
Under review as a conference paper at ICLR 2024

8 ENVIRONMENT DETAILS AND TRAINING PARAMETER DETAILS

Cooperative navigation (CN): This is a cooperative game. There are 3 agents and 3 landmarks.
Agents are rewarded based on how far any agent is from each landmark. Agents are penalized if
they collide with other agents. So, agents have to learn to cover all the landmarks while avoiding
collisions.

Keep away (KA): This is a competitive task. There is 1 agent, 1 adversary, and 1 landmark. The
agent knows the position of the target landmark and wants to reach it. The adversary is rewarded if it
is close to the landmark and if the agent is far from the landmark. The adversary should learn to push
the agent away from the landmark.

Physical deception (PD): This is a mixed cooperative and competitive task. There are 2 collaborative
agents, 2 landmarks, and 1 adversary. Both the collaborative agents and the adversary want to reach
the target, but only collaborative agents know the correct target. The collaborative agents should
learn a policy to cover all landmarks so that the adversary does not know which one is the true target.

9 REWARD PLOTS FOR EXPERIMENTS

9.1 COOPERATIVE NAVIGATION ENVIRONMENT

(a) Reward plot for baseline for various ϵ in reward
uncertainty. Baseline was able to learn only till ϵ =
9.

(b) Reward plot for baseline for various µ in state
uncertainty. The baseline was able to learn only
till µ = 0.5.

(c) Reward plot for baseline for various ν in action
uncertainty. The baseline was able to learn only
till µ = 2.0.

Figure 6: Cooperative Navigation: Baseline Performance. Rewards vs training time. Reward uncertainty
shows good performance until ϵ=9 (left), state uncertainty shows good performance until µ=0.5 (middle) and
action uncertainty shows good performance until ν=2.0 (right).

12

Under review as a conference paper at ICLR 2024

(a) Reward changes with µ (b) Reward changes with ϵ

Figure 7: Reward plot for lookahead CL for the case of multiple uncertainties (reward and state) showing the
changing reward for various µ (left) and ϵ (right).

(a) Reward changes with ν (b) Reward changes with ϵ

Figure 8: Reward plot for lookahead CL for the case of multiple uncertainties (reward and action) showing the
changing reward for various ν (left) and ϵ (right).

(a) Reward changes with µ (b) Reward changes with ν

Figure 9: Reward plot for lookahead CL for the case of multiple uncertainties (state and action) showing the
changing reward for various µ (left) and ν (right).

13

Under review as a conference paper at ICLR 2024

9.2 KEEP AWAY ENVIRONMENT

(a) Time taken by agent to reach the goal for vari-
ous ϵ in reward uncertainty.

(b) Reward changes for various µ in state uncer-
tainty.

(c) Reward changes for various ν in action uncer-
tainty.

Figure 10: Keep Away: Baseline Performance. For reward uncertainty we show the plot between number of
steps taken by an agent to reach the goal vs training time. This is because due to reward uncertainty reward is
noisy and hence a plot of noisy reward will not give good conclusions. We observe that this number saturates for
ϵ = 40 but for number higher that this, its heavily fluctuating hence concluding that reward uncertainty learns
until ϵ = 40. For state and action uncertainty we show reward vs training time. State uncertainty shows good
performance until µ=0.9 (middle) and action uncertainty shows good performance until ν=2.0 (last).

14

Under review as a conference paper at ICLR 2024

(a) Reward Uncertainty. (b) State Uncertainty.

(c) Action Uncertainty.

Figure 11: Keep Away: CL Method Performance. This plot shows the changing reward as the noise value is
incremented in the CL method for the three uncertain parameters separately. Reward uncertainty learns until
ϵ=43 (left), state uncertainty until µ=2.5 (middle), and action uncertainty learns until ν=3.1 (last).

15

Under review as a conference paper at ICLR 2024

10 NASH EQUILIBRIUM FOR STATE UNCERTAINTY IN MARL

A nice proof for the conditional existence of Nash equilibrium is done in He et al. (2023) for the case
of state uncertainty. They define the following robust Markov game,

G = {N ,M, {Si}i∈N , {Ai}i∈N , {Bi}i∈N , {ri}i∈N , p, γ}

N = {1, 2, ..., N} is the set of N agents and M = {1̄, 2̄, ..., N̄} is the corresponding set of N
adversaries. γ ∈ [0, 1) is the discount factor. S = S1 × S2... × SN is the joint state space.
A = A1 × A2... × AN is the joint action space. p : S × A → ∆(S) are the state transition
probabilities. ri is the reward function for each agent. Every agent i is associated with an adversary
ī. The adversary perturbs the true state of each agent si ∈ Si by producing an action bi ∈ Bi. The
perturbed state s̄i = f(si, bi) where f is a unique bijection given the state si.

