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A Derivation for Computing Opacity αi

In this section we will derive the formula in Eqn. 13 of the paper for computing the discrete opacity
αi. Recall that the opaque density function ρ(t) is defined as

ρ(t) = max

(
−dΦs

dt (f(p(t)))

Φs(f(p(t)))
, 0

)

= max

(
−(∇f(p(t)) · v)φs(f(p(t)))

Φs(f(p(t)))
, 0

)
,

(1)

where φs(x) and Φs(x) are the probability density function (PDF) and cumulative distribution
function (CDF) of logistic distribution, respectively. First consider the case where the sample point
interval [ti, ti+1] lies in a range [t`, tr] over which the camera ray is entering the surface from outside
to inside, i.e. the signed distance function is decreasing on the camera ray p(t) over [t`, tr]. Then it
is easy to see that −(∇f(p(t)) · v) > 0 in [ti, ti+1]. It follows from Eqn. 12 of the paper that,

αi =1− exp

(
−
∫ ti+1

ti

ρ(t)dt

)
=1− exp

(
−
∫ ti+1

ti

−(∇f(p(t)) · v)φs(f(p(t)))

Φs(f(p(t)))
dt

)
.

(2)

Note that the integral term is computed by∫
−(∇f(p(t)) · v)φs(f(p(t)))

Φs(f(p(t)))
dt = − ln(Φs(f(p(t)))) + C, (3)

where C is a constant. Thus the discrete opacity can be computed by

αi =1− exp [− (− ln(Φs(f(p(ti+1)))) + ln(Φs(f(p(ti)))))]

=1− Φs(f(p(ti+1)))

Φs(f(p(ti)))

=
Φs(f(p(ti)))− Φs(f(p(ti+1)))

Φs(f(p(ti)))
.

(4)

Next consider the case where [ti, ti+1] lies in a range [t`, tr] over which the camera ray is exiting
the surface, i.e. the signed distance function is increasing on p(t) over [t`, tr]. Then we have
−(∇f(p(t)) · v) < 0 in [ti, ti+1]. Then, according to Eqn. 1, we have ρ(t) = 0. Therefore, by
Eqn. 12 of the paper, we have

αi = 1− exp

(
−
∫ ti+1

ti

ρ(t)dt

)
= 1− exp

(
−
∫ ti+1

ti

0dt

)
= 0.
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Hence, the alpha value αi in this case is given by

αi = max

(
Φs(f(p(ti)))− Φs(f(p(ti+1)))

Φs(f(p(ti)))
, 0

)
. (5)

This completes the derivation of Eqn. 13 of the paper.

B First-order Bias Analysis

B.1 Proof of Unbiased Property of Our Solution

PROOF OF THEOREM 1: Suppose that the ray is going from outside to inside of the surface. Hence,
we have −(∇f(p(t)) · v) > 0, because by convention the signed distance function f(x) is positive
outside and negative inside of the surface.

Recall that our S-density field φs(f(x)) is defined using the logistic density function φs(x) =
se−sx/(1 + e−sx)2, which is the derivative of the Sigmoid function Φs(x) = (1 + e−sx)−1, i.e.
φs(x) = Φ′s(x).

According to Eqn. 5 of the paper, the weight function w(t) is given by

w(t) = T (t)ρ(t),

where

ρ(t) = max

(
−(∇f(p(t)) · v)φs(f(p(t)))

Φs(f(p(t)))
, 0

)
.

By assumption, −(∇f(p(t)) · v) > 0 for t ∈ [tl, tr]. Since φs is a probability density function, we
have φs(f(p(t))) > 0. Clearly, Φs(f(p(t))) > 0. It follows that

ρ(t) =
−(∇f(p(t)) · v)φs(f(p(t)))

Φs(f(p(t)))
,

which is positive. Hence,

w(t) =T (t)ρ(t)

= exp

(
−
∫ t

0

ρ(t′)dt′
)
ρ(t)

= exp

(
−
∫ tl

0

ρ(t′)dt′
)

exp

(
−
∫ t

tl

ρ(t′)dt′
)
ρ(t)

=T (tl) exp

(
−
∫ t

tl

ρ(t′)dt′
)
ρ(t)

=T (tl) exp [−(− ln(Φs(f(p(t)))) + ln(Φs(f(p(tl)))))] ρ(t)

=T (tl)
Φs(f(p(t)))

Φs(f(p(tl)))

−(∇f(p(t)) · v)φs(f(p(t)))

Φs(f(p(t)))

=
−(∇f(p(t)) · v)T (tl)

Φs(f(p(tl)))
φs(f(p(t))).

