CAP: Conformalized Abstention Policies for Context-Adaptive Risk Management for LLMs and VLMs

Sina Tayebati Divake Kumar DKUMAR33@UIC.EDU Nastaran Darabi NDARAB2@UIC.EDU Dinithi Jayasuriya DKASTH2@UIC.EDU Theja Tulabandhula

University of Illinois Chicago, Illinois, United States

Ranganath Krishnan*

AI Labs, Capital One, Texas, United States

Amit Ranjan Trivedi

University of Illinois Chicago, Illinois, United States

RANGANATH.KRISHNAN@CAPITALONE.COM

AMITRT@UIC.EDU

THEJA@UIC.EDU

STAYEB3@UIC.EDU

Editors: Hung-yi Lee and Tongliang Liu

Supplementary Details

A. Training Procedure

Algorithm 1 summarizes the training of our proposed adaptive conformal environment and abstention policy. In each episode, the policy network samples candidate confidence levels (α, β) , converts them into predict and abstain quantiles by computing nonconformity scores on the calibration set, and applies these thresholds to each test input to stochastically select among single-label prediction, set prediction, or abstention using sigmoid-smoothed gates. An episode-level cost function that penalizes misclassification, excessive prediction set size, and unnecessary abstention is evaluated; its negative serves as the reward to update the policy via REINFORCE. Through repeated interactions, the agent learns optimal quantile thresholds $\hat{q}_{\text{predict}}, \hat{q}_{\text{abstain}}$ that minimize expected cost while preserving conformal validity.

B. Models and Datasets used in this Study

We evaluate six foundation models: three VLMs (LLaVA-v1.6 at 7B, 13B, 34B) and three LLMs (Yi-34B, Qwen-14B, Qwen-7B). This selection spans 7B–34B parameters and includes both unimodal and multimodal architectures. The key characteristics of these models are shown in the table below.

Ten MCQA benchmarks are used—five VLM (MMBench, OODCV-VQA, ScienceQA, SEED-Bench, AI2D) and five LLM (MMLU, CosmosQA, HellaSwag, HalluDial, HaluSum). All are reformatted to fixed-choice format to standardize risk estimation and abstention

^{*} Work done while at Intel Labs

Algorithm 1 Conformalized Abstention Policy with Reinforcement Learning

Input: Calibration dataset \mathcal{D}_{cal} , LLM/VLM model M, learning rate η , policy network π_{θ} , cost function $C(\alpha, \beta)$

Output: Optimized thresholds $\hat{q}_{predict}$, $\hat{q}_{abstain}$ for each episode do

end

Sample
$$\alpha \sim \mathcal{N}(\mu_{\theta}^{(\alpha)}, \sigma_{\theta}^{(\alpha)2})$$
 and $\beta \sim \mathcal{N}(\mu_{\theta}^{(\beta)}, \sigma_{\theta}^{(\beta)2})$

Compute nonconformity scores $s_i = 1 - p_{y_i}(\mathbf{x}_i)$ for all $(\mathbf{x}_i, y_i) \in \mathcal{D}_{cal}$

Calculate quantile thresholds:

$$\hat{q}_{\text{predict}} = \text{Quantile}(\{s_i\}, (n+1)(1-\alpha)/n)$$

$$\hat{q}_{\text{abstain}} = \text{Quantile}(\{s_i\}, (n+1)(1-\beta)/n)$$
 for each test sample **x** do

end

Compute
$$s(\mathbf{x}) = 1 - \max_i p_i(\mathbf{x})$$

Compute action probabilities:

$$p_{\text{single}} = \sigma(-c[s(\mathbf{x}) - \hat{q}_{\text{predict}}])$$

$$p_{\text{abstain}} = \sigma(c[s(\mathbf{x}) - \hat{q}_{\text{abstain}}])$$

$$p_{\text{set}} = 1 - p_{\text{single}} - p_{\text{abstain}}$$

Sample action $a \in \{\text{single}, \text{set}, \text{abstain}\}\$ based on these probabilities

Evaluate performance and compute cost $C(\alpha, \beta)$

Compute reward $R(\alpha, \beta) = -C(\alpha, \beta)$

Update policy parameters:

$$\theta \leftarrow \theta + \eta \cdot R(\alpha, \beta) \nabla_{\theta} \log \pi_{\theta}(\alpha, \beta)$$

Table 1: LLM and VLM models used in evaluation.

Model	Type / Size	Context	Notes
LLaVA-v1.6-34B	VLM / 34B	8K	Vicuna backbone, visual input
LLaVA-v1.6-13B	VLM / 13B	8K	Multimodal reasoning
LLaVA-v1.6-7B	VLM / 7B	8K	Efficient visual—text fusion
Yi-34B	LLM / 34B	200K	Bilingual, trained on 3T tokens
Qwen-14B	LLM / 14B	32K	Multilingual, strong reasoning
Qwen-7B	LLM / 7B	8K-32K	Lightweight, 2.4T training tokens

behavior. Each dataset is split 50/50 into calibration and test sets. This ensures sufficient data for both conformal thresholding and evaluation.