The Markov game G is shown to be equivalent to a zero-sum two-person extensive-form game with
finite strategies and perfect recall in He et al. (2023).

10.1 EXTENSIVE-FORM GAME

An extensive-form game (EFG) is a tree-based representation of a game. An EFG has one root node
which indicates the start of the game. Each node branches out into multiple children nodes and each
branch represents one possible action. The leaf nodes indicate the end of the game and contain the
pay-off/reward for the actions specified by the path from the root node to the leaf node.

The robust optimization equation can be decomposed into a two-player EFG. The first player is
the nature/combined adversary who selects the perturbed state and the next player is the combined
agent which chooses the best action according to the policy to be learned. The nature player has |S̄|
possible choices for the action and the agent player has |A| choices where A = A1 ×A2 × ...×An

i.e. the space of all possible actions for all agents. The reward for the nature player is the negative of
the reward obtained by the action taken by the combined agent.

The Bellman equation for the above game G is written as below:

vi(s) = max
πi

min
ρi

E

∑
s′∈S

p(s
′
|s, a, b)[ri(s, a, b) + γvi(s)]|a ∼ π(·|s̄), b ∼ ρ(·|s)


In order for the NE (and the optimal solution to the above equation) to exist, below conditions need
to be met:

• Si, Ai and Bi must be finite sets ∀i ∈ N .

• |ri(s, a, b)| < Mi < M <∞ ∀ i ∈ N, a ∈ A, b ∈ B and s ∈ S

• Stationary reward and transition probabilities

• f is a bijection for a given si

• All agents have the same reward function.

11 NE FOR REWARD AND TRANSITION DYNAMICS UNCERTAINTY IN MARL

In this section, we show how uncertainty in reward and transition dynamics is handled in a multi-agent
setting. We follow Kardeş et al. (2011b) and use the following definition of robust Markov game.

Ḡ = ⟨N ,S, {Ai}i∈N , {R̄i
s}(i,s)∈N×S , {P̄s}s∈S , γ⟩

Note: In this proof following Kardeş et al. (2011b) st denotes the system state and not the individual
agent state. The expected return in case of multi-agent RL with no uncertainty for ith agent is -

16

Under review as a conference paper at ICLR 2024

V i
π(s) = E[

∞∑
t=0

γtrit|s0 = s, ait ∼ πi(.|st), a−i
t ∼ π−i(.|st)]

where −i represents the indices of all agents except agent i, and π−i = Πi ̸=jπj refers to the joint
policy of all agents except agent i. In order to find the optimal robust value function for the single
agent the other agent policies are considered stationary. Since all policies are evolving continuously
and expected return is dependent on all agent policies, one commonly used solution for optimal policy
π∗ = {π∗

1 , π
∗
2 , . . . π

∗
N} is Nash equilibrium. Non-stationarity is also one of the main reasons for

difficulty in MARL convergence as compared to single agent RL which also reflects when uncertainty
is added.

We now introduce uncertainty in rewards and transition dynamics. Thus, the desired policy should
now not only be able to play against other agents’ policies but also robust to the possible uncertainty
of the MARL model. Each player considers a distribution-free Markov game to be played using
robust optimization. To find the optimal value function we focus on the following idea from Kardeş
et al. (2011b). If the player knows how to play in the robust Markov game optimally starting from the
next stage on, then it would play to maximize not only the worst-case (minimal) expected immediate
reward, due to the model uncertainty set at the current stage, but also the worst-case expected reward
incurred in the future stages. Formally, such a recursion property leads to the following Bellman-type
equation:

V̄ i
∗ (s) = max

πi(.|s)
min

P̄ (.|s,.)∈P̄s
R̄i

s∈R̄i
s

∑
a∈A

N∏
j=1

πj(aj |s)(R̄i(s, a) + γ
∑
s′∈S

P̄ (s′|s, a)V̄ i
∗ (s

′))

The corresponding joint policy π∗ = {π1, π2 . . . πN} is robust Markov perfect Nash equilibrium.