(6)

As a first-order approximation of signed distance function f , suppose that locally the surface is
tangentially approximated by a sufficiently small planar patch with its outward unit normal vector
denoted as n. Because f(x) is a signed distance function, locally it has a unit gradient vector∇f = n.
Then we have

w(t) =
−(∇f(p(t)) · v)T (tl)

Φs(f(p(tl)))
φs(f(p(t)))

=
| cos(θ)|T (tl)

Φs(f(p(tl)))
φs(f(p(t))),

(7)

where θ is the angle between the view direction v and the unit normal vector n, that is, cos(θ) = v ·n.
Here | cos(θ)|T (tl) · Φs(f(p(tl)))

−1 can be regarded as a constant. Hence, w(t) attains a local
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maximum when f(p(t)) = 0 because φs(x) is a unimodal density function attaining the maximal
value at x = 0.

We remark that in this proof we do not make any assumption on the existence of surfaces between
the camera and the sample point p(tl). Therefore the conclusion holds true for the case of multiple
surface intersections on the camera ray. This completes the proof. �

B.2 Bias in Naive Solution

In this section we show that the weight function derived in naive solution is biased. According to
Eqn. 3 of the paper, w(t) = T (t)σ(t), with the opacity σ(t) = φs(f(p(t))). Then we have

dw

dt
=

d(T (t)σ(t))

dt

=
dT (t)

dt
σ(t) + T (t)

dσ(t)

dt

=

[
exp

(
−
∫ t

0

σ(t)dt

)
(−σ(t))

]
σ(t) + T (t)

dσ(t)

dt

=T (t)(−σ(t))σ(t) + T (t)
dσ(t)

dt

=T (t)

(
dσ(t)

dt
− σ(t)2

)
.

(8)

Now we perform the same first-order approximation of signed distance function f near the surface
intersection as in Section B.1. In this condition, the above equation can be rewritten as

dw

dt
=T (t)

(
(∇f(p(t)) · v)φ′s(f(p(t)))− φs(f(p(t)))2

)
=T (t)

(
cos(θ)φ′s(f(p(t)))− φs(f(p(t)))2

)
.

(9)

Here cos(θ) can be regarded as a constant. Now suppose p(t∗) is a point on the surface S, that is,
f(p(t∗)) = 0. Next we will examine the value of dw

dt (t) at t = t∗. First, clearly, T (t∗) > 0 and
φs(f(p(t∗)))2 > 0. Then, since φ′s(0) = 0, we have

dw

dt
(t∗) = T (t∗)(cos(θ)φ′s(0)− σ(t∗)2) = −T (t∗)φs(0)2 < 0.

Hence w(t) in naive solution does not attain a local maximum at t = t∗, which corresponds to a point
on the surface S. This completes the proof. �

C Second-order Bias Analysis

In this section we briefly introduce our local analysis in the interval [tl, tr] near the surface intersection,
in second-order approximation. In this condition, we follow the similar assumption as Section B that
the signed distance function f(p(t)) monotonically decreases along the ray in the interval [tl, tr].

According to Eqn. 8, the derivative of w(t) is given by:

dw

dt
= T (t)

(
dσ(t)

dt
− σ(t)2

)
.

Clearly, we have T (t) > 0. Hence, whenw(t) attains local maximum at t̄, there is
(

dσ(t̄)
dt − σ(t̄)2

)
=

0.

The case of our solution. In our solution, the volume density is given by σ(t) = ρ(t) following Eqn.
1. After organizing, we have

d2f

dt
(p(t̄)) · φs(f(p(t̄))) +

(
df

dt
(p(t̄))

)2

φ
′

s(f(p(t̄))) = 0.
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Figure 1: The curve of ∆t versus s, given fixed µ, τ . Note that the axes are illustrated in ln(|∆t|)
and ln(s).

Here we perform a local analysis at t̄ near the surface intersection t∗, where f(p(t∗)) = 0, t̄ = t∗+∆t.
And we let df

dt (p(t∗)) = µ, and d2f
dt2 (p(t∗)) = τ . As a second-order analysis, we assume that in

this local interval t ∈ [tl, tr], d2f
dt2 (p(t)) is fixed. After substitution and organization, the induced

equation for local maximum point t̄ is

τ ·
(

1 + e−s(µ∆t+
1
2 τ∆2

t )
)

= (µ+ τ∆t)
2 ·
(
s
(

1− e−s(µ∆t+
1
2 τ∆2

t )
))

, (10)

which we will analyze later.

The case of the naive solution. Here we conduct a similar local analysis as in case of our solution.
Regarding naive solution, when w(t) attains local maximum at t̄, there is:

(µ+ τ∆t) ·
(
−
(

1− e−2s(µ∆t+
1
2 τ∆2

t )
))

= e−s(µ∆t+
1
2 τ∆2

t ). (11)
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Comparison. Based on Eqn. 10 and Eqn. 11, we can numerically solve the equations on ∆t for any
given values of µ, τ, and s. Below we plot the curves of ∆t versus increasing s for different (fixed)
values of µ, τ in Fig. 1.

