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Supplementary Details

A. Training Procedure

Algorithm 1 summarizes the training of our proposed adaptive conformal environment and
abstention policy. In each episode, the policy network samples candidate confidence levels
(α, β), converts them into predict and abstain quantiles by computing nonconformity scores
on the calibration set, and applies these thresholds to each test input to stochastically select
among single-label prediction, set prediction, or abstention using sigmoid-smoothed gates.
An episode-level cost function that penalizes misclassification, excessive prediction set size,
and unnecessary abstention is evaluated; its negative serves as the reward to update the
policy via REINFORCE. Through repeated interactions, the agent learns optimal quantile
thresholds q̂predict, q̂abstain that minimize expected cost while preserving conformal validity.

B. Models and Datasets used in this Study

We evaluate six foundation models: three VLMs (LLaVA-v1.6 at 7B, 13B, 34B) and three
LLMs (Yi-34B, Qwen-14B, Qwen-7B). This selection spans 7B–34B parameters and includes
both unimodal and multimodal architectures. The key characteristics of these models are
shown in the table below.

Ten MCQA benchmarks are used—five VLM (MMBench, OODCV-VQA, ScienceQA,
SEED-Bench, AI2D) and five LLM (MMLU, CosmosQA, HellaSwag, HalluDial, HaluSum).
All are reformatted to fixed-choice format to standardize risk estimation and abstention

∗ Work done while at Intel Labs

© 2025 S. Tayebati, D. Kumar, N. Darabi, D. Jayasuriya, T. Tulabandhula, R. Krishnan & A. Ranjan Trivedi.



Tayebati Kumar Darabi Jayasuriya Tulabandhula Krishnan Ranjan Trivedi

Algorithm 1 Conformalized Abstention Policy with Reinforcement Learning

Input: Calibration dataset Dcal, LLM/VLM model M , learning rate η, policy network
πθ, cost function C(α, β)
Output: Optimized thresholds q̂predict, q̂abstain for each episode do

end

Sample α ∼ N (µ
(α)
θ , σ

(α)2
θ ) and β ∼ N (µ

(β)
θ , σ

(β)2
θ )

Compute nonconformity scores si = 1− pyi(xi) for all (xi, yi) ∈ Dcal

Calculate quantile thresholds:
q̂predict = Quantile({si}, (n+ 1)(1− α)/n)
q̂abstain = Quantile({si}, (n+ 1)(1− β)/n) for each test sample x do

end
Compute s(x) = 1−maxi pi(x)

Compute action probabilities:
psingle = σ(−c[s(x)− q̂predict])
pabstain = σ(c[s(x)− q̂abstain])
pset = 1− psingle − pabstain

Sample action a ∈ {single, set, abstain} based on these probabilities

Evaluate performance and compute cost C(α, β)
Compute reward R(α, β) = −C(α, β)
Update policy parameters:

θ ← θ + η ·R(α, β)∇θ log πθ(α, β)

Table 1: LLM and VLM models used in evaluation.

Model Type / Size Context Notes

LLaVA-v1.6-34B VLM / 34B 8K Vicuna backbone, visual input
LLaVA-v1.6-13B VLM / 13B 8K Multimodal reasoning
LLaVA-v1.6-7B VLM / 7B 8K Efficient visual–text fusion
Yi-34B LLM / 34B 200K Bilingual, trained on 3T tokens
Qwen-14B LLM / 14B 32K Multilingual, strong reasoning
Qwen-7B LLM / 7B 8K–32K Lightweight, 2.4T training tokens

behavior. Each dataset is split 50/50 into calibration and test sets. This ensures sufficient
data for both conformal thresholding and evaluation.

C. Prompting Templates

This section describes the prompting strategies and templates used for evaluating VLMs
and LLMs. The templates are designed to ensure consistent and effective evaluation across
different model families.
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Table 2: MCQA benchmarks used in this study. Counts are rounded for brevity.

Dataset Modality Key characteristics

MMBench V+L 3 000+ MC questions spanning 20 ability dimensions;
CircularEval scoring.

OODCV-VQA (Digits) V+L Out-of-distribution digit-counting subset with 2-
choice questions.

ScienceQA V+L 21 208 multimodal science questions with image/text
context, lectures and explanations.

