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APPENDIX A PROOF OF THEOREM 1

Here we present the proof of Theorem 1.

Proof. Based on Equation (3), we can express w∗ as:

w∗ = ψ(X)(ϕ⊤(X)ψ(X) + λIN )−1Y
(a)
= (λIF + ψ(X)ϕ⊤(X))−1ψ(X)Y (10)

where equation (a) is derived from (3) with A = IF , B = ψ(X), C = ϕ⊤(X), D = IN .
Similarly, for v∗, we have

v∗ = ϕ(X)(ψ⊤(X)ϕ(X) + λIN )−1Y
(b)
= (λIF + ϕ(X)ψ⊤(X))−1ϕ(X)Y , (11)

where equation (b) again applies (3) with A = IF , B = ϕ(X), C = ψ⊤(X), D = IN . Take the
derivation of the objective function with respect to w and v at point (w∗,v∗), we observe:

∂L

∂w
|w=w∗

v=v∗
= (λIF + ϕ(X)ψ⊤(X))(λIF + ϕ(X)ψ⊤(X))−1ϕ(X)Y − ϕ(X)Y = 0,

∂L

∂v
|w=w∗

v=v∗
= (λIF + ψ(X)ϕ⊤(X))(λIF + ψ(X)ϕ⊤(X))−1ψ(X)Y − ψ(X)Y = 0.

This verifies that the point (w∗,v∗) satisfies the stationarity condition.

APPENDIX B PROOF OF THEOREM 3

Here we present the proof of Theorem 3.

Proof. The Lagrangian of (7) is

L = λw⊤v +

N∑
i=1

eiri +
∑
i

αi(yi − ei − ϕ(xi)
⊤w) +

∑
i

βi(yi − ri − ψ(xi)
⊤v), (12)

where α ∈ RN and β ∈ RN are Lagrange multipliers. The KKT conditions lead to

∂L
∂v

= λw − ψ(X)β = 0 =⇒ w =
1

λ
ψ(X)β,

∂L
∂w

= λv − ϕ(X)α = 0 =⇒ v =
1

λ
ϕ(X)α,

∂L
∂ri

= ei − βi = 0 =⇒ ei = βi,

∂L
∂ei

= ri − αi = 0 =⇒ ri = αi,

∂L
∂αi

= yi − ei − ϕ(xi)
⊤w = 0 =⇒ ei = yi − ϕ(xi)

⊤w,

∂L
∂βi

= yi − ri − ψ(xi)
⊤v = 0 =⇒ ri = yi − ψ(xi)

⊤v.

Substitute the first four lines into the last two lines, we can eliminate primal variables w,v, e, r:

β∗ = Y − 1

λ
ϕ(X)⊤ψ(X)β∗ =⇒ β∗ = λ(λIN + ϕ(X)⊤ψ(X))−1Y ,

α∗ = Y − 1

λ
ψ(X)⊤ϕ(X)α∗ =⇒ α∗ = λ(λIN + ψ(X)⊤ϕ(X))−1Y .

Thus, we get the result in Theorem 3 and the proof is completed.
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APPENDIX C DETAILS OF DATASETS AND THE HYPER-PARAMETER SETTING.

Tecator: The objective is to predict the fat content of a meat sample based on its near infrared
absorbance spectrum. These measurements are obtained using a Tecator Infratec Food and Feed
Analyzer operating in the wavelength range of 850 - 1050 nm through the Near Infrared Transmission
(NIT) principle. The dataset can be download from http://lib.stat.cmu.edu/datasets/
tecator.

Yacht: The Yacht Hydrodynamics Data Set aims to predict the residuary resistance of sailing yachts
based on features such as fundamental hull dimensions and boat velocity. The dataset consists of 308
full-scale experiments conducted at the Delft Ship Hydromechanics Laboratory for this purpose. The
dataset can be download from https://archive.ics.uci.edu/dataset/243/yacht+
hydrodynamics.

Airfoil: The Airfoil Self-Noise dataset is sourced from NASA and encompasses aerodynamic and
acoustic tests on two and three-dimensional airfoil blade sections carried out in an anechoic wind
tunnel. The objective is to predict the scaled sound pressure level. The dataset can be download from
https://archive.ics.uci.edu/dataset/291/airfoil+self+noise.

SML: The SML2010 dataset is collected from a monitoring system installed in a domotic house
and covers approximately 40 days of monitoring data. The dataset contains missing values, which
were imputed using the mean value. The dataset can be download from https://archive.ics.
uci.edu/dataset/274/sml2010.