As shown in Fig. 1, the error of local maximum position ∆t = O(s−2) for our solution and the error
∆t = O(s−1) for the naive solution. That is to say, our error converges to zero faster than the error
of the naive solution does as the standard deviation 1/s of the S-density approaches to 0, which is
quadratic convergence versus linear convergence.

D Additional Experimental Details

D.1 Additional Implemenation Details

Network architecture. We use a similar network architecture as IDR [10], which consists of two
MLPs to encode SDF and color respectively. The signed distance function f is modeled by an MLP
that consists of 8 hidden layers with hidden size of 256. We replace original ReLU with Softplus
with β = 100 as activation functions for all hidden layers. A skip connection [6] is used to connect
the input with the output of the fourth layer. The function c for color prediction is modeled by a MLP
with 4 hidden layers with size of 256, which takes not only the spatial location p as inputs but also
the view direction v, the normal vector of SDF n = ∇f(p), and a 256-dimensional feature vector
from the SDF MLP. Positional encoding is applied to spatial location p with 6 frequencies and to
view direction v with 4 frequencies. Same as IDR, we use weight normalization [7] to stabilize the
training process.

Training details. We train our neural networks using the ADAM optimizer [3]. The learning rate
is first linearly warmed up from 0 to 5× 10−4 in the first 5k iterations, and then controlled by the
cosine decay schedule to the minimum learning rate of 2.5× 10−5. We train each model for 300k
iterations for 14 hours (for the ‘w/ mask’ setting) and 16 hours (for the ‘w/o mask’ setting) in total on
a single Nvidia 2080Ti GPU.

Alpha and color computation. In the implementation, we actually have two types of sampling
points - the sampled section points qi = o + tiv and the sampled mid-points pi = o + ti+ti+1

2 v,
with section length δi = ti+1 − ti, as illustrated in Figure 2. To compute the alpha value αi, we use
the section points, which is max(Φs(f(qi))−Φs(f(qi+1))

Φs(f(qi))
, 0). To compute the color ci, we use the color

of the mid-point pi.

Hierarchical sampling. Specifically, we first uniformly sample 64 points along the ray, then we
iteratively conduct importance sampling for k = 4 times. The coarse probability estimation in the
i-th iteration is computed by a fixed s value, which is set as 32× 2i. In each iteration, we additionally
sample 16 points. Therefore, the total number of sampled points for NeuS is 128. For the ‘w/o
mask’ setting, we sample extra 32 points outside the sphere. The outside scene is represented using
NeRF++ [11].

: sampled section point : sampled mid-point

Figure 2: The section points and mid-points defined on a ray.

Scan ID Threshold 0 Threshold 25 Threshold 50 Threshold 100 Threshold 500
Scan 40 2.36 1.79 1.86 2.07 4.26
Scan 83 1.65 1.20 1.37 2.24 29.10
Scan 114 1.62 1.04 1.10 1.43 8.66

Table 1: The Chamfer distances between the ground-truth and the level-set surfaces extracted from
the NeRF results using different threshold values on three scenes from the DTU dataset.
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Threshold 0 Threshold 25 Threshold 50 Threshold 100 Threshold 500
Figure 3: The visualization of the level-set surfaces extracted from the NeRF results using different
threshold values.

D.2 Baselines

IDR[10]. To implement IDR, we use their officially released codes1 and pretrained models on the
DTU dataset.

NeRF[4]. To implement NeRF, we use the code from nerf-pytorch2. To extract surfaces from NeRF,
we use the density level-set of 25, which is validated by experiments to be the best level-set with
smallest reconstruction errors, as shown in Table 1 and Figure 3.

COLMAP[8]. We use the officially provided CLI(command line interface) version of COLMAP.
Dense point clouds are produced by sequentially running following commands: (1) feature_extractor,
(2) exhaustive_matcher, (3) patch_match_stereo, and (4) stereo_fusion. Given dense point clouds,
meshes are produced by (5) poisson_mesher.

UNISURF[5]. The quantitative and qualitative results in the paper are provided by the authors of
UNISURF.

