
Checklist484

1. For all authors...485

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s486

contributions and scope? [Yes] Our paper builds on the premise that reinstantiating487

the implicit function theorem for every optimization problem a user may encounter488

is cumbersome. We make the case that a modular approach is needed to bypass that489

issue. This approach raises several challenges, notably in the way these implicit solvers490

can be automatically instantiated, consistently, across the large corpus of optimization491

approaches favored by users.492

(b) Did you describe the limitations of your work? [Yes] , We discuss several limitations493

in our work. For instance, implicit differentiation requires x̂ to be sufficiently close to494

x? to be meaningful. This is the main topic of §2.3495

(c) Did you discuss any potential negative societal impacts of your work? [N/A] As a496

purely methodological paper, we do not foresee negative societal impacts of our work.497

(d) Have you read the ethics review guidelines and ensured that your paper conforms to498

them? [Yes] We confirm our paper conforms to those guidelines.499

2. If you are including theoretical results...500

(a) Did you state the full set of assumptions of all theoretical results? [Yes] , The paper501

contains one theoretical section, §2.3.502

(b) Did you include complete proofs of all theoretical results? [Yes] , All proofs are503

included in the Appendix D504

3. If you ran experiments...505

(a) Did you include the code, data, and instructions needed to reproduce the main exper-506

imental results (either in the supplemental material or as a URL)? [No] At the time507

of submission, we are in the course of an approval process for open-source release508

required by our organization. We believe that the library itself comprises a contribution,509

and will have it available in open source by the time of this paper’s publication (at the510

latest).511

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they512

were chosen)? [Yes] , Experiments were mostly run with minimal parameter tuning to513

reflect the simplicity of the approach we advocate. This is reflected in §3 and Appendix514

E515

(c) Did you report error bars (e.g., with respect to the random seed after running ex-516

periments multiple times)? [Yes] , see Figure 2 and std for the dictionary learning517

task.518

(d) Did you include the total amount of compute and the type of resources used (e.g., type519

of GPUs, internal cluster, or cloud provider)? [Yes] , see Appendix E520

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...521

(a) If your work uses existing assets, did you cite the creators? [Yes] , see §3 and Appendix522

E523

(b) Did you mention the license of the assets? [Yes] , see Appendix E524

(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]525

526

(d) Did you discuss whether and how consent was obtained from people whose data you’re527

using/curating? [N/A]528

(e) Did you discuss whether the data you are using/curating contains personally identifiable529

information or offensive content? [N/A]530

5. If you used crowdsourcing or conducted research with human subjects...531

(a) Did you include the full text of instructions given to participants and screenshots, if532

applicable? [N/A]533

(b) Did you describe any potential participant risks, with links to Institutional Review534

Board (IRB) approvals, if applicable? [N/A]535

(c) Did you include the estimated hourly wage paid to participants and the total amount536

spent on participant compensation? [N/A]537

14

Appendix538

A Code examples539

A.1 Code examples for optimality conditions540

Our library provides several reusable optimality condition mappings F or fixed points T . We541

nevertheless demonstrate the ease of writing some of them from scratch.542

Proximal gradient fixed point. The proximal gradient fixed point (7) with step size η = 1 is543

T (x, θ) = proxg(x−∇1f(x, θf), θg). It can be implemented as follows.544

grad = jax.grad(f)

def T(x, theta):

theta_f, theta_g = theta

return prox(x - grad(x, theta_f), theta_g)

Figure 5: Proximal gradient fixed point T (x, θ)

We recall that when the proximity operator is a projection, we recover the projected gradient fixed545

point as a special case. Therefore, this fixed point can also be used for constrained optimization. We546

provide numerous proximal and projection operators in the library.547

KKT conditions. As a more advanced example, we now describe how to implement the KKT548

conditions (6). The stationarity, primal feasibility and complementary slackness conditions read549

∇1f(z, θf) + [∂1G(z, θG)]>λ+ [∂1H(z, θH)]>ν = 0

H(z, θH) = 0

λ ◦G(z, θG) = 0.

Using jax.vjp to compute vector-Jacobian products, this can be implemented as550

grad = jax.grad(f)

def F(x, theta):

z, nu, lambd = x

theta_f, theta_H, theta_G = theta

_, H_vjp = jax.vjp(H, z, theta_H)

stationarity = (grad(z, theta_f) + H_vjp(nu)[0])

primal_feasability = H(z, theta_H)

_, G_vjp = jax.vjp(G, z, theta_G)

stationarity += G_vjp(lambd)[0]

comp_slackness = G(z, theta_G) * lambd

return stationarity, primal_feasability, comp_slackness

Figure 6: KKT conditions F (x, θ)

Similar mappings F can be written if the optimization problem contains only equality constraints or551

only inequality constraints.552

15

Mirror descent fixed point. Letting η = 1 and denoting θ = (θf , θproj), the fixed point (11) is553

x̂ = ∇ϕ(x)

y = x̂−∇1f(x, θf)

T (x, θ) = projϕC (y, θproj).

