
Supplementary Material for RadSplat: Radiance Field-Informed Gaussian
Splattingfor Robust Real-Time Rendering with 900+ FPS

Michael Niemeyer Fabian Manhardt Marie-Julie Rakotosaona
Michael Oechsle Daniel Duckworth Rama Gosula

Keisuke Tateno John Bates Dominik Kaeser Federico Tombari
Google

m-niemeyer.github.io/radsplat

Abstract

In this supplementary material, we discuss additional implementation details in Sec. 1 and report additional quantitative
and qualitative results in Sec. 2. In the supplementary video, we show camera trajectories for our models and baselines on
unbounded as well as large-scale scenes.

1. Additional Implementation Details
1.1. 3D Gaussian Splatting with Exposure Module

To ensure a fair visual comparison to 3DGS [6], we follow [3] and utilize an exposure module that can compensate for varying
exposure in the input images for the “Alameda” scene from the ZipNeRF dataset (see Fig. 1). More specifically, this module
consists of an MLP that maps a predicted color and an per image exposure metric to a exposure-corrected color value. We
use a 4-layer MLP with 10 units and define the exposure metric of image i using the ISOi value and the shutter time ∆ti

1

ϵi = log

(
ISOi ∗∆ti

1000

)
(1)

The module is initialized with a pre-optimization procedure leading to an identity mapping between the input and output color
(see [3] for more details). Afterwards, the MLP weights are optimized together with the 3DGS scene. During evaluation for
every test image i, we apply the input exposure value ϵi for predicting color values as close as possible to the GT values. For
rendering of videos, we fix the exposure value to the median value leading to a more consistent video.

1.2. FPS Measurement

We follow [3] and render every test image 100 times on a desktop computer with a NVIDIA GeForce RTX 3090 Ti for
evaluating the frames per second. We take the GPU timings of the rendering forward step to measure the frame render times
and calculate the FPS value from the mean of the frame render times. During rendering, we use the individual test image
resolution from the datasets and apply 100 warm up renderings before measuring the frame render time following [3].

1.3. Viewpoint-Based Visibility Filtering

In Sec. 3.4 of the main paper, we discuss our viewpoint-based visibility filtering that increases rendering speed without a
drop in quality. As mentioned in the Visibility Filtering subsection, we compute importance scores and respective visibility
indicator lists from the input and random cameras to increase robustness. More specifically, we uniformly sample 100k
novel viewpoint positions in a region around the training cameras. The set of viewpoint positions is defined as the union of
the positions of training cameras and uniformly sampled novel 3D points around training cameras. More specifically, after
uniformly sampling novel viewpoint positions in space, we select the positions that are closer to the closest train camera than

1It is worth noting that the exposure module for our own model (during the NeRF training) does not require this additional ISO input.

m-niemeyer.github.io/radsplat


(a) 3DGS [6] (b) 3DGS w/ expos. module (c) Ours

Figure 1. Additional Robustness Results. On complex captures with lighting variations, 3DGS [6] leads to degraded results (1a). When
equipped with exposure handling modules [3, 6], results improve yet still suffer from floating artifacts and are overly smooth (1b). Our
radiance field-informed approach instead achieves high quality even for challenging captures (1c).

a threshold value tdist. We arbitrarily choose the threshold tdist as 10 times the average smallest distance between training
cameras. Finally, we apply visibility filtering by rendering with six random camera rotations from the selected viewpoints.

1.4. Datasets

We report results on all scenes from the commonly-used MipNeRF360 dataset [1] and follow common practice to use a
downsampling factor or two for indoor scenes and a downsampling factor of four for outdoor scenes. For the ZipneRF
dataset [2], we follow [3] to use the undistorted variant and report results for all four scenes with a downsampling factor of
two where for Berlin, we limit the maximal image extent to 1600 pixels to avoid OOM. As discussed in the main paper, we
utilize the robust NeRF prior among others as supervision which enables us, in contrast to, e.g. 3DGS [6], to also train from
data captured with fisheye or other lens types. We show a comparison to ZipNeRF on “Alameda” in the supplemental video
where both models were trained on the original data. Please note that all quantitative and qualitative comparisons in the paper
are reported wrt. the undistorted dataset to ensure a fair comparison for all methods.



