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ABSTRACT

Real-world classifiers can benefit from optionally abstaining from predicting on
samples where they have low confidence. Such abstention is particularly useful on
samples which are close to the learned decision boundary, or which are outliers
with respect to the training set. These settings have been the subject of extensive
but disjoint study in the selective classification (SC) and out-of-distribution (OOD)
detection literature. Recent work on selective classification with OOD detection
(SCOD) has argued for the unified study of these problems; however, the formal
underpinnings of this problem are still nascent, and existing techniques are heuristic
in nature. In this paper, we propose new plugin estimators for SCOD that are
theoretically grounded, effective, and generalise existing approaches from the SC
and OOD detection literature. In the course of our analysis, we formally explicate
how naïve use of existing SC and OOD detection baselines may be inadequate for
SCOD. We empirically demonstrate that our approaches yields competitive SC and
OOD detection trade-offs compared to common baselines.

1 INTRODUCTION

Given a training sample drawn i.i.d. from a distribution Pin (e.g., images of cats and dogs), the
standard classification paradigm concerns learning a classifier that accurately predicts the label for test
samples drawn from Pin. However, in real-world deployment, one may encounter out-of-distribution
(OOD) test samples, i.e., samples drawn from some Pout 6= Pin (e.g., images of aeroplanes). Out-of-
distribution detection is the problem of accurately identifying such OOD samples, and has received
considerable recent study (Hendrycks and Gimpel, 2017; Lee et al., 2018; Hendrycks et al., 2019; Ren
et al., 2019; Huang et al., 2021; Huang and Li, 2021; Thulasidasan et al., 2021; Wang et al., 2022a;
Bitterwolf et al., 2022; Katz-Samuels et al., 2022; Wei et al., 2022; Sun et al., 2022; Hendrycks et al.,
2022). An accurate OOD detector allows one to abstain from making a prediction on OOD samples,
rather than making an egregiously incorrect prediction; this enhances reliability and trust-worthiness.

The quality of an OOD detector is typically assessed by its ability to distinguish in-distribution (ID)
versus OOD samples. However, some recent works (Kim et al., 2021; Xia and Bouganis, 2022;
Cen et al., 2023; Humblot-Renaux et al., 2024) argued that to accurately capture the real-world
deployment of OOD detectors, it is important to consider distinguishing correctly-classified ID versus
OOD and misclassified ID samples. Indeed, it is intuitive that a classifier not only abstain on OOD
samples, but also abstains from predicting on “hard” (e.g., ambiguously labelled) ID samples which
are likely to be misclassified. This problem is termed unknown detection (UD) in Kim et al. (2021),
and selective classification with OOD detection (SCOD) in Xia and Bouganis (2022); we adopt
the latter in the sequel. One may view SCOD as a unification of OOD detection and the selective
classification (SC) paradigm (Chow, 1970; Bartlett and Wegkamp, 2008; El-Yaniv and Wiener, 2010;
Cortes et al., 2016b; Ramaswamy et al., 2018; Ni et al., 2019; Cortes et al., 2023; Mao et al., 2024).

Both OOD detection and SC have well-established formal underpinnings, with accompanying
principled techniques (Bitterwolf et al., 2022; Cortes et al., 2016b; Ramaswamy et al., 2018);
however, by contrast, the theoretical understanding of SCOD is relatively nascent. Prior work
on SCOD employs a heuristic design to construct the rejection rule (Xia and Bouganis, 2022).
Specifically, given confidence scores for correct classification, and scores for OOD detection, the
mechanism heuristically combines the two scores to decide whether to abstain on a sample. It remains
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Table 1: Summary of two different settings for SCOD. Our goal is to learn a classifier capable of
rejecting both out-of-distribution (OOD) and “hard” in-distribution (ID) samples. We present a
plug-in estimator for SCOD, and apply it two settings: one with access to only ID data, the other
with additional access to a unlabeled mixture of ID and OOD data (Katz-Samuels et al., 2022). In
both cases, we reject samples by suitably combining scores that order samples based on selective
classification (SC) or OOD detection criteria. The former setting leverages any off-the-shelf scores
for these tasks, while the latter minimises a joint loss functions to estimate these scores.

Black-box SCOD Loss-based SCOD

Training data ID data only ID + OOD data
SC score ssc Any off-the-shelf technique, e.g., maxi-

mum softmax probability (Chow, 1970)
Minimise (10), obtain maxy∈[L] fy(x)

OOD score sood Any off-the-shelf technique, e.g., gradi-
ent norm (Huang et al., 2021)

Minimise (10), obtain s(x)

Rejection rule Combine ssc, sood via (8)

unclear if there are settings where this approach may fail, and what the optimal combination strategy
would look like. We aim to address these questions in this paper.