SEED-Bench V+L 24 k MC questions across 27 capability dimensions
evaluating text & image generation.

AI2D V+L 5 k science diagrams, 150 k annotations, 15 k diagram-
based MC questions.

MMLU Text 57 subject-area tasks (elementary → professional)
testing broad knowledge.

CosmosQA Text 35.6 k commonsense narrative comprehension prob-
lems.

HellaSwag Text 70 k adversarially-filtered grounded commonsense in-
ference questions.

HalluDial Text 4 094 dialogues (146 k samples) for dialogue-level
hallucination detection.

HaluSum Text Summarization subset of the 35 k HaluEval bench-
mark targeting hallucinations.

Prompting Templates for VLMs: For Vision-Language Models, we adopt a stan-
dardized prompting strategy tailored for multiple-choice visual question answering (MCQA)
tasks. The template is inspired by the approach used in LLaVA and is designed to maximize
compatibility across various VLM architectures. The prompt structure is as follows:

• The prompt begins with an attached image, serving as the primary visual input for
the model.

• The question text follows, optionally including a hint if available.

• Six answer options are presented line by line, each prefixed with its corresponding
letter (A-F). Additional choices such as “I don’t know” and “None of the above” are
also included to account for uncertainty.

• The prompt concludes with an explicit instruction: “Answer with the option’s letter
from the given choices directly.”

• For models requiring a specific multimodal token format, the image is prepended with a
designated image token, such as<image> or model-specific tokens like DEFAULT IMAGE TOKEN,
ensuring compatibility with different VLM architectures.
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• Depending on the model type, the prompt is wrapped within a structured conversational
template. Examples include Vicuna-style conversation for LLaVA, structured input
for CogVLM, Yi-VL, and Qwen-VL, ensuring consistency in processing.

To accommodate the constraints of single-image input in many VLMs, we intentionally
exclude few-shot demonstrations from the prompts. The templates are adapted for specific
model families, including LLaVA, Yi-VL, Qwen, Monkey, MoE-LLaVA, mPLUG-Owl, and
MobileVLM, using their respective official repositories. For CogAgent and InternLM-
XComposer2, the templates are sourced from their Hugging Face repositories.

Below is the base prompt template format utilized in our experiments:

Image: {<Image>}

Question: {Question Text}

Hint: {Optional Hint Text}

Choices:

A. {Content of option A}
B. {Content of option B}
C. {Content of option C}
D. {Content of option D}
E. I don’t know

F. None of the above

Answer with the option’s letter from the given choices directly.

Table 3: This table presents the structured prompt template used for multiple-choice question
answering in VLMs. Each prompt consists of an attached image, a question (optionally with
a hint), and six answer choices, including uncertainty options (”I don’t know” and ”None of
the above”). To maintain consistency across different VLM architectures, model-specific input
tokens (e.g., <image> or DEFAULT IMAGE TOKEN) are included when necessary. The prompt
concludes with a direct instruction for the model to answer using the letter corresponding
to its chosen option.

This template ensures a consistent format for evaluating VLMs across diverse datasets
and tasks. The inclusion of six options (A-F) standardizes the evaluation process, while the
explicit instruction at the end guides the model to provide a direct response.

Prompting Templates for LLMs: For Language Models, we employ a base
prompting strategy without any strategy such as shared instruction or task-specific
instruction prompt in order maintain a standardized approach across evaluations. This
prompt is designed to evaluate several model performances across multiple tasks, including
question answering (QA), reading comprehension (RC), commonsense inference (CI), dialogue
response selection (DRS), and document summarization (DS). The prompt template is
designed to provide a consistent structure for all tasks while accommodating task-specific
information. The structure of the base prompt is as follows:

• The prompt begins with the task-specific context, dialogue, or document:
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– For QA tasks, no background information is included.

– For RC and CI tasks, the keyword “Context” introduces the relevant background
information.

– For DRS tasks, the keyword “Dialogue” incorporates the dialogue history.

– For DS tasks, the keyword “Document” includes the document content.

• The question is presented next, followed by a list of six answer options:

– Four standard options (A-D) with task-specific content.

– Two additional options: “I don’t know” and “None of the above.”