C. Prompting Templates

This section describes the prompting strategies and templates used for evaluating VLMs and LLMs. The templates are designed to ensure consistent and effective evaluation across different model families.

Table 2: MCOA	bonohmorka	ugod in	thic study	Counta are	e rounded for brevity.
Table 2: MCGA	Denchmarks	usea m	tms stuay.	Counts are	e rounded for brevity.

Dataset	Modality	Key characteristics
MMBench	V + L	3 000+ MC questions spanning 20 ability dimensions;
		CircularEval scoring.
OODCV-VQA (Digits)	V + L	Out-of-distribution digit-counting subset with 2-choice questions.
ScienceQA	V + L	21 208 multimodal science questions with image/text context, lectures and explanations.
SEED-Bench	V + L	24 k MC questions across 27 capability dimensions evaluating text & image generation.
AI2D	V + L	5 k science diagrams, 150 k annotations, 15 k diagram-
		based MC questions.
MMLU	Text	57 subject-area tasks (elementary \rightarrow professional)
		testing broad knowledge.
CosmosQA	Text	35.6 k commonsense narrative comprehension prob-
		lems.
HellaSwag	Text	70 k adversarially-filtered grounded commonsense in-
		ference questions.
HalluDial	Text	4 094 dialogues (146 k samples) for dialogue-level
		hallucination detection.
HaluSum	Text	Summarization subset of the 35 k HaluEval bench-
		mark targeting hallucinations.

Prompting Templates for VLMs: For Vision-Language Models, we adopt a standardized prompting strategy tailored for multiple-choice visual question answering (MCQA) tasks. The template is inspired by the approach used in LLaVA and is designed to maximize compatibility across various VLM architectures. The prompt structure is as follows:

- The prompt begins with an attached image, serving as the primary visual input for the model.
- The question text follows, optionally including a hint if available.
- Six answer options are presented line by line, each prefixed with its corresponding letter (A-F). Additional choices such as "I don't know" and "None of the above" are also included to account for uncertainty.
- The prompt concludes with an explicit instruction: "Answer with the option's letter from the given choices directly."
- For models requiring a specific multimodal token format, the image is prepended with a designated image token, such as <image> or model-specific tokens like DEFAULT_IMAGE_TOKEN, ensuring compatibility with different VLM architectures.

• Depending on the model type, the prompt is wrapped within a structured conversational template. Examples include Vicuna-style conversation for LLaVA, structured input for CogVLM, Yi-VL, and Qwen-VL, ensuring consistency in processing.

To accommodate the constraints of single-image input in many VLMs, we intentionally exclude few-shot demonstrations from the prompts. The templates are adapted for specific model families, including LLaVA, Yi-VL, Qwen, Monkey, MoE-LLaVA, mPLUG-Owl, and MobileVLM, using their respective official repositories. For CogAgent and InternLM-XComposer2, the templates are sourced from their Hugging Face repositories.

Below is the base prompt template format utilized in our experiments:

```
Image: {<Image>}
Question: {Question Text}
Hint: {Optional Hint Text}
Choices:
A. {Content of option A}
B. {Content of option B}
C. {Content of option C}
D. {Content of option D}
E. I don't know
F. None of the above
Answer with the option's letter from the given choices directly.
```

Table 3: This table presents the structured prompt template used for multiple-choice question answering in VLMs. Each prompt consists of an attached image, a question (optionally with a hint), and six answer choices, including uncertainty options ("I don't know" and "None of the above"). To maintain consistency across different VLM architectures, model-specific input tokens (e.g., <image> or DEFAULT_IMAGE_TOKEN) are included when necessary. The prompt concludes with a direct instruction for the model to answer using the letter corresponding to its chosen option.

This template ensures a consistent format for evaluating VLMs across diverse datasets and tasks. The inclusion of six options (A-F) standardizes the evaluation process, while the explicit instruction at the end guides the model to provide a direct response.

Prompting Templates for LLMs: For Language Models, we employ a **base prompting strategy** without any strategy such as shared instruction or task-specific instruction prompt in order maintain a standardized approach across evaluations. This prompt is designed to evaluate several model performances across multiple tasks, including question answering (QA), reading comprehension (RC), commonsense inference (CI), dialogue response selection (DRS), and document summarization (DS). The prompt template is designed to provide a consistent structure for all tasks while accommodating task-specific information. The structure of the base prompt is as follows:

• The prompt begins with the task-specific context, dialogue, or document:

- For QA tasks, no background information is included.
- For RC and CI tasks, the keyword "Context" introduces the relevant background information.
- For DRS tasks, the keyword "Dialogue" incorporates the dialogue history.
- For DS tasks, the keyword "Document" includes the document content.
- The question is presented next, followed by a list of six answer options:
 - Four standard options (A-D) with task-specific content.
 - Two additional options: "I don't know" and "None of the above."
- The model is instructed to provide the letter corresponding to the correct answer.