More concretely, we provide a statistical formulation for the SCOD problem, and derive the Bayes-
optimal solution. Based on this solution, we propose a plug-in approach for SCOD: this takes
confidence estimates for SC and density estimates for OOD detection, and optimally combines them
to output a rejection decision. We then show case how our plug-in approach can be applied under
two different assumptions on available data during training (Table 1). The first is the challenging
setting where one has access to only ID data, and we leverage existing techniques for SC and OOD
detection in a black-box manner. The second is the setting of Katz-Samuels et al. (2022), where one
additionally has access to an unlabeled “wild” sample comprising a mixture of both ID and OOD
data, and one can use techniques such as Thulasidasan et al. (2021); Bitterwolf et al. (2022) to jointly
estimate scores for SC and OOD detection. In summary, our contributions are:

(i) We provide a statistical formulation for SCOD that unifies both the SC and OOD detection prob-
lems (§3), and derive the corresponding Bayes-optimal solution (Lemma 3.1), which combines
scores for SC and OOD detection. Intriguingly this solution is a variant of the popular maximum
softmax probability baseline for SC and OOD detection (Chow, 1970; Hendrycks and Gimpel,
2017), using a sample-dependent rather than constant threshold.

(ii) Based on the form of the Bayes-optimal solution, we propose a plug-in approach for SCOD (§4),
and showcase how it can be applied to a setting with access to only ID data (§4.1), and the setting
of Katz-Samuels et al. (2022) with access to a mixture of ID and OOD data (§4.2).

(iii) Experiments on benchmark image classification datasets (§5) show that our plug-in approach
yields competitive classification and OOD detection performance at any desired abstention rate,
compared to the heuristic approach of Xia and Bouganis (2022), and other common baselines.

2 BACKGROUND AND NOTATION

We focus on multi-class classification problems: given instances X, labels Y .
= [L], and a training

sample S = {(xn, yn)}n∈[N ] ∈ (X × Y)N comprising N i.i.d. draws from a training (or inlier)
distribution Pin, the goal is to learn a classifier h : X → Y with minimal misclassification error
Pte(y 6= h(x)) for a test distribution Pte. By default, it is assumed that the training and test
distribution coincide, i.e., Pte = Pin. Typically, h(x) = argmaxy∈[L]fy(x), where f : X → RL
scores the affinity of each label to a given instance. One may learn f via minimisation of the empirical
surrogate risk R̂(f ;S, `)

.
= 1
|S|
∑

(xn,yn)∈S `(yn, f(xn)) for loss function ` : [L]× RL → R+.

The standard classification setting requires making a prediction for all test samples. However, as we
now detail, it is often prudent to allow the classsifer to abstain from predicting on some samples.

Selective classification (SC). In selective classification (SC) (Geifman and El-Yaniv, 2019), closely
related to the learning to reject or learning with abstention (Bartlett and Wegkamp, 2008; Cortes
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et al., 2016a; Gangrade et al., 2021) problem, one may abstain from predicting on samples where
a classifier has low-confidence. Intuitively, this allows for abstention on “hard” (e.g., ambiguously
labelled) samples, which could be forwarded to an expert (e.g., a human labeller). Formally, given a
budget brej ∈ (0, 1) on the fraction of samples that can be rejected, one learns a classifier h : X→ Y
and rejector r : X→ {0, 1} to minimise the misclassification error on non-rejected samples:

min
h,r

Pin(y 6= h(x), r(x) = 0): Pin(r(x) = 1) ≤ brej. (1)

The original SC formulation in Geifman and El-Yaniv (2019) conditions the misclassification error on
samples that are not rejected; as shown in Appendix B, both formulations share the same optimal so-
lution. The simplest SC baseline is confidence-based rejection (Chow, 1970; Ni et al., 2019), wherein
r thresholds the maximum of the softmax probability py(x) ∝ exp(fy(x)). Alternatively, one may
modify the training loss ` (Bartlett and Wegkamp, 2008; Ramaswamy et al., 2018; Charoenphakdee
et al., 2021; Gangrade et al., 2021), or jointly learn an explicit rejector and classifier (Cortes et al.,
2016a; Geifman and El-Yaniv, 2019; Thulasidasan et al., 2019; Mozannar and Sontag, 2020).

OOD detection. In out-of-distribution (OOD) detection, one seeks to identify test samples which
are anomalous with respect to the training distribution (Hendrycks and Gimpel, 2017; Bendale and
Boult, 2016; Bitterwolf et al., 2022). Intuitively, this allows one to abstain from predicting on samples
where it is unreasonable to expect the classifier to generalise. This is closely related to the problem of
detecting whether a sample is likely to be misclassified (Granese et al., 2021).

Formally, suppose Pte
.
= π∗in ·Pin +(1−π∗in) ·Pout, for (unknown) distribution Pout and π∗in ∈ (0, 1).

Samples from Pout may be regarded as outliers or out-of-distribution with respect to the inlier
distribution (ID) Pin. Given a budget bfpr ∈ (0, 1) on the false positive rate (i.e., the fraction of ID
samples incorrectly predicted as OOD), the goal is to learn an OOD detector r : X→ {0, 1} via

minr Pout(r(x) = 0): Pin(r(x) = 1) ≤ bfpr. (2)

Labelled OOD detection (Lee et al., 2018; Thulasidasan et al., 2019) additionally accounts for the
accuracy of h. OOD detection is a natural task in the real-world, as standard classifiers may produce
high-confidence predictions even on completely arbitrary inputs (Nguyen et al., 2015; Hendrycks and
Gimpel, 2017), and assign higher scores to OOD compared to ID samples (Nalisnick et al., 2019).