• The model is instructed to provide the letter corresponding to the correct answer.

Below is the base prompt template format utilized in our experiments:

Context/Dialogue/Document: {The context or dialogue history or document

corresponding to the following question}

Question: {Question}

Choices:

A. {Content of option A}
B. {Content of option B}
C. {Content of option C}
D. {Content of option D}
E. I don’t know

F. None of the above

Answer with the option’s letter from the given choices directly.

Table 4: This table presents the structured prompt template used for multiple-choice question
answering in LLMs. In the QA setting, no additional background information is included.
For the RC and CI tasks, the keyword “Context” is introduced to incorporate relevant
background information. Similarly, the keywords “Dialogue” and “Document” are used for
DRS and DS tasks, respectively, to integrate necessary context.

This template ensures a standardized format for evaluating LLMs across diverse tasks.
For instruction-finetuned LLMs, the entire prompt input is treated as the user’s message,
and the “apply chat template” function is used to transform the prompt into a chat format,
ensuring compatibility with chat-based models.

D. Additional Results

We provide additional details on the Vision-Language Models (VLMs) and Large Language
Models (LLMs), complementing the main body of the paper. We evaluated these models to
broaden our analysis across various architectures and parameter scales.

For VLMs, we include results for several additional models: Monkey-Chat 7B (opti-
mized for multimodal chat-based reasoning), InternLM-XComposer2-VL 7B (enhances
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vision-language interaction through structured prompts), Yi-VL 6B (a smaller variant of
the Yi-VL series, designed for effective image-text understanding), CogAgent-VQA 7B
(focuses on visual question answering with robust reasoning capabilities), MobileVLMV2
7B (a lightweight VLM tailored for mobile and edge applications), mPLUG-Owl2 7B
(offers strong image-text understanding capabilities), and Qwen-VL-Chat 7B (designed
for dialogue-driven multimodal interactions). For LLMs, we also present results for the
Llama-2 7B and 13B models, which serve as foundation models with strong text generation
and reasoning capabilities.

D.1. Results of VLMs

Additional results in Tables 5, 6, and 7 demonstrate the performance of multiple VLMs
in terms of uncertainty quantification: AUROC vs. AUARC, coverage rate vs. set size,
and accuracy vs. expected calibration error, respectively. As shown in these tables, our
CAP model outperforms other methods in hallucination detection and uncertainty-guided
selective generation while satisfying a minimum coverage rate of 90% and maintaining a
balanced set size across all cases.

Table 5: Evaluation of uncertainty quantification: Comparative analysis of the proposed
CAP (Ours) method with standard Least Ambiguous Set-valued Classifiers (LAC) and
Adaptive Prediction Sets (APS) methods (best values are in bold). The comparison includes
different datasets and VLM models, with quality of uncertainty quantification evaluated
using the Area Under the Receiver Operating Characteristic (AUROC) and the Area Under
the Accuracy-Rejection Curve (AUARC).

Model Method
AUROC ↑ (Hallucination Detection) AUARC ↑ (Uncertainty guided selective generation)

MMB OOD SQA SB AI2D Avg. MMB OOD SQA SB AI2D Avg.

Monkey-Chat-7B
APS 0.6360 0.2994 0.4916 0.5304 0.7662 0.5447 0.9285 0.7640 0.8950 0.8579 0.8635 0.8618
LAC 0.6855 0.4151 0.6501 0.4596 0.6716 0.5764 0.8988 0.7137 0.8646 0.8028 0.8413 0.8242
Ours 0.7241 0.5182 0.6739 0.5550 0.7340 0.6410 0.9652 0.9174 0.9686 0.9335 0.9747 0.9519

InternLM-XComposer2-VL-7B
APS 0.6648 0.5000 0.7010 0.4731 0.6421 0.5962 0.9267 0.7999 0.9537 0.8642 0.8879 0.8865
LAC 0.6861 0.5275 0.7524 0.4810 0.6429 0.6180 0.9001 0.7807 0.9301 0.8322 0.8624 0.8611
Ours 0.7068 0.6295 0.7909 0.5773 0.7035 0.6816 0.9667 0.9219 0.9762 0.9261 0.9624 0.9507