Below is the base prompt template format utilized in our experiments:

```
Context/Dialogue/Document: {The context or dialogue history or document corresponding to the following question}

Question: {Question}

Choices:

A. {Content of option A}

B. {Content of option B}

C. {Content of option C}

D. {Content of option D}

E. I don't know

F. None of the above

Answer with the option's letter from the given choices directly.
```

Table 4: This table presents the structured prompt template used for multiple-choice question answering in LLMs. In the QA setting, no additional background information is included. For the RC and CI tasks, the keyword "Context" is introduced to incorporate relevant background information. Similarly, the keywords "Dialogue" and "Document" are used for DRS and DS tasks, respectively, to integrate necessary context.

This template ensures a standardized format for evaluating LLMs across diverse tasks. For instruction-finetuned LLMs, the entire prompt input is treated as the user's message, and the "apply_chat_template" function is used to transform the prompt into a chat format, ensuring compatibility with chat-based models.

D. Additional Results

We provide additional details on the Vision-Language Models (VLMs) and Large Language Models (LLMs), complementing the main body of the paper. We evaluated these models to broaden our analysis across various architectures and parameter scales.

For VLMs, we include results for several additional models: Monkey-Chat 7B (optimized for multimodal chat-based reasoning), InternLM-XComposer2-VL 7B (enhances

vision-language interaction through structured prompts), Yi-VL 6B (a smaller variant of the Yi-VL series, designed for effective image-text understanding), CogAgent-VQA 7B (focuses on visual question answering with robust reasoning capabilities), MobileVLMV2 7B (a lightweight VLM tailored for mobile and edge applications), mPLUG-Owl2 7B (offers strong image-text understanding capabilities), and Qwen-VL-Chat 7B (designed for dialogue-driven multimodal interactions). For LLMs, we also present results for the Llama-2 7B and 13B models, which serve as foundation models with strong text generation and reasoning capabilities.

D.1. Results of VLMs

Additional results in Tables 5, 6, and 7 demonstrate the performance of multiple VLMs in terms of uncertainty quantification: AUROC vs. AUARC, coverage rate vs. set size, and accuracy vs. expected calibration error, respectively. As shown in these tables, our CAP model outperforms other methods in hallucination detection and uncertainty-guided selective generation while satisfying a minimum coverage rate of 90% and maintaining a balanced set size across all cases.

Table 5: Evaluation of uncertainty quantification: Comparative analysis of the proposed CAP (Ours) method with standard Least Ambiguous Set-valued Classifiers (LAC) and Adaptive Prediction Sets (APS) methods (best values are in bold). The comparison includes different datasets and VLM models, with quality of uncertainty quantification evaluated using the Area Under the Receiver Operating Characteristic (AUROC) and the Area Under the Accuracy-Rejection Curve (AUARC).

Model	Method		AUROC	C↑ (Hallu	cination I	Detection)		AUAI	RC ↑ (Uno	certainty g	guided sele	ective gene	eration)
Widder	Wicehod	MMB	OOD	\mathbf{SQA}	SB	AI2D	Avg.	MMB	OOD	\mathbf{SQA}	SB	AI2D	Avg.
	APS	0.6360	0.2994	0.4916	0.5304	0.7662	0.5447	0.9285	0.7640	0.8950	0.8579	0.8635	0.8618
Monkey-Chat-7B	LAC	0.6855	0.4151	0.6501	0.4596	0.6716	0.5764	0.8988	0.7137	0.8646	0.8028	0.8413	0.8242
	Ours	0.7241	0.5182	0.6739	0.5550	0.7340	0.6410	0.9652	0.9174	0.9686	0.9335	0.9747	0.9519
	APS	0.6648	0.5000	0.7010	0.4731	0.6421	0.5962	0.9267	0.7999	0.9537	0.8642	0.8879	0.8865
InternLM-XComposer 2-VL-7B	LAC	0.6861	0.5275	0.7524	0.4810	0.6429	0.6180	0.9001	0.7807	0.9301	0.8322	0.8624	0.8611
	Ours	0.7068	0.6295	0.7909	0.5773	0.7035	0.6816	0.9667	0.9219	0.9762	0.9261	0.9624	0.9507
	APS	0.6416	0.3448	0.4930	0.5274	0.5341	0.5082	0.9240	0.7469	0.8448	0.8741	0.7828	0.8345
CogAgent-VQA-7B	LAC	0.7003	0.3396	0.5693	0.4844	0.4245	0.5036	0.8996	0.7015	0.8130	0.8251	0.7483	0.7975
	Ours	0.7432	0.5175	0.6355	0.5346	0.4867	0.5835	0.9746	0.9264	0.9608	0.9471	0.9553	0.9528
	APS	0.7646	0.3836	0.5652	0.4153	0.4867	0.5231	0.9610	0.8712	0.9503	0.9296	0.8508	0.9126
MobileVLM-v2-7B	LAC	0.7168	0.3963	0.6777	0.4617	0.3539	0.5213	0.9307	0.8196	0.9133	0.8673	0.7866	0.8635
	Ours	0.7368	0.5214	0.6672	0.5695	0.4633	0.5916	0.9682	0.9169	0.9698	0.9194	0.9103	0.9369
	APS	0.5347	0.4550	0.3855	0.3421	0.4862	0.4407	0.9625	0.8706	0.9111	0.9134	0.8628	0.9041
mPLUG-Owl2-7B	LAC	0.6575	0.5069	0.4828	0.3692	0.3432	0.4719	0.9247	0.8383	0.8677	0.8447	0.7949	0.8541
	Ours	0.6920	0.6316	0.5766	0.5169	0.4792	0.5793	0.9650	0.9244	0.9415	0.9051	0.9066	0.9285
	APS	0.6230	0.4610	0.5156	0.4990	0.6786	0.5554	0.8882	0.6872	0.8052	0.7918	0.8536	0.8052
Qwen-VL-Chat-7B	LAC	0.6557	0.4057	0.5394	0.4624	0.6511	0.5429	0.8593	0.6425	0.7851	0.7616	0.8292	0.7755
	Ours	0.6907	0.5348	0.6079	0.5481	0.6990	0.6161	0.9600	0.9171	0.9313	0.9262	0.9688	0.9407
	APS	0.6094	0.3616	0.5674	0.4747	0.4486	0.4923	0.9517	0.8790	0.9012	0.9023	0.8747	0.9018
Yi-VL-6B	LAC	0.6785	0.4638	0.5780	0.4387	0.4246	0.5167	0.9198	0.8461	0.8606	0.8501	0.8276	0.8608
	Ours	0.7432	0.6284	0.6446	0.5471	0.5331	0.6193	0.9676	0.9228	0.9551	0.9187	0.9312	0.9391
MoE-LLaVA-Phi2-2.7B	APS	0.6359	0.5785	0.5248	0.4199	0.4282	0.5175	0.9446	0.7610	0.8522	0.8815	0.8061	0.8491
	LAC	0.6864	0.5614	0.4810	0.4849	0.4142	0.5256	0.9070	0.7360	0.8083	0.8298	0.7576	0.8077
	Ours	0.7360	0.7147	0.5329	0.5772	0.5352	0.6192	0.9655	0.9477	0.9412	0.9342	0.9284	0.9434