Parkinson: The Oxford Parkinson’s Disease Telemonitoring Dataset comprises various biomedical
voice measurements from 42 individuals with early-stage Parkinson’s disease enrolled in a six-
month trial of a telemonitoring device for remote symptom progression monitoring. The dataset
can be download from https://archive.ics.uci.edu/dataset/189/parkinsons+
telemonitoring.

Comp-activ: The ComputerActivity database records diverse performance metrics, such as bytes
read/written from system memory, from a Sun Sparctation 20/712 with 2 CPUs and 128 MB of
main memory. The dataset can be download from https://www.cs.toronto.edu/˜delve/
data/comp-activ/desc.html.

TomsHardware: This dataset is a part of Buzz in social media data set, containing examples
of buzz events from the social network Tom’s Hardware. The dataset can be download from
https://archive.ics.uci.edu/dataset/248/buzz+in+social+media.

KC House: The KC House dataset focuses on house prices in King County, encompassing Seattle,
and includes homes sold between May 2014 and May 2015. The dataset can be download from
https://www.kaggle.com/datasets/shivachandel/kc-house-data.

Electrical: The Electrical dataset pertains to the local stability analysis of a 4-node star system,
where the electricity producer is situated at the center. This system implements the Decentral Smart
Grid Control concept. The dataset can be download from https://archive.ics.uci.edu/
dataset/471/electrical+grid+stability+simulated+data.

APPENDIX D DETAILS OF COMPARED METHODS AND HYPER-PARAMETER
SETTING.

Compared methods: Compared methods. Six regression methods are compared in this experiment,
including:

• RBF KRR (Vovk, 2013): classical kernel ridge regression with conventional RBF kernels,
served as the baseline.

• TL1 KRR: classical kernel ridge regression employing an indefinite kernel named Truncated
ℓ1 kernel (Huang et al., 2018). The expression of TL1 kernel is K(x,x′) = max{ρ− ∥x−
x′∥1, 0}, where ρ > 0 is a pre-given hyper-parameter. The TL1 kernel is a piecewise linear
indefinite kernel and is expected to be more flexible and have better performance than the
conventional RBF kernel.
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• SVR-MKL: Multiple kernel learning applied on support vector regression. The kernel
dictionary includes RBF kernels, Laplace kernels, and polynomial kernels. Results for
R-SVR-MKL with only RBF kernels are also provided. The implementation of MKL is
available in the Python package MKLpy (Aiolli & Donini, 2015; Lauriola & Aiolli, 2020).

• Falkon (Rudi et al., 2017; Meanti et al., 2022): An advanced and well-developed algorithm
for KRR that employs hyper-parameter tuning techniques to enhance accuracy and utilizes
Nyström approximation to reduce the number of support data points, enabling it to handle
large-scale datasets. We used the public code of Falkon, available at https://github.
com/FalkonML/falkon.

• EigenPro3.0 (Abedsoltan et al., 2023): An advanced general kernel machine for large
datasets, utilizing Nystöm methods and projected dual preconditioned SGD. We used
the public code of EigenPro3.0, available at https://github.com/EigenPro/
EigenPro3.

• RFMs (Radhakrishnan et al., 2022): Recursive feature machines is advanced kernel methods
which utilizes the mechanism of deep feature learning, resulting high efficient algorithms
and ability to handle large datasets. We used the public code of RFMs, available at https:
//github.com/aradha/recursive_feature_machines.

• ResNet: The regression version of ResNet follows the structure in Chen et al. (2020), and the
code is available in https://github.com/DowellChan/ResNetRegression.

• WNN: The regression version of a wide neural network, which is fully-connected and has
only one hidden layer.

Implementation details. Among the compared methods, Kernel Ridge Regression (KRR) stands as
the fundamental technique that combines the Tikhonov regularized model with the kernel trick. The
coefficients of kernels for both SVR-MKL and R-SVR-MKL are calculated following the approach in
EasyMKL (Aiolli & Donini, 2015). For Falkon, the code is available at https://github.com/
FalkonML/falkon. LAB RBF, ResNet, and WNN are optimized using gradient methods with
varying hyper-parameters such as initial points, learning rate, and batch size. The initial weights of
both ResNet and WNN are set according to the Kaiming initialization introduced in He et al. (2015).
In the subsequent experiments, the Adam optimizer is initially used, and upon stopping, the SGD
optimizer is applied. Early stopping is implemented for the training of ResNet and WNN, where
10% of the training data is sampled to form a validation set, and validation loss is assessed every
epoch. The epoch with the best validation loss is selected for testing. Detailed hyper-parameters of
all compared methods are provided in Table 4 (for small-scale datasets) and Table 5 (for large-scale
datasets).