CogAgent-VQA-7B
APS 0.6416 0.3448 0.4930 0.5274 0.5341 0.5082 0.9240 0.7469 0.8448 0.8741 0.7828 0.8345
LAC 0.7003 0.3396 0.5693 0.4844 0.4245 0.5036 0.8996 0.7015 0.8130 0.8251 0.7483 0.7975
Ours 0.7432 0.5175 0.6355 0.5346 0.4867 0.5835 0.9746 0.9264 0.9608 0.9471 0.9553 0.9528

MobileVLM-v2-7B
APS 0.7646 0.3836 0.5652 0.4153 0.4867 0.5231 0.9610 0.8712 0.9503 0.9296 0.8508 0.9126
LAC 0.7168 0.3963 0.6777 0.4617 0.3539 0.5213 0.9307 0.8196 0.9133 0.8673 0.7866 0.8635
Ours 0.7368 0.5214 0.6672 0.5695 0.4633 0.5916 0.9682 0.9169 0.9698 0.9194 0.9103 0.9369

mPLUG-Owl2-7B
APS 0.5347 0.4550 0.3855 0.3421 0.4862 0.4407 0.9625 0.8706 0.9111 0.9134 0.8628 0.9041
LAC 0.6575 0.5069 0.4828 0.3692 0.3432 0.4719 0.9247 0.8383 0.8677 0.8447 0.7949 0.8541
Ours 0.6920 0.6316 0.5766 0.5169 0.4792 0.5793 0.9650 0.9244 0.9415 0.9051 0.9066 0.9285

Qwen-VL-Chat-7B
APS 0.6230 0.4610 0.5156 0.4990 0.6786 0.5554 0.8882 0.6872 0.8052 0.7918 0.8536 0.8052
LAC 0.6557 0.4057 0.5394 0.4624 0.6511 0.5429 0.8593 0.6425 0.7851 0.7616 0.8292 0.7755
Ours 0.6907 0.5348 0.6079 0.5481 0.6990 0.6161 0.9600 0.9171 0.9313 0.9262 0.9688 0.9407

Yi-VL-6B
APS 0.6094 0.3616 0.5674 0.4747 0.4486 0.4923 0.9517 0.8790 0.9012 0.9023 0.8747 0.9018
LAC 0.6785 0.4638 0.5780 0.4387 0.4246 0.5167 0.9198 0.8461 0.8606 0.8501 0.8276 0.8608
Ours 0.7432 0.6284 0.6446 0.5471 0.5331 0.6193 0.9676 0.9228 0.9551 0.9187 0.9312 0.9391

MoE-LLaVA-Phi2-2.7B APS 0.6359 0.5785 0.5248 0.4199 0.4282 0.5175 0.9446 0.7610 0.8522 0.8815 0.8061 0.8491
LAC 0.6864 0.5614 0.4810 0.4849 0.4142 0.5256 0.9070 0.7360 0.8083 0.8298 0.7576 0.8077
Ours 0.7360 0.7147 0.5329 0.5772 0.5352 0.6192 0.9655 0.9477 0.9412 0.9342 0.9284 0.9434
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Table 6: Evaluation of coverage rate (%) and set size: Comparative analysis of the proposed
CAP (Ours) method with standard LAC and APS methods. The comparison includes
different datasets and VLM models, showcasing the satisfied coverage rate and balanced set
sizes produced by our method with underlined values.

Model Method
Coverage (%) ↑ SS ↓

MMB OOD SQA SB AI2D Avg. MMB OOD SQA SB AI2D Avg.

Monkey-Chat-7B
APS 97.85 96.27 98.84 96.50 97.28 97.35 3.787 3.669 3.455 4.013 4.040 3.793
LAC 89.45 88.75 90.44 89.22 90.98 89.77 1.611 2.181 1.656 2.505 2.346 2.060
Ours 93.33 91.35 94.69 92.03 94.36 93.15 2.383 2.987 2.567 3.285 3.017 2.848

InternLM-XComposer2-VL-7B
APS 96.57 92.48 98.74 94.46 96.28 95.71 3.479 2.575 3.383 3.578 3.673 3.338
LAC 89.17 88.96 89.58 89.90 89.87 89.50 1.966 1.819 1.443 2.584 2.358 2.034
Ours 93.51 90.01 92.97 90.21 92.43 91.82 2.763 2.457 1.926 3.123 2.902 2.634