Table 6: Evaluation of coverage rate (%) and set size: Comparative analysis of the proposed CAP (Ours) method with standard LAC and APS methods. The comparison includes different datasets and VLM models, showcasing the satisfied coverage rate and balanced set sizes produced by our method with <u>underlined</u> values.

Model	Method		C	Coverag	e (%) 1					SS	S ↓		
Woder	Method	MMB	OOD	SQA	\mathbf{SB}	AI2D	Avg.	$\overline{\text{MMB}}$	OOD	SQA	SB	AI2D	Avg.
	APS	97.85	96.27	98.84	96.50	97.28	97.35	3.787	3.669	3.455	4.013	4.040	3.793
Monkey-Chat-7B	LAC	89.45	88.75	90.44	89.22	90.98	89.77	1.611	2.181	1.656	2.505	2.346	2.060
	Ours	93.33	91.35	94.69	92.03	94.36	93.15	2.383	2.987	2.567	3.285	3.017	2.848
	APS	96.57	92.48	98.74	94.46	96.28	95.71	3.479	2.575	3.383	3.578	3.673	3.338
InternLM-XComposer2-VL-7B	LAC	89.17	88.96	89.58	89.90	89.87	89.50	1.966	1.819	1.443	2.584	2.358	2.034
	Ours	93.51	90.01	92.97	90.21	92.43	91.82	2.763	2.457	1.926	3.123	2.902	2.634
	APS	98.54	95.64	97.47	95.94	93.83	96.28	2.997	2.944	2.833	2.996	3.240	3.002
CogAgent-VQA-7B	LAC	90.68	90.37	90.14	89.36	90.65	90.24	1.665	1.971	1.895	1.975	2.640	2.030
	Ours	94.15	92.12	93.53	93.59	94.25	93.53	2.175	2.757	2.506	3.015	3.652	2.821
	APS	97.99	96.27	99.04	97.67	95.87	97.37	3.439	3.074	3.610	3.494	3.866	3.497
MobileVLM-v2-7B	LAC	89.63	90.86	89.07	89.49	90.23	89.86	1.629	2.153	1.625	2.106	2.925	2.088
	Ours	92.78	91.49	94.18	91.53	90.23	92.04	2.159	2.623	2.329	2.567	3.448	2.625
	APS	99.27	95.08	98.18	97.09	95.81	97.09	3.365	2.485	3.346	3.431	3.379	3.201
mPLUG-Owl2-7B	LAC	89.81	89.52	91.40	89.94	90.34	90.20	1.727	1.689	2.070	2.432	2.624	2.109
	Ours	92.65	91.28	91.91	91.94	89.52	91.46	2.080	2.062	2.401	2.753	2.934	2.446
	APS	96.21	93.46	92.01	92.97	96.70	94.27	3.413	3.589	3.349	3.692	3.796	3.568
Qwen-VL-Chat-7B	LAC	88.44	88.75	88.11	89.21	89.69	88.84	1.990	3.049	2.451	2.945	2.394	2.566
	Ours	93.01	90.37	90.44	91.06	93.94	91.76	2.665	3.673	3.074	3.504	3.061	3.195
	APS	98.63	95.43	98.13	95.94	96.77	96.98	3.326	2.506	3.503	3.116	3.491	3.189
Yi-VL-6B	LAC	90.22	89.94	89.78	89.84	91.01	90.16	1.621	1.536	2.009	2.106	2.514	1.957
	Ours	93.38	91.35	92.41	90.11	90.99	91.61	2.082	1.962	2.574	2.522	2.927	2.414
	APS	99.50	93.95	97.07	97.60	96.50	96.92	3.4961	2.2651	3.2969	3.3834	3.3425	3.1568
MoE-LLaVA-Phi2-2.7B	LAC	89.26	89.17	90.84	89.66	90.08	89.80	1.5843	1.5204	2.0976	2.0021	2.4891	1.9387
	Ours	92.10	91.63	92.67	91.34	90.84	91.72	2.0461	2.1280	2.6631	2.5178	2.9515	2.4613