Analogous to SC, a remarkably effective baseline for OOD detection that requires only ID samples is
the maximum softmax probability (Hendrycks and Gimpel, 2017), possibly with temperature scaling
and data augmentation (Liang et al., 2018). Recent works found that the maximum logit (Vaze et al.,
2021; Hendrycks et al., 2022; Wei et al., 2022), and energy-based variants (Liu et al., 2020b) may be
preferable. These may be further improved by taking into account imbalance in the ID classes (Jiang
et al., 2023) and employing watermarking strategies (Wang et al., 2022b). More effective detectors
can be designed in settings where one additionally has access to an OOD sample (Hendrycks et al.,
2019; Thulasidasan et al., 2019; Dhamija et al., 2018; Katz-Samuels et al., 2022).

Selective classification with OOD detection (SCOD). SC and OOD detection both involve abstain-
ing from prediction, but for subtly different reasons: SC concerns in-distribution but difficult samples,
while OOD detection concerns out-of-distribution samples. In practical classifier deployment, one is
likely to encounter both types of samples. To this end, selective classification with OOD detection
(SCOD) (Kim et al., 2021; Xia and Bouganis, 2022) allows for abstention on each sample type, with
a user-specified parameter controlling their relative importance. Formally, suppose as before that
Pte = π∗in · Pin + (1− π∗in) · Pout. Given a budget brej ∈ (0, 1) on the fraction of test samples that
can be rejected, the goal is to learn a classifier h : X→ Y and a rejector r : X→ {0, 1} to minimise:

minh,r (1− cfn) · Pin(y 6= h(x), r(x) = 0) + cfn · Pout(r(x) = 0): Pte(r(x) = 1) ≤ brej. (3)

Here, cfn ∈ [0, 1] is a user-specified cost of not rejecting an OOD sample. In Appendix C, we discuss
alternate formulations for SCOD, and explain how our results seamlessly extend to such variants.

Contrasting SCOD, SC, and OOD detection. Before proceeding, it is worth pausing to emphasise
the distinction between the three problems introduced above. All problems involve learning a rejector
to enable the classifier from abstaining on certain samples. Crucially, SCOD encourages rejection on
both ID samples that are likely to be misclassified, and OOD samples; by contrast, the SC and OOD
detection problems only focus on one of these cases. Recent work has observed that standard OOD
detectors tend to reject misclassified ID samples (Cen et al., 2023); thus, not considering the latter
can lead to overly pessimistic estimates of rejector performance.
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Given the practical relevance of SCOD, it is of interest to design effective techniques for the problem,
analogous to those for SC and OOD detection. Surprisingly, the literature offers only a few instances
of such techniques, most notably the SIRC method of Xia and Bouganis (2022). While empirically
effective, this approach is heuristic in nature. We seek to design theoretically grounded techniques
that are equally effective. To that end, we begin by investigating a fundamental property of SCOD.

Concurrent to this paper, we became aware of the highly related work of Franc et al. (2023), who
provide optimality characterisations for SCOD-like formulations. In another concurrent work,
Chaudhuri and Lopez-Paz (2023) seek to jointly calibrate a model for both SC and OOD detection.

3 BAYES-OPTIMAL SELECTIVE CLASSIFICATION WITH OOD DETECTION

We begin our formal analysis of SCOD by deriving its associated Bayes-optimal solution, which we
show combines confidence scores for SC and density ratio scores for OOD detection.

3.1 BAYES-OPTIMAL SCOD RULE: SAMPLE-DEPENDENT CONFIDENCE THRESHOLDING

Before designing new techniques for SCOD, it is prudent to ask: what are the theoretically optimal
choices for h, r that we hope to approximate? More precisely, we seek to explicate the population
SCOD objective (3) minimisers over all possible classifiers h : X→ Y, and rejectors r : X→ {0, 1}.
These minimisers will depend on the unknown distributions Pin,Pte, and are thus not practically
realisable as-is; nonetheless, they will subsequently motivate the design of simple, effective, and
theoretically grounded solutions to SCOD. Further, these help study the efficacy of existing baselines.

Under mild distributional assumptions, one can apply a standard Lagrangian analysis (detailed in
Appendix D) to show that (3) is equivalent to minimising over h, r:
Lscod(h, r)

= (1− cin − cout) · Pin(y 6= h(x), r(x) = 0) + cin · Pin(r(x) = 1) + cout · Pout(r(x) = 0). (4)

Here, cin, cout ∈ [0, 1] are distribution-dependent constants which encode the false negative outlier
cost cfn, abstention budget brej, and the proportion π∗in of inliers in Pte. We shall momentarily treat
these constants as fixed and known; we return to the issue of suitable choices for them in §4.3.
Furthermore, this formulation is fairly general and can be used to capture a variety of alternate
constraints in (3) for specific choices of cin and cout (details in Appendix C). Note that we obtain
a soft-penalty version of the SC problem when cout = 0, and the OOD detection problem when
cin + cout = 1. In general, we have the following Bayes-optimal solution for (4).
Lemma 3.1. Let (h∗, r∗) denote any minimiser of (3). Then, for any x ∈ X with Pin(x) > 0:

r∗(x) = 1
(

(1− cin − cout) ·
(

1−maxy∈[L] Pin(y | x)
)

+ cout · Pout(x)
Pin(x)

> cin

)
. (5)

Further, r∗(x) = 1 when Pin(x) = 0, and h∗(x) = argmaxy∈[L]Pin(y | x) when r∗(x) = 0.