CogAgent-VQA-7B
APS 98.54 95.64 97.47 95.94 93.83 96.28 2.997 2.944 2.833 2.996 3.240 3.002
LAC 90.68 90.37 90.14 89.36 90.65 90.24 1.665 1.971 1.895 1.975 2.640 2.030
Ours 94.15 92.12 93.53 93.59 94.25 93.53 2.175 2.757 2.506 3.015 3.652 2.821

MobileVLM-v2-7B
APS 97.99 96.27 99.04 97.67 95.87 97.37 3.439 3.074 3.610 3.494 3.866 3.497
LAC 89.63 90.86 89.07 89.49 90.23 89.86 1.629 2.153 1.625 2.106 2.925 2.088
Ours 92.78 91.49 94.18 91.53 90.23 92.04 2.159 2.623 2.329 2.567 3.448 2.625

mPLUG-Owl2-7B
APS 99.27 95.08 98.18 97.09 95.81 97.09 3.365 2.485 3.346 3.431 3.379 3.201
LAC 89.81 89.52 91.40 89.94 90.34 90.20 1.727 1.689 2.070 2.432 2.624 2.109
Ours 92.65 91.28 91.91 91.94 89.52 91.46 2.080 2.062 2.401 2.753 2.934 2.446

Qwen-VL-Chat-7B
APS 96.21 93.46 92.01 92.97 96.70 94.27 3.413 3.589 3.349 3.692 3.796 3.568
LAC 88.44 88.75 88.11 89.21 89.69 88.84 1.990 3.049 2.451 2.945 2.394 2.566
Ours 93.01 90.37 90.44 91.06 93.94 91.76 2.665 3.673 3.074 3.504 3.061 3.195

Yi-VL-6B
APS 98.63 95.43 98.13 95.94 96.77 96.98 3.326 2.506 3.503 3.116 3.491 3.189
LAC 90.22 89.94 89.78 89.84 91.01 90.16 1.621 1.536 2.009 2.106 2.514 1.957
Ours 93.38 91.35 92.41 90.11 90.99 91.61 2.082 1.962 2.574 2.522 2.927 2.414

MoE-LLaVA-Phi2-2.7B
APS 99.50 93.95 97.07 97.60 96.50 96.92 3.4961 2.2651 3.2969 3.3834 3.3425 3.1568
LAC 89.26 89.17 90.84 89.66 90.08 89.80 1.5843 1.5204 2.0976 2.0021 2.4891 1.9387
Ours 92.10 91.63 92.67 91.34 90.84 91.72 2.0461 2.1280 2.6631 2.5178 2.9515 2.4613

D.2. Results of LLMs

Additional results in Tables 8, 9, and 10 demonstrate the performance of Llama-2 series
models (7B and 13B) in terms of uncertainty quantification: AUROC vs. AUARC, coverage
rate vs. set size, and accuracy vs. expected calibration error, respectively. As shown in
these tables, our CAP model outperforms other methods in hallucination detection and
uncertainty-guided selective generation while satisfying a minimum coverage rate of 90%
and maintaining a balanced set size across all cases.

D.3. Accuracy vs. ECE

Figure 2 shows the accuracy vs. ECE for CAP, APS, and LAC across multiple VLMs. Lower
ECE values indicate better calibration, meaning confidence scores are more reliable indicators
of prediction accuracy. As shown, CAP improves accuracy while significantly reducing the
expected calibration error. Figure 4 shows the same trend for LLMs, consistently reducing
ECE while improving accuracy across all tasks and datasets.

D.4. Effect of Model Scale

We analyzed the impact of model scale on our CAP method’s performance across models of
varying sizes. As shown in Figure 5, larger models generally achieve higher accuracy, with
the most significant gains observed when scaling from 13B to 34B parameters. Prediction
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Table 7: Evaluation of accuracy (%) and ECE: Comparative analysis of the proposed CAP
(Ours) method with standard LAC and APS methods. The comparison includes different
datasets and VLM models, demonstrating a significant reduction in expected calibration
error while improving overall accuracy.