Figure 2. Viewpoint-Based Visibility Filtering. To increase robustness of our viewpoint-based visibility filtering, we densely sample
novel viewpoints (colored points) around each cluster center (black). The figure shows the 2D projection along the z-axis.

bicycle flowers garden stump treehill room counter kitchen bonsai mean
BakedSDF [10] 0.570 0.452 0.751 0.595 0.559 0.870 0.808 0.817 0.851 0.697
MERF [9] 0.595 0.492 0.763 0.677 0.554 0.874 0.819 0.842 0.884 0.722
INGP [8] 0.540 0.378 0.709 0.654 0.547 0.893 0.845 0.857 0.924 0.705
SMERF [3] 0.760 0.626 0.844 0.784 0.682 0.918 0.892 0.916 0.941 0.818
LightG [4] 0.738 0.560 0.836 0.768 0.623 0.926 0.893 0.914 0.930 0.799
CompactG [7] 0.723 0.556 0.832 0.757 0.638 0.919 0.902 0.919 0.939 0.798
EAGLES [5] 0.750 0.570 0.840 0.770 0.640 0.930 0.910 0.930 0.940 0.809
3DGS [6] 0.771 0.605 0.868 0.775 0.638 0.914 0.905 0.922 0.938 0.815
Ours Light 0.764 0.647 0.850 0.803 0.676 0.923 0.902 0.924 0.944 0.826
Ours 0.800 0.665 0.881 0.820 0.683 0.933 0.918 0.937 0.952 0.843
ZipNeRF [2] 0.784 0.655 0.872 0.807 0.688 0.927 0.909 0.926 0.953 0.836

Table 1. Per-Scene SSIM on MipNeRF360.

bicycle flowers garden stump treehill room counter kitchen bonsai mean
BakedSDF [10] 22.04 19.53 24.94 23.59 22.25 28.68 25.69 26.72 27.17 24.51
MERF [9] 22.62 20.33 25.58 25.04 22.39 29.28 25.82 27.42 28.68 25.24
INGP [8] 22.79 19.19 25.26 24.80 22.46 30.31 26.21 29.00 31.08 25.68
SMERF [3] 25.58 22.24 27.66 27.19 23.93 31.38 29.02 31.68 33.19 27.99
LightG [4] 24.96 21.17 26.73 26.70 22.55 31.27 28.11 30.40 31.01 26.99
CompactG [7] 24.77 20.89 26.81 26.46 22.65 30.88 28.71 30.48 32.08 27.08
EAGLES [5] 24.91 21.00 26.88 26.59 22.57 31.84 28.47 30.70 31.44 27.16
3DGS [6] 25.25 21.52 27.41 26.55 22.49 30.63 28.70 30.32 31.98 27.20
Ours Light 25.32 22.08 27.40 27.38 23.35 30.95 28.40 31.41 31.76 27.56
Ours 25.99 22.24 28.23 27.74 23.35 31.62 29.05 32.40 32.67 28.14
ZipNeRF [2] 25.80 22.40 28.20 27.55 23.89 32.65 29.38 32.50 34.46 28.54

Table 2. Per-Scene PSNR on MipNeRF360.