We can then implement it as follows.554

grad = jax.grad(f)

def T(x, theta):

theta_f, theta_proj = params

x_hat = phi_mapping(x)

y = x_hat - grad(x, theta_f)

return bregman_projection(y, theta_proj)

Figure 7: Mirror descent fixed point T (x, θ)

Although not considered in this example, the mapping∇ϕ could also depend on θ if necessary.555

A.2 Code examples for experiments556

We now sketch how to implement our experiments using our framework. In the following, jnp is557

short for jax.numpy. In all experiments, we only show how to compute gradients with the outer558

objective. We can then use these gradients with gradient-based solvers to solve the outer objective.559

Multiclass SVM experiment.560

X_tr, Y_tr, X_val, Y_val = load_data()

def W(x, theta): # dual-primal map

return jnp.dot(X_tr.T, Y_tr - x) / theta

def f(x, theta): # inner objective

return 0.5 * theta * jnp.sum(W(x, theta) ** 2)

grad = jax.grad(f)

proj = jax.vmap(projection_simplex)

def T(x, theta):

return proj(x - grad(x, theta))

@custom_fixed_point(T)

def msvm_dual_solver(theta):

[...]

return x_star # solution of the dual objective

def outer_loss(lambd):

theta = jnp.exp(lambd)

x_star = msvm_dual_solver(theta) # inner solution

Y_pred = jnp.dot(W(x_star, theta), X_val)

return 0.5 * jnp.sum((Y_pred - Y_val) ** 2)

print(jax.grad(outer_loss)(lambd))

Figure 8: Code example for the multiclass SVM experiment.

16

Task-driven dictionary learning experiment.561

X_tr, y_tr = load_data()

def f(x, theta): # dictionary loss

residual = X_tr - jnp.dot(x, theta)

return huber_loss(residual)

grad = jax.grad(f)

def T(x, theta): # proximal gradient fixed point

return prox_lasso(x - grad(x, theta))

@custom_fixed_point(T)

def sparse_coding(theta): # inner objective

[...]

return x_star # lasso solution

def outer_loss(theta, w): # task-driven loss

x_star = sparse_coding(theta) # sparse codes

y_pred = jnp.dot(x_star, w)

return logloss(y_tr, y_pred)

print(jax.grad(outer_loss, argnums=(0,1)))

Figure 9: Code example for the task-driven dictionary learning experiment.

Dataset distillation experiment.562

X_tr, y_tr = load_data()

logloss = jax.vmap(loss.multiclass_logistic_loss)

def f(x, theta, l2reg=1e-3): # inner objective

scores = jnp.dot(theta, x)

distilled_labels = jnp.arange(10)

penalty = l2reg * jnp.sum(x * x)

return jnp.mean(logloss(distilled_labels, scores)) + penalty

F = jax.grad(f)

@custom_root(F)

def logreg_solver(theta):

[...]

return x_star

def outer_loss(theta):

x_star = logreg_solver(theta) # inner solution

scores = jnp.dot(X_tr, x_star)

return jnp.mean(logloss(y_tr, scores))

print(jax.grad(outer_loss)(theta))

Figure 10: Code example for the dataset distillation experiment.

17

Molecular dynamics experiment.563

energy_fn = soft_sphere_energy_fun(diameter)

init_fn, apply_fn = jax_md.minimize.fire_descent(

energy_fun, shift_fun)

x0 = random.uniform(key, (N, 2))

R0 = L * x0 # transform to physical coordinates

R = lax.fori_loop(

0, num_optimization_steps,

body_fun=lambda t, state: apply_fn(state, t=t),

init_val=init_fn(R0)).position

x = R / L

def normalized_forces(x, diameter):

energy_fn = soft_sphere_energy_fun(diameter)

normalized_energy_fun = lambda x: energy_fn(L * x)

return -jax.grad(normalized_energy_fun)(x)

dx = root_jvp(normalized_forces, x, diameter, 1.0,

solve=linear_solve.solve_bicgstab)

print(dx)

Figure 11: Code for the molecular dynamics experiment.

B Jacobian products564

Our library provides numerous reusable building blocks. We describe in this section how to compute565

their Jacobian products. As a general guideline, whenever a projection enjoys a closed form, we leave566

the Jacobian product to the autodiff system.567

B.1 Jacobian products of projections568

We describe in this section how to compute the Jacobian products of the projections (in the Euclidean569

and KL senses) onto various convex sets. When the convex set does not depend on any variable, we570

simply denote it C instead of C(θ).571

Non-negative orthant. When C is the non-negative orthant, C = Rd+, we obtain projC(y) =572

max(y, 0), where the maximum is evaluated element-wise. This is also known as the ReLu function.573

The projection in the KL sense reduces to the exponential function, projϕC (y) = exp(y).574

Box constraints. When C(θ) is the box constraints C(θ) = [θ1, θ2]d with θ ∈ R2, we obtain575

projC(y, θ) = clip(y, θ1, θ2) := max(min(y, θ2), θ1).