The regression version of ResNet follows the structure in Chen et al. (2020), which has available code
in https://github.com/DowellChan/ResNetRegression. Following the structures in
Chen et al. (2020), the ResNet block has two types: Identity Block (where the dimension of input and
output are the same) and Dense Block (where the dimension of input and output are different). The
details of these two block are presented in Fig. 3. Considering the different dataset sizes, we use two
structures of ResNet in our experiments, denoted by ResNet and ResNetSmall. For the ResNet, we
use two Dense Blocks (M-W-100) and two Identity Block (100-100-100) and a linear predict layer
(100-1). For the ResNetSmall, we use two Dense Blocks (M-W-50) and a linear predict layer (50-1).
Here W is a pre-given width for the network.

APPENDIX E ADDITIONAL EXPERIMENT: IMPACT OF HYPER-PARAMETERS

In this section, we use synthetic data to evaluate the influence of hyper-parameters in Alg. 1. Synthetic
data come from typical nonlinear regression test functions provided by Cherkassky et al. (1996) and
take the following formulations,

f1(x) =
1 + sin(2x(1) + 3x(2))

3.5 + sin(x(1)− x(2))
, D = [−2,−2]2,

f2(x) = 10 sin(πx(1)x(2)) + 20(x(3)− 0.5)2 + 5x(4) + 10x(5) + 0x(6), D = [−1, 1]6,

f3(x) = exp(2πx(1)(sin(x(4))) + sin(x(2)x(3))), D = [−0.25, 0.25]4,
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Figure 3: The structures of Identity block and Dense block.

Table 4: Hyper-parameters of eight regression methods for real datasets.
Hyper-parameters Tecator Yacht Airfoil SML Parkinson Comp activ

LAB RBF
lr 0.001 0.01 0.01 0.05 0.01 0.001

Batch size 16 128 128 128 128 128
σ0 0.5 3 0.2 50 30 0.1

R-SVR-MKL
C 1000 1000 1 1000 10 1
ϵ 0.001 0.001 0.01 0.001 0.01 0.01

Dictionary RBF kernels: [100, 50, 10, 1, 0.1, 0.01, 0.001]

SVR-MKL

C 1000 1000 100 1000 1000 1000
ϵ 0.01 0.01 0.01 0.01 0.01 0.01

Dictionary
RBF kernels: [100, 1, 0.1, 0.001]

Laplace kernels: [100, 1, 0.1, 0.001]
Polynomial kernels: [1, 2, 4, 10]

RBF KRR σ 1 5 80 5 20 10
λ 0.01 0.001 0.001 0.01 0.001 0.001

TL1 KRR ρ 98 6 2.5 22 14 15
λ 0.001 0.001 0.001 0.1 0.01 0.001

Falkon
λ 1e-6 1e-7 1e-6 1e-5 1e-7 1e-6

Centera 100 200 900 2000 4000 1500
σ 10 1 2 1 0.7 2.5

EigenPro3.0 σ 3 1 0.5 1 0.5 10
Centera 197 247 1203 3310 4700 6554

ResNet
lr 0.001 0.001 0.001 0.001 0.001 0.001

Batch size 32 32 128 128 128 128
Structure (Width)b 2(500) 2(500) 1(1000) 1(1000) 1(500) 1(2000)

WNN
lr 0.001 0.001 0.001 0.001 0.001 0.001

Batch size 32 32 128 128 128 128
Width 800 500 6000 1500 3000 9000

a The center number of Nyström approximation.
b Structure 1:M −W − 100− 100− 100− 1, Structure 2: M −W − 50− 1.
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Table 5: Hyper-parameters of four regression methods for real datasets.
Hyper-parameters TomsHardware Electrical KC House

LAB RBF
lr 0.001 0.001 0.001

Batch size 256 256 256
σ0 0.1 0.1 1

Falkon
λ 1e-6 1e-6 1e-6

Center 3000 3000 5000
σ 2 10 5

EigenPro3.0 σ 7 1 5
Center 20000 8000 17291

ResNet
lr 0.001 0.001 0.001

Batch size 128 256 256
Structure (Width)a 1(3000) 1(2000) 1(2000)