bicycle flowers garden stump treehill room counter kitchen bonsai mean
BakedSDF [10] 0.368 0.429 0.213 0.371 0.366 0.251 0.286 0.237 0.259 0.309
MERF [9] 0.371 0.406 0.215 0.309 0.414 0.292 0.307 0.224 0.262 0.311
INGP [8] 0.398 0.441 0.255 0.339 0.420 0.242 0.255 0.170 0.198 0.302
SMERF [3] 0.225 0.305 0.141 0.220 0.266 0.208 0.212 0.134 0.191 0.211
LightG [4] 0.265 0.396 0.155 0.261 0.385 0.220 0.218 0.147 0.204 0.250
CompactG [7] 0.286 0.399 0.161 0.278 0.363 0.209 0.205 0.131 0.193 0.247
EAGLES [5] 0.260 0.380 0.160 0.260 0.360 0.200 0.200 0.130 0.190 0.238
3DGS [6] 0.201 0.336 0.103 0.210 0.317 0.221 0.204 0.130 0.206 0.214
Ours Light 0.234 0.312 0.144 0.213 0.316 0.192 0.199 0.135 0.175 0.213
Ours 0.170 0.267 0.092 0.169 0.263 0.164 0.160 0.103 0.150 0.171
ZipNeRF [2] 0.188 0.254 0.104 0.180 0.221 0.189 0.173 0.117 0.167 0.177

Table 3. Per-Scene LPIPS on MipNeRF360.

bicycle flowers garden stump treehill room counter kitchen bonsai mean
LightG [4] 1.92 1.07 1.92 1.55 1.02 0.51 0.40 0.59 0.43 1.05
CompactG [7] 2.22 1.53 2.21 1.73 2.01 0.53 0.54 1.13 0.60 1.39
EAGLES [5] 2.46 1.55 1.92 2.44 1.79 0.80 0.71 1.28 2.46 1.71
3DGS [6] 5.72 3.41 5.64 4.55 3.47 1.48 1.17 1.74 1.25 3.16
Ours Light 0.50 0.52 0.54 0.39 0.45 0.22 0.20 0.27 0.24 0.37
Ours 3.14 2.15 2.51 2.74 2.39 1.15 1.04 1.21 0.98 1.92

Table 4. Per-Scene Num. Gaussians (mio) on MipNeRF360.

bicycle flowers garden stump treehill room counter kitchen bonsai mean
BakedSDF [10] 485 368 385 552 571 535 476 893 585 539
MERF [9] 196 190 202 148 102 229 184 155 137 171
INGP [8] 9.1 8.8 7.6 13.0 8.2 15.1 8.3 6.4 6.8 9.3
SMERF [3] 228 213 210 259 247 330 238 181 141 228
LightG [4] 124 180 155 229 159 311 213 204 308 209
CompactG [7] 76.4 142 89.5 121 110 183 120 114 196 128
EAGLES [5] 97.0 161 123 141 132 143 147 107 184 137
3DGS [6] 177 342 288 218 402 169 322 312 303 281
Ours Light 962 913 942 1040 992 953 748 734 879 907
Ours 333 483 378 404 423 475 372 335 485 410
ZipNeRF [2] 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25

Table 5. Per-Scene FPS on MipNeRF360.

2. Additional Experimental Results
2.1. Unbounded MipNeRF360 Scenes

We report per-scene SSIM in Tab. 1, PSNR in Tab. 2, LPIPS in Tab. 3, point count in Tab. 4, and FPS in Tab. 5. We observe
that our model achieves state-of-the-art real time view synthesis on all metrics and even outperforms ZipNeRF in SSIM, the
offline state-of-the-art. We further find that our models achieve higher FPS than prior works, in particular our lightweight
variant enables high-quality view synthesis at 907 FPS, which is 1.7x faster than the state-of-the-art mesh-based method
BakedSDF [10] and 4x faster than the previous state-of-the-art real-time method SMERF [3]. In Fig. 4, Fig. 5, Fig. 6, Fig. 7,
Fig. 8 we show additional qualitative comparisons on the MipNeRF360 dataset.