Model Method
Accuracy (%) ↑ ECE ↓

MMB OOD SQA SB AI2D Avg. MMB OOD SQA SB AI2D Avg.

Monkey-Chat-7B
APS 81.40 76.75 79.27 72.33 73.58 76.67 0.2134 0.3583 0.2696 0.2825 0.3237 0.2895
LAC 81.26 77.06 80.89 72.58 74.53 77.26 0.1480 0.3042 0.1857 0.2494 0.2608 0.2296
Ours 84.03 78.61 82.37 74.57 78.70 79.66 0.0159 0.0336 0.0190 0.0336 0.0207 0.0246

InternLM-XComposer2-VL-7B
APS 76.72 77.04 81.73 70.80 72.52 75.76 0.1805 0.2179 0.1727 0.2203 0.2417 0.2066
LAC 77.30 77.88 82.72 71.72 73.13 76.55 0.1284 0.1871 0.1073 0.2093 0.1776 0.1620
Ours 78.46 78.07 84.10 72.15 75.02 77.56 0.0341 0.0173 0.0246 0.0593 0.0289 0.0328

CogAgent-VQA-7B
APS 81.07 76.86 75.98 76.03 67.99 75.59 0.2310 0.3614 0.3043 0.2327 0.3148 0.2889
LAC 80.55 76.91 76.16 75.48 67.98 75.42 0.1608 0.3407 0.2340 0.2151 0.2912 0.2484
Ours 83.29 79.72 79.25 76.18 69.60 77.61 0.0134 0.0470 0.0366 0.0246 0.0110 0.0265

MobileVLM-v2-7B
APS 80.79 74.86 78.11 74.30 63.37 74.29 0.1460 0.2230 0.1790 0.1691 0.2838 0.2002
LAC 80.85 75.23 78.90 74.28 63.41 74.53 0.1202 0.2239 0.1363 0.1927 0.2932 0.1933
Ours 82.12 75.38 79.66 73.95 64.77 75.18 0.0464 0.0503 0.0306 0.0780 0.0643 0.0539

mPLUG-Owl2-7B
APS 78.94 80.48 73.87 70.54 65.42 73.85 0.1578 0.1858 0.2260 0.1982 0.2588 0.2053
LAC 78.67 79.91 74.53 69.76 64.91 73.55 0.1453 0.1574 0.2093 0.2384 0.2857 0.2072
Ours 79.78 80.88 75.28 69.88 65.96 74.36 0.0473 0.0352 0.0439 0.0863 0.0668 0.0559

Qwen-VL-Chat-7B
APS 76.71 62.45 70.04 66.86 71.25 69.46 0.2350 0.3944 0.2487 0.2937 0.3211 0.2986
LAC 76.78 63.91 71.12 67.42 72.10 70.27 0.1653 0.3684 0.2249 0.2739 0.2510 0.2567
Ours 79.70 67.14 73.18 69.89 76.11 73.20 0.0167 0.0316 0.0403 0.0379 0.0087 0.0270

Yi-VL-6B
APS 80.54 81.23 74.40 74.59 67.98 75.75 0.1694 0.1720 0.2553 0.1837 0.2621 0.2085
LAC 80.70 80.67 74.77 74.18 68.29 75.72 0.1263 0.1594 0.2136 0.2019 0.2565 0.1915
Ours 81.82 81.05 76.03 73.99 69.72 76.52 0.0308 0.0332 0.0287 0.0650 0.0504 0.0416

MoE-LLaVA-Phi2-2.7B
APS 79.51 82.14 72.74 74.51 66.56 75.89 0.2067 0.2863 0.2687 0.2476 0.3266 0.2672
LAC 79.80 81.16 74.08 74.86 66.66 75.71 0.1377 0.2385 0.2212 0.2100 0.2825 0.2180
Ours 81.62 83.06 74.44 75.86 69.02 76.80 0.0224 0.0991 0.0259 0.0333 0.0238 0.0409

Table 8: Evaluation of uncertainty quantification: Comparative analysis of the proposed
CAP (Ours) method with standard Least Ambiguous Set-valued Classifiers (LAC) and
Adaptive Prediction Sets (APS) methods (best values are in bold). The comparison includes
different datasets and LLM models, with quality of uncertainty quantification evaluated
using the Area Under the Receiver Operating Characteristic (AUROC) and the Area Under
the Accuracy-Rejection Curve (AUARC).