12 PROOF FOR THEOREM 1

Lets define the non-linear operator on L such that,

Livi(s) = max
πi(.|si)

min
ρ

[∑
a∈A

R̄i(s, ā) + γ
∑
s′∈S

P̄ (s′|s, ā)vi(s′)

]
, where ρ = {P̄ , R̄, s̄, ā}
We can think of ρ as adversarial strategy that is playing against the good policy π by selecting the
values {P̄ , R̄, s̄, ā} from their respective uncertainty sets such that it minimises the expected return.

Let u and v be two value functions in V. Let {πu
∗ , ρ

u
∗} and {πv

∗ , ρ
v
∗} be two different Nash Equilibrium

with respect to Ḡgeneral.

Livi(s) =
∑
a∈A

R̄i(s, ā)(πv
∗ ,ρ

v
∗)

+ γ
∑
s′∈S

P̄ (s′|s, ā)(πv
∗ ,ρ

v
∗)
vi(s′)

, where ρv∗ = {P̄ , R̄, s̄, ā} is the optimal value that minimises the value function equation.

Liui(s) =
∑
a∈A

R̄i(s, ā)(πu
∗ ,ρ

u
∗)

+ γ
∑
s′∈S

P̄ (s′|s, ā)(πu
∗ ,ρ

u
∗)
ui(s′)

, where ρu∗ = {P̄ , R̄, s̄, ā} is the optimal value that minimises the value function equation.

Its intuitive that optimal π∗ maximizes the above equation, whereas optimal ρ∗ minimises the above
equation. Therefore we can write the following equation,

∑
a∈A

R̄i(s, ā)(πu
∗ ,ρ

v
∗)
+γ

∑
s′∈S

P̄ (s′|s, ā)(πu
∗ ,ρ

v
∗)
vi(s′) ≤ Livi(s) ≤

∑
a∈A

R̄i(s, ā)(πv
∗ ,ρ

u
∗)
+γ

∑
s′∈S

P̄ (s′|s, ā)(πv
∗ ,ρ

u
∗)
vi(s′)

17

Under review as a conference paper at ICLR 2024

∑
a∈A

R̄i(s, ā)(πv
∗ ,ρ

u
∗)
+γ

∑
s′∈S

P̄ (s′|s, ā)(πv
∗ ,ρ

u
∗)
ui(s′) ≤ Liui(s) ≤

∑
a∈A

R̄i(s, ā)(πu
∗ ,ρ

v
∗)
+γ

∑
s′∈S

P̄ (s′|s, ā)(πu
∗ ,ρ

v
∗)
ui(s′)

(a) Now lets assume, Livi(s) ≤ Liui(s)

0 ≤ Liui(s)− Livi(s)

≤

[∑
a∈A

R̄i(s, ā)(πu
∗ ,ρ

v
∗)

+ γ
∑
s′∈S

P̄ (s′|s, ā)(πu
∗ ,ρ

v
∗)
ui(s′)

]
−

[∑
a∈A

R̄i(s, ā)(πu
∗ ,ρ

v
∗)

+ γ
∑
s′∈S

P̄ (s′|s, ā)(πu
∗ ,ρ

v
∗)
vi(s′)

]
≤ γ

∑
s′∈S

P̄ (s′|s, ā)(πu
∗ ,ρ

v
∗)
(ui(s′)− vi(s′))

≤ γ||ui(s′)− vi(s′)||

(b) Assuming , Liui(s) ≤ Livi(s) and following the same argument as before we get,

Livi(s)− Liui(s) ≤ γ||vi(s′)− ui(s′)||

Thus, combining (a) and (b), we get,

||Livi(s)− Liui(s)|| ≤ γ||vi(s′)− ui(s′)||

Thus, Li is a contraction mapping on V

Now since ||v|| = supi ||vi||, we can write the following -

||Lv − Lu|| = sup
i
||Livi − Liui|| ≤ γ sup

i
||vi − ui|| = γ||v − u||

Thus, L is a contraction mapping on V

18

	Environment Details and Training Parameter Details
	Reward Plots for Experiments
	Cooperative Navigation Environment
	Keep Away Environment

	Nash Equilibrium for state uncertainty in MARL
	Extensive-form game

	NE for reward and transition dynamics uncertainty in MARL
	Proof for Theorem 1