2.2. Large-Scale ZipNeRF Scenes

We report per-scene SSIM in Tab. 6a, PSNR in Tab. 6b, LPIPS in Tab. 7a, and FPS in Tab. 7b. We observe that our models
improve over prior real-time view synthesis methods in SSIM and even slightly outperform ZipNeRF, the offline state-of-the-



Berlin NYC Alameda London mean
MERF [9] 0.840 0.765 0.646 0.737 0.747
SMERF [3] (K = 1) 0.852 0.771 0.701 0.780 0.776
SMERF [3] (K = 5) 0.887 0.844 0.758 0.829 0.829
3DGS [6] 0.879 0.829 0.733 0.797 0.809
Ours Light 0.899 0.858 0.760 0.835 0.838
Ours 0.901 0.860 0.760 0.836 0.839
ZipNeRF [2] 0.891 0.850 0.767 0.835 0.836

(a) Per-Scene SSIM on ZipNeRF.

Berlin NYC Alameda London mean
MERF [9] 25.27 24.82 20.34 23.53 23.49
SMERF [3] (K = 1) 26.79 25.40 23.71 25.86 25.44
SMERF [3] (K = 5) 28.52 28.21 25.35 27.05 27.28
3DGS [6] 26.60 26.41 23.52 25.45 25.50
Ours Light 27.76 27.54 22.55 26.60 26.11
Ours 27.96 27.59 22.48 26.64 26.17
ZipNeRF [2] 28.59 28.42 25.41 27.06 27.37

(b) Per-Scene PSNR on ZipNeRF.

Table 6. Per-Scene SSIM and PSNR on ZipneRF.

Berlin NYC Alameda London mean
MERF [9] 0.395 0.426 0.501 0.456 0.445
SMERF [3] (K = 1) 0.380 0.417 0.445 0.407 0.412
SMERF [3] (K = 5) 0.325 0.321 0.370 0.342 0.340
3DGS [6] 0.335 0.343 0.407 0.392 0.369
Ours Light 0.341 0.348 0.410 0.372 0.368
Ours 0.338 0.342 0.406 0.369 0.364
ZipNeRF [2] 0.297 0.281 0.338 0.304 0.305

(a) Per-Scene LPIPS on ZipNeRF.

Berlin NYC Alameda London mean
MERF [9] 185 470 270 348 318
SMERF [3] (K = 1) 220 481 358 364 356
SMERF [3] (K = 5) 131 262 230 260 221
3DGS [6] 369 417 467 625 470
Ours Light 533 859 788 811 748
Ours 467 677 666 709 630
ZipNeRF [2] 0.25 0.25 0.25 0.25 0.25

(b) Per-Scene FPS on ZipNeRF.

Table 7. Per-Scene LPIPS and FPS on ZipneRF.

art. We find that for PSNR and LPIPS, we rival the large SMERF model with 53 = 128 submodels, the state-of-the-art for
large-scale real-time view synthesis, while rendering 3.4x (our light variant) and 2.9x (our default) faster. In Fig. 9 and Fig.
10, we show additional qualitative results on the ZipNeRF dataset.

2.3. Ablation of Initial Point Set

SSIM↑ PSNR↑ LPIPS↓ #G(M)↓
Ours 0.800 26.02 0.171 3.14
Mean D. 0.797 25.95 0.175 3.02

(a) Median vs Mean Depth.

SSIM↑ PSNR↑ LPIPS↓ #G(M)↓
Ours 0.800 26.02 0.171 3.14
1.5M 0.802 26.06 0.166 3.25
2M 0.803 26.05 0.164 3.39
2.5M 0.803 25.98 0.161 3.51
3M 0.805 26.06 0.160 3.67

(b) Ablation of Initial Point Count.

Table 8. Initial Point Set Ablation Studies on Bicycle Scene. Left: We find that our median depth initialization leads to improved results
compared to, e.g., the commonly chosen mean depth (Mean D.). Right: For simplicity, we always use an initial point set of size one
million. We find that larger initial point sets lead to increased final scene sizes while only marginally improving view synthesis metrics.