This is trivially extended to support different boxes for each coordinate, in which case θ ∈ Rd×2.576

Probability simplex. When C is the standard probability simplex, C = 4d, there is no analytical577

solution for projC(y). Nevertheless, the projection can be computed exactly in O(d) expected time or578

O(d log d) worst-case time [18, 49, 29, 22]. The Jacobian is given by diag(s) − ss>/‖s‖1, where579

s ∈ {0, 1}d is a vector indicating the support of projC(y) [48]. The projection in the KL sense, on the580

other hand, enjoys a closed form: it reduces to the usual softmax projϕC (y) = exp(y)/
∑d
j=1 exp(yj).581

Box sections. Consider now the Euclidan projection z?(θ) = projC(y, θ) onto the set C(θ) =582

{z ∈ Rd : αi ≤ zi ≤ βi, i ∈ [d];w>z = c}, where θ = (α, β, w, c). This projection is a singly-583

constrained bounded quadratic program. It is easy to check (see, e.g., [52]) that an optimal solution584

18

satisfies for all i ∈ [d]585

z?i (θ) = [L(x?(θ), θ)]i := clip(wix
?(θ) + yi, αi, βi)

where L : R× Rn → Rd is the dual-primal mapping and x?(θ) ∈ R is the optimal dual variable of586

the linear constraint, which should be the root of587

F (x?(θ), θ) = L(x?(θ), θ)>w − c.
The root can be found, e.g., by bisection. The gradient∇x?(θ) is given by∇x?(θ) = B>/A and the588

Jacobian ∂z?(θ) is obtained by application of the chain rule on L.589

Norm balls. When C(θ) = {x ∈ Rd : ‖x‖ ≤ θ}, where ‖ · ‖ is a norm and θ ∈ R+, projC(y, θ)590

becomes the projection onto a norm ball. The projection onto the `1-ball reduces to a projection onto591

the simplex, see, e.g., [29]. The projections onto the `2 and `∞ balls enjoy a closed-form, see, e.g.,592

[55, §6.5]. Since they rely on simple composition of functions, all three projections can therefore be593

automatically differentiated.594

Affine sets. When C(θ) = {x ∈ Rd : Ax = b}, where A ∈ Rp×d, b ∈ Rp and θ = (A, b), we get595

projC(y, θ) = y −A†(Ay − b) = y −A>(AA>)−1(Ay − b)
where A† is the Moore-Penrose pseudoinverse of A. The second equality holds if p < d and A is596

full rank. A practical implementation can pre-compute a factorization of the Gram matrix AA>.597

Alternatively, we can also use the KKT conditions.598

Hyperplanes and half spaces. When C(θ) = {x ∈ Rd : a>x = b}, where a ∈ Rd and b ∈ R and599

θ = (a, b), we get600

projC(y, θ) = y − a>y − b
‖a‖22

a.

When C(θ) = {x ∈ Rd : a>x ≤ b}, we simply replace a>y−b in the numerator by max(a>y−b, 0).601

Transportation and Birkhoff polytopes. When C(θ) = {X ∈ Rp×d : X1d = θ1, X
>1p =602

θ2, X ≥ 0}, the so-called transportation polytope, where θ1 ∈ 4p and θ2 ∈ 4d are marginals, we603

can compute approximately the projections, both in the Euclidean and KL senses, by switching to the604

dual or semi-dual [15]. Since both are unconstrained optimization problems, we can compute their605

Jacobian product by implicit differentiation using the gradient descent fixed point. An advantage of606

the KL geometry here is that we can use Sinkhorn [24], which is a GPU-friendly algorithm. The607

Birkhoff polytope, the set of doubly stochastic matrices, is obtained by fixing θ1 = θ2 = 1d/d.608

Order simplex. When C(θ) = {x ∈ Rd : θ1 ≥ x1 ≥ x2 ≥ · · · ≥ xd ≥ θ2}, a so-called order609

simplex [37, 14], the projection operations, both in the Euclidean and KL sense, reduce to isotonic610

optimization [45] and can be solved exactly in O(d log d) time using the Pool Adjacent Violators611

algorithm [12]. The Jacobian of the projections and efficient product with it are derived in [27, 16].612

Polyhedra. More generally, we can consider polyhedra, i.e., sets of the form C(θ) = {x ∈613

Rd : Ax = b, Cx ≤ d}, where A ∈ Rp×d, b ∈ Rp, C ∈ Rm×d, and d ∈ Rm. There are several614

ways to differentiate this projection. The first is to use the KKT conditions as detailed in §2.2. A615

second way is consider the dual of the projection instead, which is the maximization of a quadratic616

function subject to non-negative constraints [55, §6.2]. That is, we can reduce the projection on617

a polyhedron to a problem of the form (8) with non-negative constraints, which we can in turn618

implicitly differentiate easily using the projected gradient fixed point, combined with the projection619

on the non-negative orthant. Finally, we apply the dual-primal mapping , which enjoys a closed form620

and is therefore amenable to autodiff, to obtain the primal projection.621

B.2 Jacobian products of proximity operators622

We provide several proximity operators, including for the lasso (soft thresholding), elastic net and623

group lasso (block soft thresholding). All satisfy closed form expressions and can be differentiated624

automatically via autodiff. For more advanced proximity operators, which do not enjoy a closed form,625

recent works have derived their Jacobians. The Jacobians of fused lasso and oscar were derived in626