Model Method
AUROC ↑ (Hallucination Detection) AUARC ↑ (Uncertainty guided selective generation)

HSwag HDial CQA HSum MMLU Avg. HSwag HDial CQA HSum MMLU Avg.

Llama2-7B
APS 0.4884 0.4646 0.6378 0.6353 0.4495 0.5351 0.3473 0.3301 0.5296 0.2962 0.5774 0.4161
LAC 0.4079 0.2623 0.5490 0.7205 0.3594 0.4598 0.3395 0.2891 0.5185 0.2923 0.5496 0.3978
Ours 0.7066 0.7040 0.7724 0.7672 0.6324 0.7165 0.8681 0.8354 0.9599 0.9078 0.8935 0.8929

Llama2-13B
APS 0.6225 0.3460 0.5186 0.4092 0.4132 0.4619 0.5788 0.5065 0.7893 0.4709 0.7455 0.6182
LAC 0.4685 0.2007 0.6377 0.3478 0.3808 0.4071 0.5591 0.4801 0.7710 0.4580 0.6950 0.5926
Ours 0.6396 0.5043 0.7159 0.6255 0.5572 0.6085 0.9254 0.8134 0.9685 0.8986 0.9177 0.9047

set size inversely correlates with model scale; larger models produce smaller sets, reflecting
greater precision and reduced uncertainty. Additionally, AUROC and AUARC consistently
improve with increasing model scale, indicating that larger models are more accurate, less
prone to hallucinations, and better at abstaining when uncertainty is high.

Further, Figures 7 and 8 illustrate these gains for LLMs, showing larger models achieve
higher accuracy and produce smaller set sizes while better avoiding hallucinations and
performing uncertainty-guided selective generation. In Figure 6, we observe slight gains in
all metrics when comparing VLMs with 7B parameters against Yi-VL with 6B parameters.
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Table 9: Evaluation of coverage rate (%) and set size: Comparative analysis of the proposed
CAP (Ours) method with standard LAC and APS methods. The comparison includes
different datasets and LLM models, showcasing the satisfied coverage rate and balanced set
sizes produced by our method with underlined values.

Model Method
Coverage (%) ↑ SS ↓

HSwag HDial CQA HSum MMLU Avg. HSwag HDial CQA HSum MMLU Avg.

Llama2-7B
APS 90.02 90.44 91.78 89.72 92.50 90.89 3.346 3.257 2.661 3.227 3.319 3.162
LAC 90.66 89.96 90.08 89.22 90.54 90.09 3.253 3.251 2.275 3.423 3.021 3.044
Ours 90.38 90.42 91.22 89.78 91.04 90.56 3.378 3.252 2.316 3.360 3.191 3.099

Llama2-13b
APS 89.70 90.32 97.06 90.26 95.86 92.64 2.801 2.571 2.881 2.306 3.320 2.776
LAC 89.88 90.62 90.52 89.98 89.18 90.03 2.497 2.535 1.568 2.117 2.578 2.259
Ours 90.11 90.41 94.40 90.30 93.62 91.77 3.071 2.537 2.465 2.122 3.104 2.660

Table 10: Evaluation of accuracy (%) and ECE: Comparative analysis of the proposed CAP
(Ours) method with standard LAC and APS methods. The comparison includes different
datasets and LLM models, demonstrating a significant reduction in expected calibration
error while improving overall accuracy.

Model Method
Accuracy (%) ↑ ECE ↓

HSwag HDial CQA HSum MMLU Avg. HSwag HDial CQA HSum MMLU Avg.

Llama2-7B
APS 54.86 50.54 74.43 60.78 59.33 59.99 0.5720 0.5934 0.5085 0.6176 0.4894 0.5562
LAC 55.05 50.24 74.10 59.23 59.11 59.55 0.5784 0.5927 0.4915 0.6127 0.4703 0.5491
Ours 61.00 57.78 80.32 68.36 64.13 66.32 0.0606 0.0572 0.1953 0.1693 0.0414 0.1048

Llama2-13b
APS 70.38 66.84 83.42 72.59 65.48 71.74 0.4165 0.4207 0.3462 0.4666 0.3930 0.4086
LAC 70.46 66.69 83.26 72.34 64.79 71.49 0.4183 0.4373 0.2808 0.4638 0.3444 0.3889
Ours 73.31 64.28 85.89 73.44 68.11 73.00 0.0814 0.0721 0.1138 0.1559 0.0203 0.0887

However, since VLM size differences in this benchmark are minor, part of the performance
gap may also stem from differences in finetuning methods and pre-trained models.