D.2. Results of LLMs

Additional results in Tables 8, 9, and 10 demonstrate the performance of Llama-2 series models (7B and 13B) in terms of uncertainty quantification: AUROC vs. AUARC, coverage rate vs. set size, and accuracy vs. expected calibration error, respectively. As shown in these tables, our CAP model outperforms other methods in hallucination detection and uncertainty-guided selective generation while satisfying a minimum coverage rate of 90% and maintaining a balanced set size across all cases.

D.3. Accuracy vs. ECE

Figure 2 shows the accuracy vs. ECE for CAP, APS, and LAC across multiple VLMs. Lower ECE values indicate better calibration, meaning confidence scores are more reliable indicators of prediction accuracy. As shown, CAP improves accuracy while significantly reducing the expected calibration error. Figure 4 shows the same trend for LLMs, consistently reducing ECE while improving accuracy across all tasks and datasets.

D.4. Effect of Model Scale

We analyzed the impact of model scale on our CAP method's performance across models of varying sizes. As shown in Figure 5, larger models generally achieve higher accuracy, with the most significant gains observed when scaling from 13B to 34B parameters. Prediction

Table 7: Evaluation of accuracy (%) and ECE: Comparative analysis of the proposed CAP (Ours) method with standard LAC and APS methods. The comparison includes different datasets and VLM models, demonstrating a significant reduction in expected calibration error while improving overall accuracy.

Model	Method			Accurac	y (%) 1					EC	E \		
Widder	Wicelloa	MMB	OOD	\mathbf{SQA}	SB	AI2D	Avg.	MMB	OOD	\mathbf{SQA}	SB	AI2D	Avg.
	APS	81.40	76.75	79.27	72.33	73.58	76.67	0.2134	0.3583	0.2696	0.2825	0.3237	0.2895
Monkey-Chat-7B	LAC	81.26	77.06	80.89	72.58	74.53	77.26	0.1480	0.3042	0.1857	0.2494	0.2608	0.2296
	Ours	84.03	78.61	82.37	74.57	78.70	79.66	0.0159	0.0336	0.0190	0.0336	0.0207	0.0246
	APS	76.72	77.04	81.73	70.80	72.52	75.76	0.1805	0.2179	0.1727	0.2203	0.2417	0.2066
InternLM-XComposer2-VL-7B	LAC	77.30	77.88	82.72	71.72	73.13	76.55	0.1284	0.1871	0.1073	0.2093	0.1776	0.1620
	Ours	78.46	78.07	84.10	72.15	75.02	77.56	0.0341	0.0173	0.0246	0.0593	0.0289	0.0328
	APS	81.07	76.86	75.98	76.03	67.99	75.59	0.2310	0.3614	0.3043	0.2327	0.3148	0.2889
CogAgent-VQA-7B	LAC	80.55	76.91	76.16	75.48	67.98	75.42	0.1608	0.3407	0.2340	0.2151	0.2912	0.2484
	Ours	83.29	79.72	79.25	76.18	69.60	77.61	0.0134	0.0470	0.0366	0.0246	0.0110	0.0265
	APS	80.79	74.86	78.11	74.30	63.37	74.29	0.1460	0.2230	0.1790	0.1691	0.2838	0.2002
MobileVLM-v2-7B	LAC	80.85	75.23	78.90	74.28	63.41	74.53	0.1202	0.2239	0.1363	0.1927	0.2932	0.1933
	Ours	82.12	75.38	79.66	73.95	64.77	75.18	0.0464	0.0503	0.0306	0.0780	0.0643	0.0539
	APS	78.94	80.48	73.87	70.54	65.42	73.85	0.1578	0.1858	0.2260	0.1982	0.2588	0.2053
mPLUG-Owl2-7B	LAC	78.67	79.91	74.53	69.76	64.91	73.55	0.1453	0.1574	0.2093	0.2384	0.2857	0.2072
	Ours	79.78	80.88	75.28	69.88	65.96	74.36	0.0473	0.0352	0.0439	0.0863	0.0668	0.0559
	APS	76.71	62.45	70.04	66.86	71.25	69.46	0.2350	0.3944	0.2487	0.2937	0.3211	0.2986
Qwen-VL-Chat-7B	LAC	76.78	63.91	71.12	67.42	72.10	70.27	0.1653	0.3684	0.2249	0.2739	0.2510	0.2567
	Ours	79.70	67.14	73.18	69.89	76.11	73.20	0.0167	0.0316	0.0403	0.0379	0.0087	0.0270
	APS	80.54	81.23	74.40	74.59	67.98	75.75	0.1694	0.1720	0.2553	0.1837	0.2621	0.2085
Yi-VL-6B	LAC	80.70	80.67	74.77	74.18	68.29	75.72	0.1263	0.1594	0.2136	0.2019	0.2565	0.1915
	Ours	81.82	81.05	76.03	73.99	69.72	76.52	0.0308	0.0332	0.0287	0.0650	0.0504	0.0416
	APS	79.51	82.14	72.74	74.51	66.56	75.89	0.2067	0.2863	0.2687	0.2476	0.3266	0.2672
MoE-LLaVA-Phi2-2.7B	LAC	79.80	81.16	74.08	74.86	66.66	75.71	0.1377	0.2385	0.2212	0.2100	0.2825	0.2180
	Ours	81.62	83.06	74.44	75.86	69.02	76.80	0.0224	0.0991	0.0259	0.0333	0.0238	0.0409