[51]. For general total variation, the Jacobians were derived in [65, 21].627

19

C More examples of optimality criteria and fixed points628

To demonstrate the generality of our approach, we describe in this section more optimality mapping629

F or fixed point iteration T .630

Newton fixed point. Let x be a root of G(·, θ), i.e., G(x, θ) = 0. The fixed point iteration of631

Newton’s method for root-finding is632

T (x, θ) = x− η[∂1G(x, θ)]−1G(x, θ).

By the chain and product rules, we have633

∂1T (x, θ) = I − η(...)G(x, θ)− η[∂1G(x, θ)]−1∂1G(x, θ) = (1− η)I.

Using (3), we get A = −∂1F (x, θ) = ηI . Similarly,634

B = ∂2T (x, θ) = ∂2F (x, θ) = −η[∂1G(x, θ)]−1∂2G(x, θ).

Newton’s method for optimization is obtained by choosing G(x, θ) = ∇1f(x, θ), which gives635

T (x, θ) = x− η[∇2
1f(x, θ)]−1∇1f(x, θ). (15)

It is easy to check that we recover the same linear system as for the gradient descent fixed point above.636

A practical implementation can pre-compute an LU decomposition of ∂1G(x, θ), or a Cholesky637

decomposition if ∂1G(x, θ) is positive semi-definite.638

Proximal block coordinate descent fixed point. We now consider the case when x?(θ) is implic-639

itly defined as the solution640

x?(θ) := argmin
x∈Rd

f(x, θ) +

m∑
i=1

gi(xi, θ),

where g1, . . . , gm are possibly non-smooth functions operating on subvectors (blocks) x1, . . . , xm of641

x. In this case, we can use for i ∈ [m] the fixed point642

xi = [T (x, θ)]i = proxηigi(xi − ηi[∇1f(x, θ)]i, θ), (16)

where η1, . . . , ηm are block-wise step sizes. Clearly, when the step sizes are shared, i.e., η1 =643

· · · = ηm = η, this fixed point is equivalent to the proximal gradient fixed point (7) with g(x, θ) =644 ∑n
i=1 gi(xi, θ).645

Quadratic programming. We now show how to use the KKT conditions discussed in §2.2 to646

differentiate quadratic programs, recovering Optnet [6] as a special case. To give some intuition, let647

us start with a simple equality-constrained quadratic program (QP)648

argmin
z∈Rp

f(z, θ) =
1

2
z>Qz + c>z subject to H(z, θ) = Ez − d = 0,

where Q ∈ Rp×p, E ∈ Rq×p, d ∈ Rq. We gather the differentiable parameters as θ = (Q,E, c, d).649

The stationarity and primal feasibility conditions give650

∇1f(z, θ) + [∂1H(z, θ)]>ν = Qz + c+ E>ν = 0

H(z, θ) = Ez − d = 0.

In matrix notation, this can be rewritten as651 [
Q E>

E 0

] [
z
ν

]
=

[
−c
d

]
. (17)

We can write the solution of the linear system (17) as the root x = (z, ν) of a function F (x, θ). More652

generally, the QP can also include inequality constraints653

argmin
z∈Rp

f(z, θ) =
1

2
z>Qz + c>z subject to H(z, θ) = Ez − d = 0, G(z, θ) = Mz − h ≤ 0.

(18)

20

where M ∈ Rr×p and h ∈ Rr. We gather the differentiable parameters as θ = (Q,E,M, c, d, h).654

The stationarity, primal feasibility and complementary slackness conditions give655

∇1f(z, θ) + [∂1H(z, θ)]>ν + [∂1G(z, θ)]>λ = Qz + c+ E>ν +M>λ = 0

H(z, θ) = Ez − d = 0

λ ◦G(z, θ) = diag(λ)(Mz − h) = 0

In matrix notation, this can be written as656  Q E> M>

E 0 0
diag(λ)M 0 0

[zν
λ

]
=

[−c
d

λ ◦ h

]
While x = (z, ν, λ) is no longer the solution of a linear system, it is the root of a function F (x, θ)657

and therefore fits our framework.658

Conic programming. We now show that the differentiation of conic linear programs [3, 5], at the659

heart of differentiating through cvxpy layers [2], easily fits our framework. Consider the problem660

z?(λ), s?(λ) = argmin
z∈Rp,s∈Rm

c>z subject to Ez + s = d, s ∈ K, (19)

where λ = (c, E, d), E ∈ Rm×p, d ∈ Rm, c ∈ Rp and K ⊆ Rm is a cone; z and s are the primal661

and slack variables, respectively. Every convex optimization problem can be reduced to the form (19).662