The optimal classifier h∗ has an unsurprising form: for non-rejected samples, we predict the label
y with highest inlier class-probability Pin(y | x). The Bayes-optimal rejector is more interest-
ing, and involves a comparison between two key quantities: the maximum inlier class-probability
maxy∈[L] Pin(y | x), and the density ratio Pin(x)

Pout(x)
. These respectively reflect the confidence in the

most likely label, and the confidence in the sample being an inlier. Intuitively, when either of these
quantities is sufficiently small, a sample is a candidate for rejection.

We now verify that Lemma 3.1 generalises existing Bayes-optimal rules for SC and OOD detection.

Special case: SC. Suppose cout = 0 and cin < 1. Then, (5) reduces to Chow’s rule (Chow, 1970;
Ramaswamy et al., 2018):

r∗(x) = 1 ⇐⇒ 1−maxy∈[L] Pin(y | x) > cin
1−cin . (6)

Thus, samples with high uncertainty in the label distribution are rejected.

Special case: OOD detection. Suppose cin + cout = 1 and cin < 1. Then, (5) reduces to density-
based rejection (Steinwart et al., 2005; Chandola et al., 2009) when Pin(x) > 0:

r∗(x) = 1 ⇐⇒ Pout(x)
Pin(x)

> cin
1−cin . (7)

Thus, samples with relatively high density under Pout are rejected.
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3.2 IMPLICATION: EXISTING SC AND OOD BASELINES DO NOT SUFFICE FOR SCOD

Lemma 3.1 implies that SCOD cannot be readily solved by existing SC and OOD detection base-
lines. Specifically, consider the confidence-based rejection baseline, which rejects samples where
maxy∈[L] Pin(y | x) is lower than a fixed constant. This is known as Chow’s rule (6) in the SC litera-
ture (Chow, 1970; Ramaswamy et al., 2018; Ni et al., 2019), and the maximum softmax probability
(MSP) in OOD literature (Hendrycks and Gimpel, 2017); for brevity, we adopt the latter terminology.
The MSP baseline does not suffice for the SCOD problem in general: even if maxy∈[L] Pin(y | x) ∼ 1,
it may be optimal to reject an input x ∈ X if Pout(x)� Pin(x).

In fact, the MSP may result in arbitrarily bad rejection decisions. Surprisingly, this even holds in a
special cases of OOD detection, such as open-set classification, wherein there is a strong relationship
between Pin and Pout that a-priori would appear favourable to the MSP (Scheirer et al., 2013; Vaze
et al., 2021). We elaborate on this with concrete examples in Appendix I.1.

One may ask whether using the maximum logit rather than softmax probability can prove successful
in the open-set setting. Unfortunately, as this similarly does not include information about Pout, it
can also fail. For the same reason, other baselines from the OOD and SC literature can also fail; see
Appendix I.3. Rather than using existing baselines as-is, we now consider a more direct approach to
estimating the Bayes-optimal SCOD rejector in (5), which has strong empirical performance.

4 PLUG-IN ESTIMATORS TO THE BAYES-OPTIMAL SCOD RULE

The Bayes-optimal rule in (5) provides a prescription for how to combine estimates of confidence
scores s∗sc(x)

.
= maxy∈[L] Pin(y | x) and density ratios s∗ood(x)

.
= Pin(x)

Pout(x)
to make optimal rejection

decisions for SCOD. Of course, obtaining reliable estimates of both quantities can be challenging.

Our focus in this paper is not to offer new approaches for estimating either of these quantities; rather,
we seek to leverage existing selective classification and OOD detection techniques to estimate s∗sc(x)
and s∗ood(x), and demonstrate how optimally combining the two scores leads to improved SCOD
performance in practice. We also show theoretically that the efficacy of the resulting solution would
indeed depend on the quality of the individual estimates (Lemmas 4.1 and 4.2), as is also the case
with prior SCOD approaches (Xia and Bouganis, 2022).

To this end, we show how this combination strategy can be applied to two popular settings in the
OOD detection literature: one where there is access to only samples from Pin, and the other where
there is also access to an unlabeled mix of ID and OOD samples (Katz-Samuels et al., 2022).

4.1 BLACK-BOX SCOD USING ONLY ID DATA

The first setting we consider assumes access to ID samples from Pin. One may use any existing SC
score — e.g., the maximum softmax probability estimate of Chow (1970) — to obtain estimates
ssc : X→ R of the SC score. Similarly, we can leverage any existing OOD detection score sood : X→
R that is computed only from ID data, e.g., the gradient norm score of Huang et al. (2021). Given
these scores, we propose the following black-box rejector:

rBB(x) = 1 ((1− cin − cout) · ssc(x) + cout · ϑ (sood(x)) < tBB) , (8)

where tBB
.
= 1 − 2 · cin − cout, and ϑ : z 7→ − 1

z . Observe that (8) exactly coincides with the
optimal rejector (5) when ssc, sood equal their optimal counterparts s∗sc(x)

.
= maxy∈[L] Pin(y | x)

and s∗ood(x)
.
= Pin(x)

Pout(x)
. Thus, as is intuitive, rBB will perform well when ssc, sood perform well on

their respective tasks. Below, we bound the excess risk for rBB in terms errors in the estimated scores
(which can be further bounded if, e.g., the scores are a result of minimising a surrogate loss).