Table 8: Evaluation of uncertainty quantification: Comparative analysis of the proposed CAP (Ours) method with standard Least Ambiguous Set-valued Classifiers (LAC) and Adaptive Prediction Sets (APS) methods (best values are in bold). The comparison includes different datasets and LLM models, with quality of uncertainty quantification evaluated using the Area Under the Receiver Operating Characteristic (AUROC) and the Area Under the Accuracy-Rejection Curve (AUARC).

Model	Method	$\mathbf{AUROC} \uparrow (\mathbf{Hallucination\ Detection})$						$\mathbf{AUARC} \uparrow (\text{Uncertainty guided selective generation})$						
		HSwag	HDial	CQA	HSum	MMLU	Avg.	HSwag	HDial	CQA	HSum	MMLU	Avg.	
	APS	0.4884	0.4646	0.6378	0.6353	0.4495	0.5351	0.3473	0.3301	0.5296	0.2962	0.5774	0.4161	
Llama2-7B	LAC	0.4079	0.2623	0.5490	0.7205	0.3594	0.4598	0.3395	0.2891	0.5185	0.2923	0.5496	0.3978	
	Ours	0.7066	0.7040	0.7724	0.7672	0.6324	0.7165	0.8681	0.8354	0.9599	0.9078	0.8935	0.8929	
	APS	0.6225	0.3460	0.5186	0.4092	0.4132	0.4619	0.5788	0.5065	0.7893	0.4709	0.7455	0.6182	
Llama2-13B	LAC	0.4685	0.2007	0.6377	0.3478	0.3808	0.4071	0.5591	0.4801	0.7710	0.4580	0.6950	0.5926	
	Ours	0.6396	0.5043	0.7159	0.6255	0.5572	0.6085	0.9254	0.8134	0.9685	0.8986	0.9177	0.9047	

set size inversely correlates with model scale; larger models produce smaller sets, reflecting greater precision and reduced uncertainty. Additionally, AUROC and AUARC consistently improve with increasing model scale, indicating that larger models are more accurate, less prone to hallucinations, and better at abstaining when uncertainty is high.

Further, Figures 7 and 8 illustrate these gains for LLMs, showing larger models achieve higher accuracy and produce smaller set sizes while better avoiding hallucinations and performing uncertainty-guided selective generation. In Figure 6, we observe slight gains in all metrics when comparing VLMs with 7B parameters against Yi-VL with 6B parameters.

Table 9: Evaluation of coverage rate (%) and set size: Comparative analysis of the proposed CAP (Ours) method with standard LAC and APS methods. The comparison includes different datasets and LLM models, showcasing the satisfied coverage rate and balanced set sizes produced by our method with <u>underlined</u> values.