Let us form the skew-symmetric matrix663

θ(λ) =

 0 E> c
−E 0 d
−c> −d> 0

 ∈ RN×N ,

where N = p+m+ 1. Following [3, 2, 5], we can use the homogeneous self-dual embedding to664

reduce the process of solving (19) to finding a root of the residual map665

F (x, θ) = θΠx+ Π∗x = ((θ − I)Π + I)x, (20)
where Π = projRp×K∗×R+

and K∗ ⊆ Rm is the dual cone. The splitting conic solver [54],666

which is based on ADMM, outputs a solution F (x?(θ), θ) = 0 which is decomposed as x?(θ) =667

(u?(θ), v?(θ), w?(θ)). We can then recover the optimal solution of (19) using668

z?(λ) = u?(θ(λ)) and s?(λ) = projK∗(v?(θ(λ)))− v?(θ(λ)).

The key oracle whose JVP/VJP we need is therefore Π, which is studied in [4]. The projection onto a669

few cones is available in our library and can be used to express F .670

Frank-Wolfe. We now consider671

x?(θ) = argmin
x∈C(θ)⊂Rd

f(x, θ), (21)

where C(θ) is a convex polytope, i.e., it is the convex hull of vertices v1(θ), . . . , vm(θ). The Frank-672

Wolfe algorithm requires a linear minimization oracle (LMO):673

s 7→ argmin
x∈C(θ)

〈s, x〉

and is a popular algorithm when this LMO is easier to compute than the projection onto C(θ).674

However, since this LMO is piecewise constant, its Jacobian is null almost everywhere. Inspired by675

SparseMAP [53], which corresponds to the case when f is a quadratic, we rewrite (21) as676

p?(θ) = argmin
p∈4m

g(p, θ) := f(V (θ)p, θ),

where V (θ) is a d × m matrix gathering the vertices v1(θ), . . . , vm(θ). We then have x?(θ) =677

V (θ)p?(θ). Since we have reduced (21) to minimization over the simplex, we can use the projected678

gradient fixed point to obtain679

T (p?(θ), θ) = proj4m(p?(θ)−∇1g(p∗(θ), θ)).

We can therefore compute the derivatives of p?(θ) by implicit differentiation and the derivatives of680

x?(θ) by chain rule. Frank-Wolfe implementations typically maintain the convex weights of the681

vertices, which we use to get an approximation of p?(θ). Moreover, it is well-known that after t682

iterations, at most t vertices are visited. We can leverage this sparsity to solve a smaller linear system.683

Moreover, in practice, we only need to compute VJPs of x?(θ).684

21

D Proofs and technical results685

Proof of Theorem 1. To simplify notations, we note A? := A(x?, θ) and Â := A(x̂, θ), and similarly686

for B and J . We have by definition of the Jacobian estimate function A?J? = B? and ÂĴ = B̂.687

Therefore we have688

J(x̂, θ)− ∂x?(θ) = Â−1B̂ −A−1? B?

= Â−1B̂ − Â−1B? + Â−1B? −A−1? B?

= Â−1(B̂ −B?) + (Â−1 −A−1?)B? .

For any invertible matrices M1,M2, it holds that M−11 −M−12 = M−11 (M2 −M1)M−12 , so689

‖M−12 −M−12 ‖op ≤ ‖M−11 ‖op‖M2 −M1‖op‖M−12 ‖op . (22)

Therefore,690

‖Â−1 −A−1? ‖op ≤
1

α2
‖Â−A?‖op ≤

γ

α2
‖x̂− x?(θ)‖ . (23)

As a consequence, the second term in J(x̂, θ)− ∂x?(θ) can be upper bounded and we obtain691

‖J(x̂, θ)− ∂x?(θ)‖ ≤ ‖Â−1(B̂ −B?)‖+ ‖(Â−1 −A−1?)B?‖

≤ ‖Â−1‖op‖B̂ −B?‖+
γ

α2
‖x̂− x?(θ)‖ ‖B?‖ ,

which yields the desired result.692

Corollary 1 (Jacobian precision for gradient descent fixed point). Let f be such that f(·, θ) is693

twice differentiable and α-strongly convex and ∇2
1f(·, θ) is γ-Lipschitz (in the operator norm) and694

∂2∇1f(x, θ) is β-Lipschitz and bounded in norm by R. The estimated Jacobian evaluated at x̂ is695

then given by696

J(x̂, θ) = −(∇2
1f(x̂, θ))−1∂2∇1f(x̂, θ) .

For all θ ∈ Rn, and any x̂ estimating x?(θ), we have the following bound for the approximation697

error of the estimated Jacobian698

‖J(x̂, θ)− ∂x?(θ)‖ ≤
(
β

α
+
γR

α2

)
‖x̂− x?(θ)‖ .

