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ABSTRACT
This is the supplementary material for ACMMM 2024 submission,
Semantic-Aware and Quality-Aware Interaction Network for Blind
Video Quality Assessment, which provides additional experimental
results and visual analysis.

CCS CONCEPTS
• Computing methodologies→Modeling and simulation.

KEYWORDS
Video quality assessment, semantic- and quality-aware, cross-aware
guided interaction, cross-aware temporal modeling.

1 MORE DETAILED FOR TWO AWARE
INFORMATION

In this subsection, we provide more sample videos to demonstrate
the relevance of quality-aware and semantic-aware to subjective
video quality. In Figure 1, we compare three high-quality and three
low-quality videos, and sampled five frames with a sampling inter-
val of around two seconds. Generally, high-quality videos have the
characteristics of smooth scene transitions and high frame-level
quality. Videos with fast scene switching or low frame-level qual-
ity are judged as low-quality. In addition, we further visualize the
semantic-aware and quality-aware features from six sample videos.

Similarly, we choose ResNet-50 [3] pre-trained on the ImageNet [2]
dataset and the KoNIQ-10k dataset [5] for semantic-aware and
quality-aware feature extraction, respectively. The training details
of quality-aware feature extraction can refer to [8]. In Figure 2, it
can be observed that semantic-aware focus on representing the
object features and are robust to spatial quality degradation. The
responses of the quality-aware feature maps of three low-quality
video frames are significantly stronger than that of three high qual-
ity video frames, indicating that the quality-aware features are
sensitive to quality degradation. Meanwhile, two aware features
have redundancy, such as quality degradation appearing at the
edges and textures of the object, or redundant areas that neither
perceptual features pay attention to.

To explore the relationship between temporal features and video
quality, we further analyzed the temporal curves of two aware
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features from videos. It can be found that videos with slower fluc-
tuations in temporal content information and higher overall frame-
level quality typically have better perceptual quality. Among them,
the fluctuation of temporal content information is related to scene
transitions or shot changes, and frame-level quality determines the
spatial quality of videos. Overall, the spatial and temporal char-
acteristics of two features are related to video perceptual quality.
Based on the above findings, we design corresponding modules to
enhance the representation for video quality.

2 MORE DETAILS ON TEMPORAL NETWORK
AND TEMPORAL POOLING

Similar to previous work [6], we use gated recurrent units (GRUs)
[1] as the temporal network to capture long-term dependencies
and measure temporal distortion from distorted videos. To improve
the learning efficiency of GRUs, the feature 𝑭𝑧 is reduced by using
fully connected (FC) layer and the feature 𝑭𝑧 =

{
𝒇
𝑧

𝑡 |𝑡 = 1, ...,𝑇
}
∈

R128×𝑇 is obtained, where 𝑭𝑧 is the output features from temporal
saliency quality perception and content variation perception blocks.
Next, the 𝑭𝑧 is input into GRUs 𝑀𝐺𝑅𝑈 (·), the current state 𝒉𝑡 of
GRUs is used as the output feature, it is determined by the feature
𝒇
𝑧

𝑡 and the previous state 𝒉𝑡−1, as follow:

𝒉𝑡 = 𝑀𝐺𝑅𝑈

(
𝒇
𝑧

𝑡 ,𝒉𝑡−1
)
∈ R32×1 (1)

Then a FC layer is used to regress {𝒉𝑡 } into frame-level scores
𝒒 = {𝑞𝑡 }.

To predict video-level quality score 𝑄𝑝𝑟𝑒𝑑 , a differentiable tem-
poral hysteresis model [6, 7] as a temporal pooling manner to
aggregate frame-level quality scores {𝑞𝑡 }. Specifically, the hystere-
sis effect is introduced to approximate the frame-level subjective
quality scores 𝑞𝑡 . The hysteresis effect suggests that the quality of
the 𝑡-th frame will be affected by the quality of the previous and fol-
lowing 𝛽 frames, which can be formulated as a linear combination
of memory quality 𝑞𝑚𝑡 and current quality 𝑞𝑐𝑡 , as follows:

𝑞𝑡 = 𝛼𝑞𝑚𝑡 + (1 − 𝛼) 𝑞𝑐𝑡 (2)

where 𝛼 is a hyper-parameter to balance the contributions of differ-
ent componment and is empirically set to 0.5, the memory quality
𝑞𝑚𝑡 is related to the worst quality score of the first 𝛽 frames and is
defined as:

𝑞𝑚𝑡 =

{
𝑞𝑡 , for 𝑡 = 1,
min (𝑞𝑖 ) , for 𝑡 > 1. (3)

where 𝑖 ∈ {𝑚𝑎𝑥 (1, 𝑡 − 𝛽) , ..., 𝑡 − 2, 𝑡 − 1}, while the current quality
𝑞𝑐𝑡 is calculated by weighted combination of the next 𝛽 frames [6],
as follows:

𝑞𝑐𝑡 =
∑︁
𝑘

𝑤𝑡,𝑘𝑞𝑘 ,

𝑤𝑡,𝑘 =
𝑒−𝑞𝑘∑
𝑗 𝑒

−𝑞

(4)
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Figure 1: More sample videos are selected from the KoNViD-1k dataset [4] to further demonstrate the importance of semantic-
aware and quality-aware for VQA, including (a) three high-quality videos, HV1 (8751538577.mp4), HV2 (9571377943.mp4)
and HV3 (7177696763.mp4), and (b) three low-quality videos, LV1 (10672253555.mp4), LV2 (9445782126.mp4) and LV3
(4744073127.mp4). We adopt the mean opinion score (MOS, subjective score) to measure the visual quality of each video.
The larger the MOS value, the better the subjective quality. And five representative frames are selected to visualize the subjective
content and quality of the video. The subjective content of high-quality videos changes smoothly and the quality of each frame
is higher. In contrast, low-quality videos have greater content variation or lower frame-level quality.

where 𝑗, 𝑘 ∈ {𝑡, 𝑡 + 1, ...,𝑚𝑖𝑛 (𝑡 + 𝛽,𝑇 )}, and 𝛽 is set to 6 as de-
scribed [6]. Finally, the video-level quality score 𝑄𝑝𝑟𝑒𝑑 is predicted
by aggregating the scores 𝑞𝑡 , as follows:

𝑄𝑝𝑟𝑒𝑑 =
1
𝑇

𝑇∑︁
𝑡=1

𝑞𝑡 (5)

3 MORE QUALITATIVE ANALYSIS
In this section, we present more quantitative results.

3.1 Scatter Plot of Prediction Results
We present the results of the proposed FR(S+S) and FR(S+M)
models on six video quality assessment (VQA) datasets, illustrat-
ing the correlation between predicted scores and the subjective
scores (i.e., MOS) in Figure 3. We observe that most of the scatter
points cluster around the red line, indicating a consistent alignment
between the predicted scores and subjective scores.
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Figure 2: Visualize (a) the spatial feature maps of semantic-aware and quality-aware, as well as (b) the temporal distribution of
two aware features. In the spatial domain, semantic-aware focuses on the object and are robust to spatial quality degradation,
while the responses of quality-aware are stronger in low-quality frames. In (b), low quality videos usually exhibit large changes
in information between frames and low frame-level quality, while the temporal distribution of content information in high-
quality videos is smoother and the overall quality is higher.

3.2 Visualization for Successful and Failure
Cases

We showcase four successful and four failure video prediction cases
of the proposed FR(S+M) model. Fig. 4a illustrate that the pro-
posed FR(S+M) model accurately predicts most video scenes with
obvious semantic information. Conversely, by Fig. 4b, the proposed
(S+M)model has difficulty in predicting the quality of the video for
which the semantic content is not obvious. One possible explana-
tion is that the proposed model relies on consensus semantic-aware
and quality-aware features to evaluate video quality. Consequently,
the model cannot accurately predict video quality when the video
semantics are incomplete. Through the analysis of the qualitative
results of the model, the proposed model is still able to accurately
assess the quality of most videos.
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Figure 3: Scatter plots of scores predicted by (a)the proposed FR(S+S) model and (b)the proposed FR(S+M)model versus subjective
scores on six VQA datasets. The x-axis represents subjective scores, the y-axis is predicted scores. The red line is used as a
reference line when the predicted score is the same as the subjective score. The closer the blue points are to the red line, the
more relevant the predicted score is to the subjective score.
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Figure 4: (a) The four successful and (b) four failure prediction cases of the proposed FR(S+M) model, and five representative
frames are presented. The successful cases (SV1, SV2, SV3 and SV4) have clear semantic information. For failure cases, the
semantic information of FV1, FV3 and FV4 is difficult to describe directly, and the semantic information of FV2 is discontinuous.
The predictive ability of model is insufficient for videos with ambiguous semantic information.
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