Lemma 4.1. Suppose we have estimates P̂in(y | x) of the inlier class probabilities Pin(y | x),
estimates ŝood(x) of the density ratio Pin(x)

Pout(x)
, and SC scores ŝsc(x) = maxy∈[L] P̂in(y | x). Let

ĥ(x) ∈ argmaxy∈[L]P̂in(y | x), and r̂BB be a rejector defined according to (8) from ŝsc(x) and
ŝood(x). Let P∗(x) = 0.5 · (Pin(x) + Pout(x)). Then, for the SCOD-risk (3) minimizers (h∗, r∗):

Lscod(ĥ, r̂BB)− Lscod(h∗, r∗) ≤ 4Ex∼P∗
[∑

y

∣∣∣Pin(y | x)− P̂in(y | x)
∣∣∣+
∣∣∣ Pin(x)
Pin(x)+Pout(x)

− ŝood(x)
1+ŝood(x)

∣∣∣] .
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Sub-optimality of SIRC method (Xia and Bouganis, 2022). Interestingly, this black-box rejector
can be seen as a principled variant of the SIRC method of Xia and Bouganis (2022). As with rBB,
SIRC works by combining rejection scores ssc(x), sood(x) for SC and OOD detection respectively.
The key difference is that SIRC employs a multiplicative combination:

rSIRC(x) = 1 ⇐⇒ (ssc(x)− a1) · %(a2 · sood(x) + a3) < tSIRC, (9)

for constants a1, a2, a3, threshold tSIRC, and monotone transform % : z 7→ 1 + e−z . Intuitively, one
rejects samples where there is sufficient signal that the sample is both near the decision boundary, and
likely drawn from the outlier distribution. While empirically effective, it is not hard to see that the
Bayes-optimal rejector (5) does not take the form of (9); thus, in general, SIRC may be sub-optimal.
We note that this also holds for the objective considered in Xia and Bouganis (2022), which is a slight
variation of (3) that enforces a constraint on the ID recall.

4.2 LOSS-BASED SCOD USING ID AND OOD DATA

The second setting we consider is that of Katz-Samuels et al. (2022), which assumes access to both
ID data, and a “wild” unlabeled sample comprising a mixture of ID and OOD data. As noted by
Katz-Samuels et al., unlabeled “wild” data is typically plentiful, and can be collected, for example,
from a currently deployed machine learning production system.

In this setting, the literature offers different loss functions (Hendrycks et al., 2019; Thulasidasan et al.,
2021; Bitterwolf et al., 2022) to jointly estimate both the SC and OOD scores. We pick an adaptation
of the decoupled loss proposed in Bitterwolf et al. (2022) due to its simplicity. We first describe this
loss, assuming access to “clean” samples from Pout and then explain how this loss can be applied to
more practical settings where we have access to only “wild” samples.

Specifically, we learn scorers f : X → RL and s : X → R, with the goal of applying a suitable
transformation to fy(x) and s(x) to approximate Pin(y | x) and Pin(x)

Pout(x)
. We propose to minimise:

E(x,y)∼Pin
[`mc(y, f(x))] + Ex∼Pin

[`bc(+1, s(x))] + Ex∼Pout
[`bc(−1, s(x))] , (10)

where `mc : [L] × RL → R+ and `bc : {±1} × R → R+ are strictly proper composite (Reid
and Williamson, 2010) losses for multi-class and binary classification respectively. Canonical
instantiations are the softmax cross-entropy `mc(y, f(x)) = log

[∑
y′∈[L] e

fy′ (x)
]
− fy(x), and the

sigmoid cross-entropy `bc(z, s(x)) = log(1 + e−z·s(x)). In words, we use a standard multi-class
classification loss on the ID data, with an additional loss that discriminates between the ID and OOD
data. Note that in the last two terms, we do not impose separate costs for the OOD detection errors.
Lemma 4.2. Let P∗(x, z) = 1

2 (Pin(x) · 1(z = 1) + Pout(x) · 1(z = −1)) denote a joint ID-OOD
distribution, with z = −1 indicating an OOD sample. Suppose `mc, `bc correspond to the softmax
and sigmoid cross-entropy. Let (f∗, s∗) be the minimizer of the decoupled loss in (10). For any
scorers f, s, with transformations py(x) =

exp(fy(x))∑
y′ exp(fy′ (x))

and p⊥(x) = 1
1+exp(−s(x)) :

Ex∼Pin

[∑
y∈[L]

∣∣py(x)− Pin(y | x)
∣∣] ≤ √2

√
E(x,y)∼Pin

[`mc(y, f(x))] − E(x,y)∼Pin
[`mc(y, f∗(x))]

Ex∼P∗
[∣∣∣p⊥(x)− Pin(x)

Pin(x)+Pout(x)

∣∣∣] ≤ 1√
2

√
E(x,z)∼P∗ [`bc(z, s(x))] − E(x,z)∼P∗ [`bc(z, s∗(x))] .

See Appendix E for a detailed generalization bound. Thus the quality of the estimates py(x) and
p⊥(x) depend on how well we are able to optimize the classifcation loss `mc and the rejector loss `bc
in (10). Note that `mc uses only the classification scores fy(x), while `bc uses only the rejector score
s(x). The two losses are thus decoupled. We may introduce coupling implicitly, by parameterising
fy′(x) = w>y′Φ(x) and s(x) = u>Φ(x) for shared embedding Φ; or explicitly, as follows.