Model	Method		Coverage (%) \uparrow							$\mathbf{SS}\downarrow$						
		HSwag	HDial	CQA	HSum	MMLU	Avg.	HSwag	HDial	CQA	HSum	MMLU	Avg.			
I.I 9.7D	APS	90.02	90.44	91.78	89.72	92.50	90.89	3.346	3.257	2.661	3.227	3.319	3.162			
Llama2-7B	LAC Ours	$\frac{90.66}{90.38}$	89.96 90.42	90.08 91.22	89.22 89.78	90.54 91.04	90.09 <u>90.56</u>	$\frac{3.253}{3.378}$	$\frac{3.251}{3.252}$	$\frac{2.275}{2.316}$	$\frac{3.423}{3.360}$	$\frac{3.021}{3.191}$	$\frac{3.044}{3.099}$			
Llama2-13b	APS LAC	89.70 89.88	90.32 90.62	97.06 90.52	90.26 89.98	95.86 89.18	92.64 90.03	2.801 2.497	$2.571 \\ 2.535$	2.881 1.568	$2.306 \\ 2.117$	$3.320 \\ 2.578$	2.776 2.259			
	Ours	90.11	90.41	94.40	90.30	93.62	91.77	3.071	2.537	2.465	2.122	3.104	2.660			

Table 10: Evaluation of accuracy (%) and ECE: Comparative analysis of the proposed CAP (Ours) method with standard LAC and APS methods. The comparison includes different datasets and LLM models, demonstrating a significant reduction in expected calibration error while improving overall accuracy.

Model	Method	Accuracy $(\%) \uparrow$							$\mathbf{ECE}\downarrow$						
		HSwag	HDial	CQA	HSum	MMLU	Avg.	HSwag	HDial	CQA	HSum	MMLU	Avg.		
	APS	54.86	50.54	74.43	60.78	59.33	59.99	0.5720	0.5934	0.5085	0.6176	0.4894	0.5562		
Llama2-7B	LAC	55.05	50.24	74.10	59.23	59.11	59.55	0.5784	0.5927	0.4915	0.6127	0.4703	0.5491		
	Ours	61.00	57.78	80.32	68.36	64.13	66.32	0.0606	0.0572	0.1953	0.1693	0.0414	0.1048		
	APS	70.38	66.84	83.42	72.59	65.48	71.74	0.4165	0.4207	0.3462	0.4666	0.3930	0.4086		
Llama2-13b	LAC	70.46	66.69	83.26	72.34	64.79	71.49	0.4183	0.4373	0.2808	0.4638	0.3444	0.3889		
	Ours	73.31	64.28	85.89	73.44	68.11	73.00	0.0814	0.0721	0.1138	0.1559	0.0203	0.0887		

However, since VLM size differences in this benchmark are minor, part of the performance gap may also stem from differences in finetuning methods and pre-trained models.

D.5. Size Distribution of Predicted Set

The distribution of prediction types offers insight into our model's decision-making behavior across different vision-language tasks. LLaVA-1.6-34B favors set predictions across all benchmarks, with rates ranging from 55.4% (AI2D) to 62.4% (ScienceQA). This suggests the model often identifies multiple plausible answers rather than a single one due to underlying VLM response uncertainty. Single predictions comprise a substantial portion (31.5% to 38.8%), indicating high confidence in unique answers. Abstention rates vary notably across datasets, from 6.1% on ScienceQA to 12.8% on AI2D, reflecting the model's ability to recognize uncertainty in visual reasoning contexts. This pattern repeats for the Yi-34B LLM across five different tasks. This distribution demonstrates our selective prediction approach effectively captures different levels of model uncertainty, enabling more nuanced and reliable responses across diverse vision-language tasks.

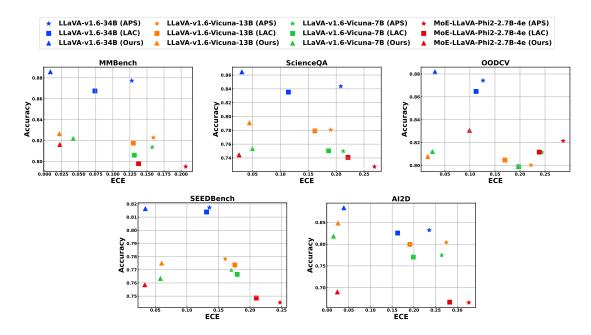


Figure 1: Accuracy vs. Expected Calibration Error (ECE) comparison of CAP, APS, and LAC across various VLMs and five datasets: MMBench, ScienceQA, OODCV, SEEDBench, and AI2D. An ideal model has high accuracy and low ECE (upper-left).

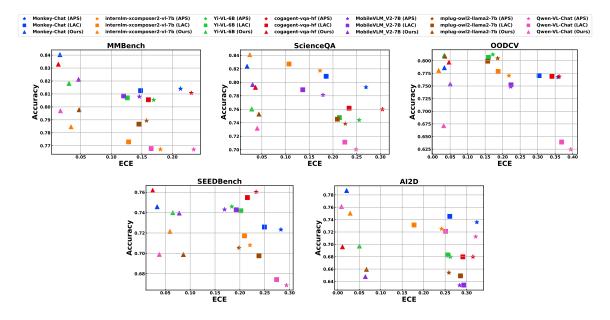


Figure 2: Accuracy versus Expected Calibration Error (ECE) comparison between CAP, APS and LAC methods across different VLMs and five datasets: MMBench, ScienceQA, OODCV, SEEDBench, AI2D. An ideal model has high accuracy and low ECE, indicating accurate predictions with well-calibrated uncertainty quantification (upper-left of the plot).