In Tab. 8, we report additional ablation studies on the initial point set that is used as initialization for our point-based scene
optimization (see Sec. 3.2 of the main paper for more context). As outlined in the main paper, we use the “median depth”
from our NeRF model to calculate the initial point set. We find that using the commonly-chosen mean depth (also called
“expected depth”) leads to reduced quality. We hypothesize that using exact sample point estimates, as done for the median
depth, ensures a better initialization.

As discussed in the main manuscript, for simplicity, we always use an initial point set of size one million. We observe
that using a larger number of initial points leads to an increase in final scene size while only marginally improving in view
synthesis metrics.

2.4. Ablation of the NeRF Prior

Overall, our approach is robust to the prior choice (see Tab. 9). For lightweight variants, the difference is small and INGP
can be used as prior to save computation. To obtain best possible results, however, the ZipNeRF prior is still required. It is
worth nothing that our contributions are efficient test-time rendering with SOTA quality, but not more efficient training.



SSIM ↑ PSNR ↑ LPIPS
Ours L. (INGP) 0.826 27.35 0.259
Ours L. (ZipNeRF) 0.826 27.56 0.213
Ours (INGP) 0.837 27.37 0.213
Ours (ZipNeRF) 0.843 28.14 0.171

Table 9. Robustness to the Choice of the NeRF Prior. We report our model with the ZipNeRF (our default) vs. INGP as prior on the
mip-NeRF 360 dataset. We find that our model is robust to the prior and best results are obtained with our default variant.

Initialization from SfM. Initialization from NeRF (Ours).

Figure 3. Qualitative Ablation of the NeRF Prior. We find that, compared to the 3DGS standard SfM initialization, our NeRF prior
captures the scene more homogeneously leading to more stable GS optimization with less local minima.

MERF [9] SMERF1 [3] SMERF5 [3] 3DGS [6] Ours Light Ours ZipNeRF [2]
mip-NeRF360 Dataset

Size (GB) ↓ 0.16 0.14 - 0.74 0.07 0.40 0.61
SSIM ↑ 0.722 0.818 - 0.815 0.826 0.843 0.836

ZipNeRF Dataset
Size (GB) ↓ 0.13 0.12 4.11 0.21 0.24 0.41 0.61
SSIM ↑ 0.747 0.776 0.829 0.809 0.838 0.839 0.836

Table 10. File Size Comparison. We compare our raw file sizes to baseline methods in gigabytes (GB) above. While obtaining decent raw
sizes (e.g., 70MB on average for our light model on the mip-NeRF 360 dataset), early experiments show that we can get a 10× reduction
for ours and 3DGS when compression is applied (see text).

In Fig. 3, we further show a qualitative ablation study comparing our NeRF-based intialization to the 3DGS standard SfM
initialization. We find that our approach covers the scene more homogeneously, resulting in a more stable optimization with
less local minima.

2.5. File Size Comparison

We compare our raw file sizes to baselines in Tab. 10. While obtaining decent raw file sizes (e.g., on average 70MB for our
light model on the mip-NeRF 360 dataset), we can obtain a 10× reduction for ours and 3DGS when adding compression2,
leading to file sizes below 40MB for our default model and below 24MB for our light model. In comparison, top performing
baselines such as SMERF require more than 4GB of storage.

2See github.com/aras-p/UnityGaussianSplatting

github.com/aras-p/UnityGaussianSplatting


(a) ZipNeRF [2] (b) 3DGS [6]

(c) Ours (d) Ours Light

(e) ZipNeRF [2] (f) 3DGS [6]

(g) Ours (h) Ours Light

Figure 4. Additional Qualitative Comparison on MipNeRF360.



(a) ZipNeRF [2] (b) 3DGS [6]

(c) Ours (d) Ours Light

(e) ZipNeRF [2] (f) 3DGS [6]

(g) Ours (h) Ours Light

Figure 5. Additional Qualitative Comparison on MipNeRF360.



(a) ZipNeRF [2] (b) 3DGS [6]

(c) Ours (d) Ours Light

(e) ZipNeRF [2] (f) 3DGS [6]

(g) Ours (h) Ours Light

Figure 6. Additional Qualitative Comparison on MipNeRF360.