Practical algorithm: SCOD in the wild. The loss in (10) requires estimating expectations under
Pout. While obtaining access to a sample drawn from Pout may be challenging, we adopt a similar
strategy to Katz-Samuels et al. (2022), and assume access to two sets of unlabelled samples:

(A1) Smix, consisting of a mixture of inlier and outlier samples drawn i.i.d. from a mixture Pmix =
πmix · Pin + (1− πmix) · Pout of samples observed in the wild (e.g., during deployment)

(A2) S∗in, consisting of samples certified to be strictly inlier, i.e., with Pout(x) = 0,∀x ∈ S∗in
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Algorithm 1 Loss-based SCOD using an unlabeled mixture of ID and OOD data
1: Input: Labeled Sin ∼ Pin, Unlabeled Smix ∼ Pmix, Strictly inlier S∗in with Pout(x) = 0

2: Parameters: Costs cin, cout (derived from cfn and brej specified in (3))
3: Surrogate loss: Find minimizers f̂ : X→ RL and ŝ : X→ R of the decoupled loss:

1
|Sin|

∑
(x,y)∈Sin

`mc(y, f(x)) + 1
|Sin|

∑
(x,y)∈Sin

`bc(+1, s(x)) + 1
|Smix|

∑
x∈Smix

`bc(−1, s(x))

4: Inlier class probabilities: P̂in(y|x)
.
= 1

Z · exp(f̂y(x)), where Z =
∑
y′ exp(f̂y′(x))

5: Mixture proportion: π̂mix
.
= 1
|S∗in|

∑
x∈S∗in

exp(−ŝ(x))

6: Density ratio: ŝood(x)
.
=
(

1
1−π̂mix

· (exp(−ŝ(x))− π̂mix)
)−1

7: Plug-in: Plug estimates P̂in(y|x), ŝood(x), and costs cin, cout into (8), and construct (ĥ, r̂)

8: Output: ĥ, r̂

Assumption (A1) was employed in Katz-Samuels et al. (2022), and may be implemented by collecting
samples encountered “in the wild” during deployment of the SCOD classifier and rejector. Assumption
(A2) merely requires identifying samples that are clearly not OOD, and is not difficult to satisfy: it
may be implemented in practice by either identifying prototypical training samples1, or by simply
selecting a random subset of the training sample. We follow the latter in our experiments.

Equipped with Smix, following Katz-Samuels et al. (2022), we propose to use it to approximate
expectations under Pout. One challenge is that the rejection logit will now estimate Pin(x)

Pmix(x)
, rather

than Pin(x)
Pout(x)

. To resolve this, it is not hard to show that by (A2), one can estimate the latter via a simple
transformation (see Appendix G). Plugging these estimates into (8) then gives us an approximation to
the Bayes-optimal solution. We summarise this procedure in Algorithm 1 for the decoupled loss.

In Appendix F, we additionally discuss a “coupled” variant of the loss in (10), and explain how the
proposed losses relate to existing losses for OOD detection.

4.3 CHOOSING cin AND cout

So far, we have focused on minimising (4), which requires specifying cin, cout. These costs need to be
chosen based on parameters specified in the primal SCOD formulation in (3), namely: the abstention
budget brej,and the cost cfn for non-rejection of OOD samples. The latter is a trade-off parameter also
required in Xia and Bouganis (2022), and indicates how risk-averse a user is to making predictions
on OOD samples (a value close to 1 indicates almost no tolerance for predictions on OOD samples).
Using the Lagrangian for (3), one may set c′out = cfn − λ · (1− π∗in)) and c′in = λ · π∗in, where λ is
the Lagrange multiplier and π∗in is the proportion of ID samples in the test population2; the resulting

rejector takes the form r∗(x) = 1
(

(1− cfn) ·
(
1−maxy∈[L] Pin(y | x)

)
+ c′out ·

Pout(x)
Pin(x)

> c′in

)
.

We prescribe treating λ as the lone tuning parameter, and tuning it so that the resulting rejector in (5)
satisfies the budget constraint specified by brej. See Appendix H for further details.

5 EXPERIMENTAL RESULTS

We demonstrate the efficacy of our proposed plug-in approaches to SCOD on a range of image
classification benchmarks from the OOD detection and SCOD literature (Bitterwolf et al., 2022;
Katz-Samuels et al., 2022; Xia and Bouganis, 2022). We report results with both pre-trained models
and models trained from scratch; the latter are averaged over 5 random trials.

Datasets. We use CIFAR-100 (Krizhevsky, 2009) and ImageNet (Deng et al., 2009) as the in-
distribution (ID) datasets, and SVHN (Netzer et al., 2011), Places365 (Zhou et al., 2017), LSUN (Yu
et al., 2015) (original and resized), Texture (Cimpoi et al., 2014), CelebA (Liu et al., 2015), 300K
Random Images (Hendrycks et al., 2019), OpenImages (Krasin et al., 2017), OpenImages-O (Wang

1As a practical example, if we were to classify images as either cats or dogs, it is not hard to collect images
that clearly show either a cat or a dog, and these would constitute strictly ID samples.