Proof of Corollary 1. This follows from Theorem 1, applied to this specificA(x, θ) andB(x, θ).699

Corollary 2 (Jacobian precision for proximal gradient descent fixed point). Let f be such that700

f(·, θ) is twice differentiable and α-strongly convex and ∇2
1f(·, θ) is γ-Lipschitz (in the operator701

norm) and ∂2∇1f(x, θ) is β-Lipschitz and bounded in norm by R. Let g : Rd → R be a twice-702

differentiable µ-strongly convex, λ smooth function (i.e. whose Hessian has a spectrum in [µ, λ],703

for which Γ(x, θ) = ∇2g(proxηg(x− η∇1f(x, θ)) is κ-Lipschitz in it first argument. The estimated704

Jacobian evaluated at x̂ is then given by705

J(x̂, θ) = −(Id + ηΓ(x, θ))(∇2
1f(x̂, θ) +∇2

1g(x̂))−1∂2∇1f(x̂, θ)(Id + ηΓ(x, θ))−1 .

For all θ ∈ Rn, and any x̂ estimating x?(θ), we have the following bound for the approximation706

error of the estimated Jacobian707

‖J(x̂, θ)− ∂x?(θ)‖ ≤ (β̃η/α̃η + R̃ηρ̃η)‖x̂− x?(θ)‖ ,
where708

α̃η :=
α+ µ

1 + ηλ
, R̃η :=

R

1 + ηµ
ρ̃η := (1 + ηλ)

γ + κ

(α+ µ)2
+

ηκ

α+ µ
β̃ρ :=

β

1 + ηµ
+

ηκR

(1 + ηµ)2

Proof of Corollary 2. First, let us note that proxηg(y, θ) does not depend on θ, since g itself does not709

depend on θ, and is therefore equal to classical proximity operator of ηg which, with a slight overload710

of notations, we denote as proxηg(y) (with a single argument). In other words,711 
proxηg(y, θ) = proxηg(y) ,

∂1proxηg(y, θ) = ∂proxηg(y) ,

∂2proxηg(y, θ) = 0 .

22

Regarding the first claim (expression of the estimated Jacobian evaluated at x̂), we first have that712

proxηg(y) is the solution to (x′ − y) + η∇g(x′) = 0 in x′ - by first-order condition for a smooth713

convex function. We therefore have that714

proxηg(y) = (I + η∇g)−1(y)

∂proxηg(y) = (Id + η∇2g(proxηg(y)))−1 ,

the first I and inverse being functional identity and inverse, and the second Id and inverse being in715

the matrix sense, by inverse rule for Jacobians ∂h(z) = [∂h−1(h(z))]−1 (applied to the prox).716

As a consequence, we have, for Γ(x, θ) = ∇2g(proxηg(x− η∇1f(x, θ)) that717

A(x, θ) = Id − (Id − η∇2
1f(x, θ))(Id + ηΓ(x, θ))−1

= [Id + ηΓ(x, θ)− (Id − η∇2
1f(x, θ))](Id + ηΓ(x, θ))−1

= η(∇2
1f(x, θ) + Γ(x, θ))(Id + ηΓ(x, θ))−1

B(x, θ) = η∂2∇1f(x, θ)(Id + ηΓ(x, θ))−1 .

As a consequence, for all x ∈ Rd, we have that718

J(x, θ) = −(Id + ηΓ(x, θ))(∇2
1f(x, θ) + Γ(x, θ))−1∂2∇1f(x, θ)(Id + ηΓ(x, θ))−1 .

In the following, we rescale both A and B by a factor η that is cancelled out in the computation of J .719

Under the same notations for Â, A?, B̂, and B?, we have that720

‖Â−1‖op ≤
1 + ηλ

α+ µ
:=

1

α̃η
, ‖B?‖ ≤

R

1 + ηµ
:= R̃η ,

and using (22):721

‖(Id + ηΓ?)
−1 − (Id + ηΓ̂)−1‖op ≤

ηκ‖x̂− x?(θ)‖
(1 + ηµ)2

.

Further, using that for all matrice M1,M
′
1,M2 and M ′2, we have722

‖M1M2 −M ′1M ′2‖op ≤ ‖M1‖op‖M2 −M ′2‖op + ‖M ′2‖op‖M1 −M ′1‖op ,

we have723

‖Â−1 −A−1? ‖op ≤
[
(1 + ηλ)

γ + κ

(α+ µ)2
+

ηκ

α+ µ

]
‖x̂− x?(θ)‖ := ρ̃η‖x̂− x?(θ)‖

‖B̂ −B?‖ ≤
[

β

1 + ηµ
+

ηκR

(1 + ηµ)2

]
‖x̂− x?(θ)‖ := β̃η‖x̂− x?(θ)‖ .