(a) ZipNeRF [2] (b) 3DGS [6]

(c) Ours (d) Ours Light

(e) ZipNeRF [2] (f) 3DGS [6]

(g) Ours (h) Ours Light

Figure 7. Additional Qualitative Comparison on MipNeRF360.



(a) ZipNeRF [2] (b) 3DGS [6]

(c) Ours (d) Ours Light

Figure 8. Additional Qualitative Comparison on MipNeRF360.



(a) ZipNeRF [2] (b) 3DGS [6]

(c) Ours (d) Ours Light

(e) ZipNeRF [2] (f) 3DGS [6]

(g) Ours (h) Ours Light

Figure 9. Additional Qualitative Comparison on ZipNeRF.



(a) ZipNeRF [2] (b) 3DGS [6]

(c) Ours (d) Ours Light

(e) ZipNeRF [2] (f) 3DGS [6]

(g) Ours (h) Ours Light

Figure 10. Additional Qualitative Comparison on ZipNeRF.



References
[1] Jonathan T Barron, Ben Mildenhall, Dor Verbin, Pratul P Srinivasan, and Peter Hedman. Mip-nerf 360: Unbounded anti-aliased

neural radiance fields. In CVPR, 2022. 2
[2] Jonathan T. Barron, Ben Mildenhall, Dor Verbin, Pratul P. Srinivasan, and Peter Hedman. Zip-nerf: Anti-aliased grid-based neural

radiance fields. In ICCV, 2023. 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13
[3] Daniel Duckworth, Peter Hedman, Christian Reiser, Peter Zhizhin, Jean-François Thibert, Mario Lucic, Richard Szeliski, and

Jonathan T. Barron. SMERF: streamable memory efficient radiance fields for real-time large-scene exploration. arXiv, 2023. 1,
2, 3, 4, 5, 6

[4] Zhiwen Fan, Kevin Wang, Kairun Wen, Zehao Zhu, Dejia Xu, and Zhangyang Wang. Lightgaussian: Unbounded 3d gaussian
compression with 15x reduction and 200+ FPS. arXiv, 2023. 3, 4

[5] Sharath Girish, Kamal Gupta, and Abhinav Shrivastava. Eagles: Efficient accelerated 3d gaussians with lightweight encodings. arXiv,
2023. 3, 4

[6] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3d gaussian splatting for real-time radiance field
rendering. SIGGRAPH, 2023. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13

[7] Joochan Lee, Daniel Rho, Xiangyu Sun, Jong Hwan Ko, and Eunbyung Park. Compact 3d gaussian representation for radiance field.
arXiv, 2023. 3, 4

[8] Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller. Instant neural graphics primitives with a multiresolution hash
encoding. SIGGRAPH, 2022. 3, 4

[9] Christian Reiser, Richard Szeliski, Dor Verbin, Pratul P. Srinivasan, Ben Mildenhall, Andreas Geiger, Jonathan T. Barron, and Peter
Hedman. MERF: memory-efficient radiance fields for real-time view synthesis in unbounded scenes. SIGGRAPH, 2023. 3, 4, 5, 6

[10] Lior Yariv, Peter Hedman, Christian Reiser, Dor Verbin, Pratul P. Srinivasan, Richard Szeliski, Jonathan T. Barron, and Ben Milden-
hall. Bakedsdf: Meshing neural sdfs for real-time view synthesis. In SIGGRAPH, 2023. 3, 4


	. Additional Implementation Details
	. 3D Gaussian Splatting with Exposure Module
	. FPS Measurement
	. Viewpoint-Based Visibility Filtering
	. Datasets

	. Additional Experimental Results
	. Unbounded MipNeRF360 Scenes
	. Large-Scale ZipNeRF Scenes
	. Ablation of Initial Point Set
	. Ablation of the NeRF Prior
	. File Size Comparison