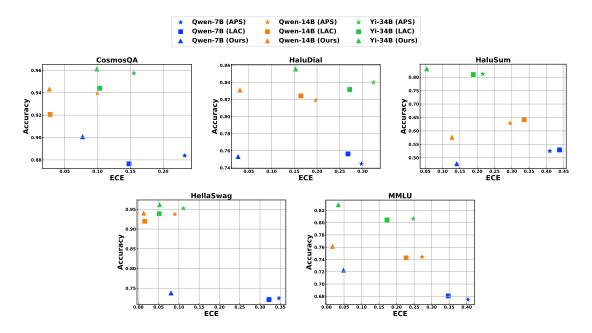


Figure 3: Accuracy versus Expected Calibration Error (ECE) comparison between CAP, APS and LAC methods across different LLMs and five datasets: CosmosQA, HaluDial, HaluSum, HellaSwag, MMLU. An ideal model has high accuracy and low ECE, indicating accurate predictions with well-calibrated uncertainty quantification (upper-left of the plot). The ECE of CAP shows significant improvement compared to baseline methods.

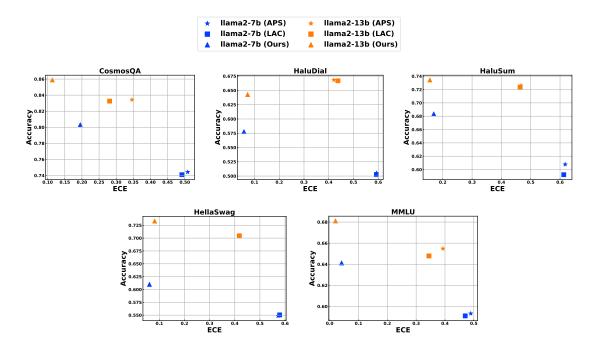


Figure 4: Accuracy versus Expected Calibration Error (ECE) comparison between CAP, APS, and LAC across five LLM datasets: CosmosQA, HaluDial, HaluSum, HellaSwag, and MMLU. Ideal models appear in the upper-left (high accuracy, low ECE). CAP consistently outperforms baselines in calibration quality.

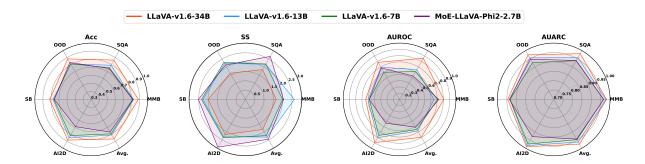


Figure 5: Performance comparison of VLMs with different model sizes (2.7B to 34B) across various metrics. Figures from left to right represent the performance of four models on one of four metrics: i) accuracy, ii) set size, iii) AUROC, and iv) AUARC. Each figure shows model performance across five VLM benchmark datasets and the effect of model scale (number of parameters) on different uncertainty metrics.

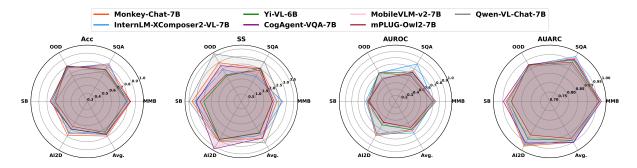


Figure 6: Performance comparison of additional VLMs with different model sizes (6B to 7B) across various metrics. Figures from left to right represent the performance of four models on one of four metrics: i) accuracy, ii) set size, iii) AUROC, and iv) AUARC. Each figure shows model performance across five VLM benchmark datasets and the effect of model scale (number of parameters) on different uncertainty metrics.

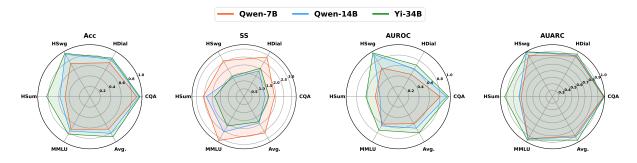


Figure 7: Performance comparison of LLMs with different model sizes (7B to 34B) across various metrics. Figures from left to right represent the performance of four models on one of four metrics: i) accuracy, ii) set size, iii) AUROC, and iv) AUARC. Each figure shows model performance across five LLM benchmark datasets and the effect of model scale (number of parameters) on different uncertainty metrics.

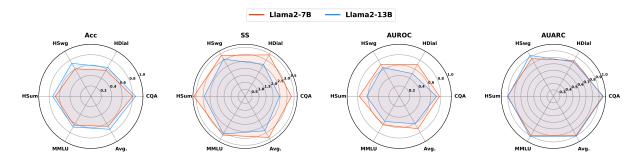


Figure 8: Performance comparison of Llama-2 series LLMs with different model sizes (7B and 13B) across various metrics. Figures from left to right represent the performance of two models on four metrics: i) accuracy, ii) set size, iii) AUROC, and iv) AUARC. Each figure shows model performance across five LLM benchmark datasets and the effect of model scale (number of parameters) on different uncertainty metrics.