ € V(1) \ U, \ V;. Since 7 is a proper
WV () +wIr) —w(Sy min)
2

middle shape, we have w(I;) = 0 and w(S; min) = w(U;). This implies n

\/ElT‘l_‘UT . \/EIT‘T‘UT >, As was observed in the proof of|Lemma K.1| every vertex i € V(1) \ U,
ori € V(7)\ V; has deg™ (i) > 1 and hence, |V(7) \ U;[+V(T)\ V2| < 43 p(, le- Also,

g = dOPWe(Cv+Ce) We can set Cy, Cy sufficiently small so that

(1) Buorm(1)S(r)R(r) < dOW OV HOR)=Tuciin o (Dy D) Srern e . T <1
d°c ZEEE(T) le
|
We can now obtain our desired middle shape bounds.
Lemma K.6. ForallU € 1,,;q and 7 € My,
1
e Hiay - Buorm(MHy |
Bno’r'm(T)Hq— WHMU
Proof. We have the expression to be equal to
1 S(T)R(T)Bnorm(T)
(e — 2= Hua, 0
1 _ S(@R(T)Bnorm(7)
0 (|Aut(U)\c(T) [Aut(U)] ) Hray
S(r)R(r)
+ Brorm(7) [Aut(U)THMU S( )R{{)T 1
Hy Twt(o)] H1dy
S(NR(T) rr H
By|Lemma E.7 [Aut(Q)] ~dv T > 0, so the second term above is positive
T S(r)R(7) 1y
a Aut(U)] H1du
- - 1
semidefinite. For the first term, by Hpg4, = 0 and by|Corollary K.5 AR —

W > 0, which proves that the first term is also positive semidefinite. [ ]

K.2 Intersection term bounds

Lemma K.7. Suppose 0 < A < i is a constant such that % <d 4, ik <d24 and% < d4e.

For all m such that m < d;—j,m < ki—;a, Sforall U,V € I,,;q where w(U) > w(V') and for all
v €Ty,
2

. 1
nw(V(w)\UW)S(fy)2 < H (deg™(j) — D! gBEIVONT W)+ ey L)
JEV2(V\ULN\V,

for some constant B > 0 that depends only on Ca. In particular, it is independent of Cy and Cg.
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Proof. Suppose there is a vertex ¢ € V() \ U, \ V4 such that deg” () is odd, then S() = 0 and
the inequality is true. So, assume deg”(7) is even for all vertices i € V() \ U, \ V. We have

n®(VONUy) = glvh=IUylimlvl2=1U5]2 | Plugging in S(7), we get that we have to prove

1

k 2|v[1=1Uqy[1=1V5 |1 le
E = dh =10 12 =1Us |2 (d) A2 2=Us 2= V52 H . <

aBEVONULNV)+ 2 e my Le)
e€E(y)

Let S’ be the set of vertices i € U, \ V,, that have deg? (i) > 1. Let e, f be the number of type
1 vertices and the number of type 2 vertices in S’ respectively. Observe that S’ U (U, NV,) is a
vertex separator of v. Let g = |V, \ U, |1 (resp. h = |V, \ U,|2) be the number of type 1 vertices
(resp. type 2 vertices) in V,, \ U,. We first claim that d*m? > d9m". To see this, note that the

e+ |U,NV.
vertex separator S’ U (U, N V) has weight v/d UM 7Il\/ﬁjurll]wﬂvw‘r“. On the other hand, V/,

. g+|UyNV- h+|UyNV- . . . . ..
has weight Vd U~V ls vm Ol Gince 7y is a left shape, V,, is the unique minimum vertex

e+|U5NV4 |1 U,NV. g+|UyNVy |1 h+|U, NV L .
separator and hence, vd md HIUANVa e >Vd T T m HUNValz which implies

dm! > d9mh. Letp = |V(v) \ (U, UV,)|1 (resp. ¢ = |V () \ (U, U V,)|2) be the number of
type 1 vertices (resp. type 2 vertices) in V' (7) \ (U, U V). To illustrate the main idea, we will first
prove the weaker inequality £ < 1. Since A < 1, it suffices to prove

k)zmh—wm—vm e

=10 1y 11— U |2 (
d

e€E(y)

e+« f+h .
We have di—1Uxlimrla=lUslz = gptgmath < pp+5%mat57 gince dem/ > d9m”. Also,

2|y — |Uyl1 — [V5]1 = 2p + e+ g. So, it suffices to prove

2p+e+g le
P+ a5 (’f) I (A> <1
A <
(v)

d
ecE

We will first prove that ZeGE(’y) le > max(2p+e+g,2q+ f+h). Since H, is bipartite, we have

Doce(y) le = 2icvi(y) €97 (1) = 3ocv, (o) deg? (1). Observe that all vertices ¢ € V() \ Uy \ V,
have deg” (¢) nonzero and even, and hence, deg” (i) > 2. Then,

Z le: Z degﬂy(z)

e€E(y) 1€Vi(7)
> Z deg” (i) + Z deg? (i) + Z deg” (i)
1€V (V\UA\Vy 1€(Uy)1\Vy 1€(V4)1\Uy
>2p+e+yg

Similarly, ZeGE(v) le > 2q + f + h. Therefore, ZSGE(W) le >max(2p+e+g,2¢+ f+h)

Now, letr; = p+ e%",rg =q+ f—;h Then, >

dm™ (%) 2 (%)2 max(rir2) o T expression simply follows by squaring|Claim K.3| Now, to
1

prove that F < BRIV, AV TS, e ) 7o) » WE mimic this argument while keeping track of factors
of d®. u

c€E(v) le > 2max(r1,r2) and we wish to prove

Remark K.8. In the above bounds, note that there is a decay of d® for each vertex in V(7) \
(Uy N'V,). One of the main technical reasons for introducing the slack parameter Ca in the planted
distribution and the conditions involving the parameter A was precisely to introduce this decay.