2In industry production settings, one may be able to estimate π∗in through inspection of historical logged data.
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Table 2: Area Under the Risk-Coverage Curve (AUC-RC) for methods trained with CIFAR-100 as
the ID sample and a mix of CIFAR-100 and either 300K Random Images or Open Images as the wild
sample (cfn = 0.75). The wild set contains 10% ID and 90% OOD. Base model is ResNet-56. A *
against a method indicates that it uses both ID and OOD samples for training. The test set contains
50% ID and 50% OOD samples. Lower is better.

ID + OOD training with Ptr
out = Random300K ID + OOD training with Ptr

out = OpenImages
Method / Pte

out SVHN Places LSUN LSUN-R Texture SVHN Places LSUN LSUN-R Texture

MSP 0.307 0.338 0.323 0.388 0.344 0.307 0.338 0.323 0.388 0.344

MaxLogit 0.281 0.327 0.302 0.368 0.332 0.281 0.327 0.302 0.368 0.332

Energy 0.282 0.328 0.302 0.370 0.327 0.282 0.328 0.302 0.370 0.327

DOCTOR 0.306 0.336 0.322 0.384 0.341 0.306 0.336 0.322 0.384 0.341

SIRC [L1] 0.279 0.334 0.302 0.385 0.316 0.279 0.334 0.302 0.385 0.316

SIRC [Res] 0.258 0.333 0.289 0.383 0.311 0.258 0.333 0.289 0.383 0.311

CCE* 0.287 0.314 0.254 0.212 0.257 0.303 0.209 0.246 0.210 0.277
DCE* 0.294 0.325 0.246 0.211 0.258 0.352 0.213 0.263 0.214 0.292

OE* 0.312 0.305 0.260 0.204 0.259 0.318 0.202 0.259 0.204 0.297

Plug-in BB [L1] 0.223 0.318 0.240 0.349 0.245 0.223 0.318 0.240 0.349 0.245
Plug-in BB [Res] 0.205 0.324 0.240 0.321 0.264 0.205 0.324 0.240 0.321 0.264
Plug-in LB* 0.289 0.305 0.243 0.187 0.249 0.315 0.182 0.267 0.186 0.292

et al., 2022a), iNaturalist-O (Huang and Li, 2021) and Colorectal (Kather et al., 2016) as the OOD
datasets. For training, we use labeled ID samples and (optionally) an unlabeled “wild” mixture of ID
and OOD samples (Pmix = πmix · Pin + (1− πmix) · Ptr

out). For testing, we use OOD samples (Pte
out)

that may be different from those used in training (Ptr
out). We train a ResNet-56 on CIFAR, and use a

pre-trained BiT ResNet-101 on ImageNet (hyper-parameter details in Appendix J.1).

In experiments where we use both ID and OOD samples for training, the training set comprises of
equal number of ID samples and wild samples. We hold out 5% of the original ID test set and use it
as the “strictly inlier” sample needed to estimate πmix for Algorithm 1. Our final test set contains
equal proportions of ID and OOD samples; we report results with other choices in Appendix J.5.

Evaluation metrics. Recall that our goal is to solve the constrained SCOD objective in (3). One way
to measure performance with respect to this objective is to measure the area under the risk-coverage
curve (AUC-RC), as considered in prior work (Kim et al., 2021; Xia and Bouganis, 2022). Concretely,
we plot the joint risk in (3) as a function of samples abstained, and evaluate the area under the curve.
This summarizes the rejector performance on both selective classification and OOD detection. For a
fixed fraction b̂rej = 1

|Sall|
∑
x∈Sall

1(r(x) = 1) of abstained samples, we measure the joint risk as:

1
Z

(
(1− cfn) ·

∑
(x,y)∈Sin

1(y 6= h(x), r(x) = 0) + cfn ·
∑
x∈Sout

1(r(x) = 0)
)
, (11)

where Z =
∑
x∈Sall

1(r(x) = 0) conditions the risk on non-rejected samples, and Sall = {x :

(x, y) ∈ Sin} ∪ Sout is the combined ID-OOD dataset. See Appendix H for details of how our
plug-in estimators handle this constrained objective. We set cfn = 0.75 here, and explore other cost
parameters in Appendix J.6.

Baselines. Our main competitor is SIRC from the SCOD literature (Xia and Bouganis, 2022). We
compare with two variants of SIRC, which respectively use the L1-norm of the embeddings for sood,
and a residual score (Wang et al., 2022a) instead. For completeness, we also include representative
baselines from the OOD literature to show that a stand-alone OOD scorer can be sub-optimal for
SCOD. We do not include an exhaustive list of OOD methods, as the task at hand is SCOD, and not
stand-alone OOD detection. We include both methods that train only on the ID samples, namely, MSP
(Chow, 1970; Hendrycks and Gimpel, 2017), MaxLogit (Hendrickx et al., 2021), energy-based scorer
(Liu et al., 2020b), DOCTOR (Granese et al., 2021), and those which additionally use OOD samples,
namely, the coupled CE loss (CCE) (Thulasidasan et al., 2021), the de-coupled CE loss (DCE)
(Bitterwolf et al., 2022), and the outlier exposure (OE) (Hendrycks et al., 2019). In Appendix J, we
also compare against cost-sensitive softmax (CSS) loss (Mozannar and Sontag, 2020), a representative
SC baseline, nearest-neighbor scorers (Sun et al., 2022), and ODIN (Liang et al., 2018).