While this does not show that A is Lipschitz, as assumed in Theorem 1, this directly proves that A−1724

is Lipschitz, which is in fact what we need in the proof of Theorem 1, and that we deduced from725

the Lipschitzness and well-conditioning of A in (23). Following the proof of Theorem 1 yields as726

desired727

‖J(x̂, θ)− ∂x?(θ)‖ ≤ (β̃η/α̃η + R̃ηρ̃η)‖x̂− x?(θ)‖ .
728

E Experimental setup and additional results729

Our experiments use JAX [17], which is Apache2-licensed and scikit-learn [58], which is BSD-730

licensed.731

E.1 Hyperparameter optimization of multiclass SVMs732

Experimental setup. Synthetic datasets were generated using scikit-learn’s733

sklearn.datasets.make_classification [58], following a model adapted from [38].734

All datasets consist of m = 700 training samples belonging to k = 5 distinct735

classes. To simulate problems of different sizes, the number of features is varied as736

p ∈ {100, 250, 500, 750, 1000, 2000, 3000, 4000, 5000, 7500, 10000}, with 10% of features737

23

0 2000 4000 6000 8000 10000
Number of features

0.6

0.8

1.0

1.2

1.4

1.6

Ru
nt

im
e

pe
r s

te
p

(s
ec

on
ds

) Mirror descent (MD)

Unrolling
Implicit diff (ID)

(a)

0 2000 4000 6000 8000 10000
Number of features

0.75

1.00

1.25

1.50

1.75

2.00
Proximal gradient (PG)

Unrolling
Implicit diff (ID)

(b)

0 2000 4000 6000 8000 10000
Number of features

40

60

80

Block coordinate descent (BCD)
Unrolling
ID w/ MD fixed point
ID w/ PG fixed point

(c)

Figure 12: GPU runtime comparison of implicit differentiation and unrolling for hyperparameter
optimization of multiclass SVMs for multiple problem sizes (same setting as Figure 2). Error bars
represent 90% confidence intervals. Absent data points were due to out-of-memory errors (16 GB
maximum).

0 2000 4000 6000 8000 10000
Number of features

86

88

90

92

94

96

98

Va
lid

at
io

n
lo

ss

Mirror descent (MD)

Unrolling
Implicit diff (ID)

(a)

0 2000 4000 6000 8000 10000
Number of features

86

88

90

92

94

96

98
Proximal gradient (PG)

Unrolling
Implicit diff (ID)

(b)

0 2000 4000 6000 8000 10000
Number of features

86

88

90

92

94

96

98
Block coordinate descent (BCD)

Unrolling
ID w/ MD fixed point
ID w/ PG fixed point

(c)

Figure 13: Value of the outer problem objective function (validation loss) for hyperparameter
optimization of multiclass SVMs for multiple problem sizes (same setting as Figure 2). As can be
seen, all methods performed similarly in terms of validation loss.

being informative and the rest random noise. In all cases, an additional mval = 200 validation738

samples were generated from the same model to define the outer problem.739

For the inner problem, we employed three different solvers: (i) mirror descent, (ii) (accelerated)740

proximal gradient descent and (iii) block coordinate descent. Hyperparameters for all solvers were741

individually tuned manually to ensure convergence across the range of problem sizes. For mirror742

descent, a stepsize of 1.0 was used for the first 100 steps, following a inverse square root decay743

afterwards up to a total of 2500 steps. For proximal gradient descent, a stepsize of 5 · 10−4 was used744

for 2500 steps. The block coordinate descent solver was run for 500 iterations. All solvers used the745

same initialization, namely, xinit = 1
k1m×k, which satisfies the dual constraints.746

For the outer problem, gradient descent was used with a stepsize of 5 · 10−3 for the first 100 steps,747

following a inverse square root decay afterwards up to a total of 150 steps.748

Conjugate gradient was used to solve the linear systems in implicit differentiation for at most 2500749

iterations.750

All results reported pertaining CPU runtimes were obtained using an internal compute cluster. GPU751

results were obtained using a single NVIDIA P100 GPU with 16GB of memory per dataset. For each752

dataset size, we report the average runtime of an individual iteration in the outer problem, alongside a753

90% confidence interval estimated from the corresponding 150 runtime values.754

Additional results Figure 12 compares the runtime of implicit differentiation and unrolling on755

GPU. These results highlight a fundamental limitation of the unrolling approach in memory-limited756

systems such as accelerators, as the inner solver suffered from out-of-memory errors for most problem757

sizes (p ≥ 2000 for mirror descent, p ≥ 750 for proximal gradient and block coordinate descent).758

While it might be possible to ameliorate this limitation by reducing the maximum number of iterations759

in the inner solver, doing so might lead to additional challenges [69] and require careful tuning.760

24

Dataset Distillation (MNIST). Generalization Accuracy: 0.8556

Figure 14: Distilled MNIST dataset θ ∈ Rk×p obtained by solving (14) through unrolled differen-
tiation. Although there is no qualitative difference, the implicit differentiation approach is 4 times
faster.