With this, we obtain intersection term bounds.
Lemma K.9. For all UV € Iyiq where w(U) > w(V) and all v € Tyy,
c(V)?’N()*B()*H 0" < H,

Proof. Using the same proof as in we can see that H/ > 0. Therefore, by|Lemma E.8§|
it suffices to prove that c¢()2N (7)2B(7)2S(7)2R(7)? 24Ul < 1. Let B be the constant from

[Aut(V.
We can set C'y, C' sufficiently small so that|Lemma K.7|implies the result. [ ]
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K.3 Truncation error bounds

In this section, we will obtain truncation error bounds using the strategy sketched in[Appendix 1| We
also reuse the notation. To start with, we obtain a bound on By, o1, (0) Brorm (0')Hra,, (0,0

Lemma K.10. Suppose 0<A< i is a constant such that % < d=4¢ and ﬁ < d~?4. Suppose

miaand o, 0’ € Ly,
1 1
J0-3A4e(V(e0o )+ cep(an,  dIUshiHUs/ limlUsrl2+|Uqr |2

m is such that m < &

m s

sz

Bnorm (J)Bnorm (U,)HIdU (07 J/) §

Proof. Suppose there is a vertex i € V(o) \ V, such that deg° (i) + deg”~ (i) is odd, then
Hig,(0,0") = 0 and the inequality is true. So, assume that deg® (i) + deg"~ (i) is even for all

i € V(o) \ V,. Similarly, assume that deg® (i) + degU~ (i) is even forall i € V(0”) \ V,.. Also, if
Po 7 por, we will have Hyg,, (0,0") = 0 and we would be done. So, assume p, = py.

Let there be e (resp. f) vertices of type 1 (resp. type 2) in V(o) \ U, \ V,. Then,
nw _ \/&\V(o)\r\Ull\/ﬁlv(a)lz—lmz _ \/&IU”ll\/rﬁlUU‘z\/&e\/ﬁf. Let there be g
(resp. h) vertices of type 1 (resp. type 2) in V(¢’) \ Uy \ V. Then, similarly, p =
\/E|Ua/\1\/%|Uﬁ/|2\/gg\/ﬁh'

Let o = goo’. Since all vertices in V(@) \ Ua \ Vs have degree at least 2, we have } - () le >

Dievi(@\Ua\v. 4eg¥ (1) > 2(e+g) + |Us |1 + |Us 2. Similarly, 3= o) le > 2(f + 1) +[Usr 1 +
|Us|2. Therefore, by setting 71 = e + g, 72 = f + h in|Claim K.4] we have

l
k\ Y V¢ 1
VAt () T Y2 <
le — ;A le
d cer(a)y VE© d € Leen@

Also, (£) " < (5) T and Ty, o (deg® (5) = 1)1t < 7O Beer ' Therefore,

w(V(o)—w(l) w(V(s")=w(U) ,
2 n 2 14y, (0,0")
e+g le
< dOWDsos 2OV ecpiay le /gt fmd +h k H 2 1
- d \/Ele dlUsl1+1Ugr 1| Ugr 241U |2
ecE(a)
d5CV XecB(a) le 1

dA Zecn(@ le  dUeHUg 1 pplUq 21U,/ T2
By setting Cy, Cg sufficiently small and plugging in the expressions for By,orm (6), Brorm(c'), we
obtain the result. |

We can apply the the strategy now.
Lemma K.11. Whenever |M,|| < Bporm () forall o € M,

1

¢
Z M{;,f (Hray) = mldsym
UELmia
for a constant Ky > 0 that can depend on Ch.
Proof. We will use|Theorem 1.6} For V' € Z,,;4, A\v = %. Let the minimum value of
this quantity over all V' be N. We then choose wy = N/Ay so that for all left shapes o € Ly,
by .
Lemma K.10[implies wy < o] Bnm:(’gﬁ’zc‘(’;)g oy (0.0)° completing the proof. [ |

Lemma K.12.
dIdU HIdU7H/) dKQDSOS

> Z Aut(@)]e(y) = 2Dv

U€Zmia vEl'y,

for a constant Ko > 0 that can depend on Ch.
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Proof. We do the same calculations as in the proof of[Lemma J.9] until

do(l)Dsos

dray (Hray
Z Z % Z Z d0-5A¢|V (coa’)[9min(me,m,r)—1

U€ELmia 'YEF UELmia o,0 el:l
- ’ ’ ’
where we used [Lemma K.10| Using d°-24¢IV (700" > 0-14e[V(ao0")[ 9]V (c00”)]

M DY dO(Peos
|Aut DDao:. d0-1A¢e|V (go0’)|9Dyv

U€Lmia o,0'€L];

2. 2

U€ZLnmia vElU, «

The final step will be to argue that > ;7 > el Do dO.l];ﬁ‘xs\V(o-oo-/” < 1 which will complete
the proof. But this will follow from|Lemma I.2|if we set Cyv,Cp small enough. ]

We can finally show that truncation errors can be handled.
Lemma K.13. Whenever |M,|| < Bporm () forall o € M,

ac dld HId )
> Mpg(Hu) =6 Y Y ﬁ Idgym
U€EZmia U€Zmia vel'y, A

dKz sos

Proof. Choose C', sufficiently small so that o }32 >6 which can be satisfied by setting
Clsos < K3CYy for a sufficiently small constant K3 <o. Then since Idgym = 0,[Lemma K.1T] Mand

Lemma K.12|imply the result. n
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