WNN
lr 0.01 0.01 0.01

Batch size 128 256 128
Width 3000 3000 5000

a Structure 1:M −W − 100− 100− 100− 1.
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(c) y = f2(x)
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(d) y = f3(x)

Figure 4: The mean RSSE of Alg. 1 and its standard derivation with respect to different ratio of
support data. Ntr = 200, Ntest = 800. Noise level: (a) n = 0.4, (b-d) n = 0.1.

where D = [a, b]n = {x|x ∈ Rn, a ≤ x(i) ≤ b,∀1 ≤ i ≤ n}. The relative sum of square error
(RSSE=1-R2) is reported to measure the regression performance.

The impact of the number of support data. The flexibility, or the number of trainable parameters,
introduced by LAB RBF kernels is directly controlled by the number of support data in practice6.
To investigate the impact of support data number on the performance of Alg. 1, we conducted
experiments on synthetic datasets with varying ratios of support data, and the results are presented
in Figure 4. For all functions, we performed random sampling with 200 data points allocated for
training and 800 for testing. Initial bandwidths were uniformly set to Θ(0) = 1/M . We introduced
noise at a specified level n, with n representing the ratio of noise variance to target variance.

Our findings indicate that Alg. 1 performs optimally when the ratio of support data is in the range
of 30% − 70%, depending on the feature dimension. When there are more support data points,
the hypothesis space gains greater capacity to capture intricate patterns. However, an excessive
number of support data points can lead to overfitting because the remain training data is insufficient,
where the model behaves more like simple kernel-based interpolation and becomes sensitive to noise.
Conversely, too few support data points may result in underfitting, limiting the model’s ability to
approximate the data. Thus, selecting an appropriate number of support data points is essential to
strike a balance between model complexity and the risk of overfitting.

The impact of the initial parameter Θ(0). Here, we consider the impact of initial parameter Θ(0)

because generally, initial points have significant impact on both non-convex optimization and gradient
descent method. Figure 5 displays the curve of RSSE with respect to different Θ(0) indicating
that the performance is good and stable in a wide range of [10−2, 10]. This result further validates

6Note that there is another hyper-parameter in Alg. 1 named error tolerance to control the number of support
data. But in practical implementation, setting the maximal support data number has almost equal effect as setting
error tolerance, and thus only one of them is considered.
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Figure 5: The mean RSSE of Alg. 1 and its standard derivation with respect to different initial σ.
Nsv = 100, Ntr = 100, Nte = 800. Datasets: (a) y = sin(x3). (b) y = f1(x). (c) y = f2(x). (d)
y = f3(x). Noise level: (a) n = 0.4, (b-d) n = 0.1.

Table 6: The mean R2(↑) and its standard derivation of Alg. 1 with respect to different iterations in
SGD on dataset Yacht.

Iterations 0 100 200 300 400
Mean of R2 0.5633±0.0737 0.9396±0.0316 0.9789±0.0187 0.9872±0.0105 0.9902±0.0073

Iterations 500 1000 2000 3000 4000
Mean of R2 0.9913±0.0065 0.9940±0.0056 0.9956±0.0033 0.9966± 0.0023 0.9966±0.0024

the robustness of our kernel learning algorithm compared to conventional RBF kernels, which are
typically sensitive to the pre-given bandwidth.

The impact of SGD hyper-parameters.

Bandwidths play a crucial role in the performance of LAB RBF kernels. In our kernel learning
algorithm, we use SGD methods to estimate the value of bandwidths. In practice, various factors
during training, such as stopping criteria, learning rate, and batch size, may result in distinct bandwidth
estimations. To evaluate the impact of these hyper-parameters on the performance of our algorithms,
we conduct following experiments.

Table 6 and 7 present the performance of Alg. 1 with respect to different iteration numbers in SGD on
dataset Yacht and Parkinson. Table 8 and 9 present the performance of Alg. 1 with respect to different
learning rate in SGD on dataset Yacht and Parkinson. Table 10 presents the performance of Alg. 1
with respect to different batch size in SGD on dataset Yacht and Parkinson. These results underscore
that the carefully selection of these hyper-parameters enhances the final performance. Nevertheless,
even under sub-optimal hyper-parameter settings, the performance remains commendable, albeit with
varying bandwidth estimates. This highlights the robustness and insensitivity of our algorithm across
a wide spectrum of hyper-parameter choices.