Figure 13 depicts the validation loss (value of the outer problem objective function) at convergence. It761

shows that all approaches were able to solve the outer problem, with solutions produced by different762

approaches being qualitatively indistinguishable from each other across the range of problem sizes763

considered.764

E.2 Task-driven dictionary learning765

We downloaded from http://acgt.cs.tau.ac.il/multi_omic_benchmark/download.html766

a set of breast cancer gene expression data together with survival information generated by the TCGA767

Research Network (https://www.cancer.gov/tcga) and processed as explained by [60]. The768

gene expression matrix contains the expression value for p=20,531 genes in m=1,212 samples, from769

which we keep only the primary tumors (m=1,093). From the survival information, we select the770

patients who survived at least five years after diagnosis (m1 = 200), and the patients who died before771

five years (m0 = 99), resulting in a cohort of m = 299 patients with gene expression and binary772

label. Note that non-selected patients are those who are marked as alive but were not followed for 5773

years.774

To evaluate different binary classification methods on this cohort, we repeated 10 times a random split775

of the full cohort into a training (60%), validation (20%) and test (20%) sets. For each split and each776

method, 1) the method is trained with different parameters on the training set, 2) the parameter that777

maximizes the classification AUC on the validation set is selected, 3) the method is then re-trained on778

the union of the training and validation sets with the selected parameter, and 4) we measure the AUC779

of that model on the test set. We then report, for each method, the mean test AUC over the 10 repeats,780

together with a 95% confidence interval defined a mean ± 1.96 × standard error of the mean.781

We used Scikit Learn’s implementation of logistic regression regularized by `1 (lasso) and `2 (ridge)782

penalty from sklearn.linear_model.LogisticRegression, and varied the C regularization783

parameter over a grid of 10 values: {10−5, 10−3, . . . , 104}. For the unsupervised dictionary learn-784

ing experiment method, we estimated a dictionary from the gene expression data in the training785

and validation sets, using sklearn.decomposition.DictionaryLearning(n_components=10,786

alpha=2.0), which produces sparse codes in k = 10 dimensions with roughly 50% nonzero coeffi-787

cients by minimizing the squared Frobenius reconstruction distance with lasso regularization on the788

code. We then use sklearn.linear_model.LogisticRegression to train a logistic regression on789

the codes, varying the ridge regularization parameter C over a grid of 10 values {10−1, 100, . . . , 108}.790

Finally, we implemented the task-driven dictionary learning model (13) with our toolbox, following791

the pseudo-code in Figure 9. Like for the unsupervised dictionary learning experiment, we set the792

dimension of the codes to k = 10, and a fixed elastic net regularization on the inner optimization793

problem to ensure that the codes have roughly 50% sparsity. For the outer optimization problem, we794

solve an `2 regularized ridge regression problem, varying again the ridge regularization parameter795

C over a grid of 10 values {10−1, 100, . . . , 108}. Because the outer problem is non-convex, we796

minimize it using the Adam optimizer [43] with default parameters.797

E.3 Dataset Distillation798

Experimental setup. For the inner problem, we used gradient descent with backtracking line-799

search, while for the outer problem we used gradient descent with momentum and a fixed step-size.800

The momentum parameter was set to 0.9 while the step-size was set to 1.801

Fig. 3 was produced after 4000 iterations of the outer loop on CPU (Intel(R) Xeon(R) Platinum802

P-8136 CPU @ 2.00GHz), which took 1h55. Unrolled differentiation took instead 8h:05 (4 times803

25

http://acgt.cs.tau.ac.il/multi_omic_benchmark/download.html
https://www.cancer.gov/tcga

0 500 1000 1500 2000
Number of optimization steps

10 1

100

101

102

103

104

Gr
ad

ie
nt

 n
or

m

Unrolled FIRE optimizer

0 500 1000 1500 2000
Number of optimization steps

Implicit differentiation

Figure 15: L1 norm of position sensitivities in the molecular dynamics simulations, for 40 different
random initial conditions (different colored lines). Gradients through the unrolled FIRE optimizer [13]
for many initial conditions do not converge, in contrast to implicit differentiation.

more) to run the same number of iterations. As can be seen in Fig. 14, the output is the same in both804

approaches.805

E.4 Molecular dynamics806

Our experimental setup is adapted from the JAX-MD example notebook available at https://807

github.com/google/jax-md/blob/master/notebooks/meta_optimization.ipynb.808

We emphasize that calculating the gradient of the total energy objective, E(x, θ) =
∑
ij Uij(xij , θ),809

with respect to the diameter θ of the smaller particles, ∂E/∂θ, does not require implicit differentiation810

or unrolling. This is because∇1E(x, θ) = 0 at x = x?(θ):811

∇θE(x?(θ), θ) = ∂x?(θ)>∇1E(x?(θ), θ) +∇2E(x?(θ), θ) = ∇2E(x?(θ), θ).

This is known as Danskin’s theorem or envelope theorem. Thus instead, we consider sensitivities of812

position ∂x?(θ) directly, which does require implicit differentiation or unrolling.813

Our results comparing implicit and unrolled differentiation for calculating the sensitivty of position814

are shown in Fig. 15. We use BiCGSTAB [66] to perform the tangent linear solve. Like in the original815

JAX-MD experiment, we use k = 128 particles in two dimensions.816

26

https://github.com/google/jax-md/blob/master/notebooks/meta_optimization.ipynb
https://github.com/google/jax-md/blob/master/notebooks/meta_optimization.ipynb
https://github.com/google/jax-md/blob/master/notebooks/meta_optimization.ipynb