E Additional Experimental Results

E.1 Rendering Quality and Speed

Besides the reconstructed surfaces, our method also renders high-quality images, as shown in
Figure 4. Rendering an image in resolution of 1600x1200 costs about 320 seconds in the default
volume rendering setting on a single Nvidia 2080Ti GPU. In addition, we also tested another sampling
strategy by first applying sphere tracing to find the regions near the surfaces and only sampling points

1https://github.com/lioryariv/idr
2https://github.com/yenchenlin/nerf-pytorch

Scan ID 24 37 40 55 63 65 69 83 97 105 106 110 114 118 122 Mean

PSNR(Ours) 28.20 27.10 28.13 28.80 32.05 33.75 30.96 34.47 29.57 32.98 35.07 32.74 31.69 36.97 37.07 31.97

PSNR(OursST ) 27.07 26.58 27.70 28.37 31.32 31.39 30.20 31.79 28.58 30.87 33.61 32.40 31.33 35.55 35.96 30.85

SSIM(Ours) 0.764 0.813 0.737 0.768 0.917 0.835 0.845 0.850 0.837 0.837 0.875 0.876 0.861 0.891 0.892 0.840

SSIM(OursST ) 0.757 0.811 0.736 0.759 0.915 0.788 0.813 0.812 0.794 0.811 0.852 0.862 0.847 0.867 0.873 0.820

Table 2: Quantitative comparisons by different sampling strategies. -ST indicates the sampling
strategy with sphere tracing.
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Figure 4: Rendered images by our method on the DTU dataset using different sampling strategies.
-ST indicates the sampling strategy using sphere tracing.

Scan ID 24 37 40 55 63 65 69 83 97 105 106 110 114 118 122 Mean

PSNR(NeRF) 24.83 25.35 26.87 27.64 30.24 29.65 28.03 28.94 26.76 29.61 32.85 31.00 29.94 34.28 33.69 29.31

PSNR(Ours) 23.98 22.79 25.21 26.03 28.32 29.80 27.45 28.89 26.03 28.93 32.47 30.78 29.37 34.23 33.95 28.55

SSIM(NeRF) 0.753 0.794 0.780 0.761 0.915 0.805 0.803 0.822 0.804 0.815 0.870 0.857 0.848 0.880 0.879 0.826

SSIM(Ours) 0.732 0.778 0.722 0.739 0.915 0.809 0.818 0.831 0.812 0.815 0.866 0.863 0.847 0.878 0.878 0.820

Table 3: Quantitative comparisons with NeRF on the task of novel view synthesis without mask
supervision.

in those regions. With this strategy, rendering an image in the same resolution only needs about
60 seconds. Table 2 reports the quantitative results in terms of PSNR and SSIM in default volume
rendering setting and sphere tracing setting.

E.2 Novel View Synthesis

In this experiment, we held out 10% of the images in the DTU dataset as the testing set and the others
as the training set. We compare the quantitative results on the testing set in terms of PSNR and SSIM
with NeRF. As shown in Table 3, our method achieves comparable performance to NeRF.
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E.3 SDF Qualitative Evaluation

While our method without Eikonal regularization [2] or geometric initialization [1] produces plausible
surface reconstruction results, our full model can predict a more accurate signed distance function as
shown in Figure 5. Furthermore, using random initialization produces axis-aligned artifacts due to
the spectral bias of positional encoding [9] while the geometric initialization [1] does not have such
kind of artifacts.

E.4 Training Progression

We show the reconstructed surfaces at different training stages of the Durian in the BlendedMVS
dataset. As illustrated in Figure 6, the surface gets sharper along the training process. Meanwhile,
we also provide a curve in the figure to show how the trainable standard deviation in φs changes in
the training process. As we can see, the optimization process will automatically reduce the standard
deviation so that the surface becomes more clear and sharper with more training steps.

E.5 Limitation

Figure 7: A failure reconstruction case containing textureless regions.

Figure 7 shows a failure
case where our method fails
to correctly reconstruct the
texutreless region of the sur-
face on the metal rabbit
model. The reason is that
such textureless regions are
ambiguous for reconstruc-
tion in neural rendering.
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Figure 5: Visualization of signed distance fields on the cutting plane (blue plane of the left image) in
different training iterations.
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Iteration 10000 Iteration 20000 Iteration 30000 Iteration 40000

Iteration 50000 Iteration 100000 Iteration 200000 Iteration 300000 Curve of Standard Deviation

Reference Image

Iteration 10000 Iteration 20000 Iteration 30000 Iteration 40000 Reference Image

Iteration 50000 Iteration 100000 Iteration 200000 Iteration 300000 Curve of Standard Deviation

Figure 6: Training progression of the Durian in the BlendedMVS dataset. The bottom right figure
shows the curve of the trainable standard deviation in the training progress.

E.6 Additional Results

In this section, we show ad-
ditional qualitative results
on the DTU dataset and BlendedMVS dataset. Figure 8 shows the comparisons with baseline
methods in both w/ mask setting and w/o mask setting. Figure 9 shows addtional results in w/o mask
setting.
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Figure 8: Additional reconstruction results on the DTU dataset.
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Figure 9: Additional reconstruction results on BlendedMVS dataset without mask supervision.
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