D.5. Size Distribution of Predicted Set

The distribution of prediction types offers insight into our model’s decision-making behavior
across different vision-language tasks. LLaVA-1.6-34B favors set predictions across all
benchmarks, with rates ranging from 55.4% (AI2D) to 62.4% (ScienceQA). This suggests the
model often identifies multiple plausible answers rather than a single one due to underlying
VLM response uncertainty. Single predictions comprise a substantial portion (31.5% to
38.8%), indicating high confidence in unique answers. Abstention rates vary notably across
datasets, from 6.1% on ScienceQA to 12.8% on AI2D, reflecting the model’s ability to
recognize uncertainty in visual reasoning contexts. This pattern repeats for the Yi-34B LLM
across five different tasks. This distribution demonstrates our selective prediction approach
effectively captures different levels of model uncertainty, enabling more nuanced and reliable
responses across diverse vision-language tasks.
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Figure 1: Accuracy vs. Expected Calibration Error (ECE) comparison of CAP, APS, and
LAC across various VLMs and five datasets: MMBench, ScienceQA, OODCV, SEEDBench,
and AI2D. An ideal model has high accuracy and low ECE (upper-left).
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Figure 2: Accuracy versus Expected Calibration Error (ECE) comparison between CAP,
APS and LAC methods across different VLMs and five datasets: MMBench, ScienceQA,
OODCV, SEEDBench, AI2D. An ideal model has high accuracy and low ECE, indicating
accurate predictions with well-calibrated uncertainty quantification (upper-left of the plot).
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Figure 3: Accuracy versus Expected Calibration Error (ECE) comparison between CAP,
APS and LAC methods across different LLMs and five datasets: CosmosQA, HaluDial,
HaluSum, HellaSwag, MMLU. An ideal model has high accuracy and low ECE, indicating
accurate predictions with well-calibrated uncertainty quantification (upper-left of the plot).
The ECE of CAP shows significant improvement compared to baseline methods.
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Figure 4: Accuracy versus Expected Calibration Error (ECE) comparison between CAP,
APS, and LAC across five LLM datasets: CosmosQA, HaluDial, HaluSum, HellaSwag, and
MMLU. Ideal models appear in the upper-left (high accuracy, low ECE). CAP consistently
outperforms baselines in calibration quality.
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Figure 5: Performance comparison of VLMs with different model sizes (2.7B to 34B) across
various metrics. Figures from left to right represent the performance of four models on one of
four metrics: i) accuracy, ii) set size, iii) AUROC, and iv) AUARC. Each figure shows model
performance across five VLM benchmark datasets and the effect of model scale (number of
parameters) on different uncertainty metrics.
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Figure 6: Performance comparison of additional VLMs with different model sizes (6B to 7B)
across various metrics. Figures from left to right represent the performance of four models
on one of four metrics: i) accuracy, ii) set size, iii) AUROC, and iv) AUARC. Each figure
shows model performance across five VLM benchmark datasets and the effect of model scale
(number of parameters) on different uncertainty metrics.
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Figure 7: Performance comparison of LLMs with different model sizes (7B to 34B) across
various metrics. Figures from left to right represent the performance of four models on one of
four metrics: i) accuracy, ii) set size, iii) AUROC, and iv) AUARC. Each figure shows model
performance across five LLM benchmark datasets and the effect of model scale (number of
parameters) on different uncertainty metrics.
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Figure 8: Performance comparison of Llama-2 series LLMs with different model sizes (7B
and 13B) across various metrics. Figures from left to right represent the performance of two
models on four metrics: i) accuracy, ii) set size, iii) AUROC, and iv) AUARC. Each figure
shows model performance across five LLM benchmark datasets and the effect of model scale
(number of parameters) on different uncertainty metrics.
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