APPENDIX F STUDY ON DIFFERENT SELECTION STRATEGY OF INITIAL
SUPPORT DATA

The selection of support data has the significant influence on the performance of the proposed
algorithm. In light of this, we have introduced a dynamic strategy aimed at mitigating the impact of
initial support data selection in the manuscript.

Table 7: The mean R2(↑) and its standard derivation of Alg. 1 with respect to different iterations in
SGD on dataset Parkinson.

Iterations 0 100 200 300 400
Mean of R2 0.5458±0.0315 0.9101±0.0065 0.9445±0.0061 0.9622±0.0052 0.9752±0.0061

Iterations 500 1000 2000 3000 4000
Mean of R2 0.9814±0.0055 0.9889±0.0033 0.9895±0.0023 0.9925±0.0026 0.9931±0.0019
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Table 8: The mean R2(↑) and its standard derivation of Alg. 1 with respect to different learning rate
in SGD on dataset Yacht.

Learning Rate 1.00E+00 1.00E-01 1.00E-02 1.00E-03 5.00E-04 1.00E-04

Mean of R2 0.9723 0.9968 0.9970 0.9911 0.9804 0.8089
Std of R2 0.0164 0.0019 0.0017 0.0038 0.0104 0.0246

Table 9: The mean R2(↑) and its standard derivation of Alg. 1 with respect to different learning rate
in SGD on dataset Parkinson.

Learning Rate 5.00E-01 1.00E-01 5.00E-02 1.00E-02 5.00E-03 1.00E-03

Mean of R2 0.9827 0.9941 0.9943 0.9906 0.9763 0.8947
Std of R2 0.0031 0.0018 0.0018 0.0022 0.0058 0.0052

In this section, we delve deeper into the effects of various methods for selecting initial support data
and assess the efficacy of the introduced dynamic strategy. We will explore three different approaches
to initial data selection: two rational methods (Y-based and X-based) and one irrational method
(Extreme Y).

• Y-based (utilized in the manuscript): data is sorted based on their labels, and support data is
uniformly selected.

• X-based: k-means is applied to the training data to identify cluster centers, followed by the
selection of data points closest to these centers.

• Extreme Y: data is sorted based on their labels, and those with the largest Y values are
selected.

Table 11 presents the performance of Alg. 1 with these selection methods on Yacht and Parkinson
datasets. The results indicate that the poor selection method does have a detrimental impact on our
performance, particularly evident in the case of Yacht where we struggle to fit the data. In contrast,
the other two sensible methods demonstrate good and comparable performance.

In order to further improve, we introduce a dynamic strategy at the end of Section 3. In this strategy,
we dynamically incorporate hard samples into the support dataset. We then integrate these approaches
with the proposed dynamic strategy to evaluate its effectiveness, of which the results are presented in
Table 12. Based on these results, it is evident that the proposed dynamic strategy has a significantly
positive impact on performance. It not only enhances accuracy but also reduces variance, resulting in
more stable solutions. Even with the bad selection selection, the final performance is improved to a
satisfactory level.

Table 10: The mean R2(↑) and its standard derivation of Alg. 1 with respect to different batch size in
SGD.

Batch Size 16 32 64 128

Yacht 0.9932±0.0065 0.9944±0.0044 0.9952±0.0047 0.9965±0.0019
Parkinson 0.9863±0.0041 0.9907±0.0027 0.9931±0.0018 0.9943±0.0018
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Table 11: Performance of Alg.1 with different selection methods of initial support data.
Dataset Yacht Yacht Yacht Parkinson Parkinson Parkinson

Selection Approach Extreme Y Y-based X-based Extreme Y Y-based X-based
Mean of R2 0.0012 0.9957 0.9953 0.8115 0.9921 0.9928
Std of R2 0.4805 0.0025 0.0032 0.0126 0.0015 0.0016

Table 12: Performance of Alg.1 with dynamic strategy and different selection methods of initial
support data.

Dataset Yacht Yacht Yacht Parkinson Parkinson Parkinson
Selection Approach Extreme Y Y-based X-based Extreme Y Y-based X-based

Mean of R2 0.9961 0.9982 0.9981 0.9712 0.9972 0.9966
Std of R2 0.0126 0.0015 0.0016 0.0049 0.0007 0.0013
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