Plug-in estimators. For a fair comparison, we implement our black-box rejector in (8) using the
same sood scorers as Xia and Bouganis (2022), namely their (i) L1 scorer and (ii) residual scorer; we
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Table 3: AUC-RC (↓) for CIFAR-100 as ID, and a “wild” comprising of 90% ID and only 10% OOD.
The OOD part of the wild set is drawn from the same OOD dataset from which the test set is drawn.

ID + OOD training with Ptr
out = Pte

out

Method / Pte
out SVHN Places LSUN LSUN-R Texture OpenImages

MSP 0.307 0.338 0.323 0.388 0.344 0.342

MaxLogit 0.281 0.327 0.302 0.368 0.332 0.351

Energy 0.282 0.328 0.302 0.370 0.327 0.351

DOCTOR 0.306 0.336 0.322 0.384 0.341 0.342

SIRC [L1] 0.279 0.334 0.302 0.385 0.316 0.340

SIRC [Res] 0.258 0.333 0.289 0.383 0.311 0.341

CCE* 0.238 0.227 0.231 0.235 0.239 0.243

DCE* 0.235 0.220 0.226 0.230 0.235 0.241

OE* 0.245 0.245 0.254 0.241 0.264 0.255

Plug-in BB [L1] 0.223 0.318 0.240 0.349 0.245 0.334
Plug-in BB [Res] 0.205 0.324 0.240 0.321 0.264 0.342
Plug-in LB* 0.221 0.199 0.209 0.215 0.218 0.225

Table 4: AUC-RC (↓) for methods trained on ImageNet (inlier) with no OOD samples. The base
model is a pre-trained BiT ResNet-101. Lower values are better. Additional results in App. J.9.

ID-only training
Method / Pte

out Places LSUN CelebA Colorectal iNaturalist-O Texture OpenImages-O ImageNet-O

MSP 0.227 0.234 0.241 0.218 0.195 0.220 0.203 0.325

MaxLogit 0.229 0.239 0.256 0.204 0.195 0.223 0.202 0.326

Energy 0.235 0.246 0.278 0.204 0.199 0.227 0.210 0.330

DOCTOR 0.220 0.233 0.235 0.220 0.193 0.226 0.202 0.331

SIRC [L1] 0.222 0.229 0.248 0.220 0.196 0.226 0.200 0.313
SIRC [Res] 0.211 0.198 0.178 0.161 0.175 0.219 0.201 0.327

Plug-in BB [L1] 0.261 0.257 0.337 0.283 0.219 0.270 0.222 0.333
Plug-in BB [Res] 0.191 0.170 0.145 0.149 0.162 0.252 0.215 0.378

use their MSP scorer for ssc. We also include our (iii) loss-based rejector based on the de-coupled
(DC) loss in (10). (i) and (ii) use only ID samples; (iii) uses both ID and wild samples for training.

Tuning parameter. Each baseline has a single threshold or cost parameter that needs to be tuned to
achieve a given rate of abstention brej (details in Appendix J.1); we aggregate performance across
different abstention rates. Our plug-in method also uses a single tuning parameter (details in §4.3).

Results. Our first experiments use CIFAR-100 as the ID sample. Table 2 reports results for a setting
where the OOD samples used (as a part of the wild set) during training are different from those used
for testing (Ptr

out 6= Pte
out). Table 3 contains results for a setting where they are the same (Ptr

out = Pte
out).

In both cases, one among the three plug-in estimators yields the lowest AUC-RC. Interestingly, when
Ptr
out 6= Pte

out, the two black-box (BB) plug-in estimators that use only ID-samples for training often
fare better than the loss-based (LB) one which uses both ID and wild samples for training. This is
likely due to the mismatch between the training and test OOD distributions resulting in the decoupled
loss yielding poor estimates of Pin(x)

Pout(x)
. When Ptr

out = Pte
out, the LB estimator often performs the best.

Table 4 presents results with ImageNet as ID, and no OOD samples for training. The BB plug-in
estimator (residual) yields notable gains on 5/8 OOD datasets. On the remaining, even the SIRC
baselines are often only marginally better than MSP; this is because the grad-norm scorers used by
them (and also by our estimators) are not very effective in detecting OOD samples for these datasets.

We have thus provided theoretically grounded plug-in estimators for SCOD that combine scores
of SC and OOD detection, and demonstrated their efficacy on both settings that train with only ID
samples, and those that additionally use a noisy OOD sample. A key element in our approach is the
sood scorer for estimating the ID-OOD density ratio, for which we employed the grad-norm based
scorers (Wang et al., 2022a) used by prior SCOD methods (Xia and Bouganis, 2022). In the future,
we wish to explore other approaches for estimating the density ratio such as Ren et al. (2019); Sun
et al. (2022). It is also of interest to consider unifying the statistical formulation of SCOD with the
problem of identifying misclassified samples (Hendrycks and Gimpel, 2017; Granese et al., 2021).
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Appendix

A PROOFS

Lemma 3.1. Let (h∗, r∗) denote any minimiser of (3). Then, for any x ∈ X with Pin(x) > 0:

r∗(x) = 1

(
(1− cin − cout) ·

(
1− max

y∈[L]
Pin(y | x)

)
+ cout ·

Pout(x)

Pin(x)
> cin

)
. (12)

Further, r∗(x) = 1 when Pin(x) = 0, and h∗(x) = argmaxy∈[L]Pin(y | x) when r∗(x) = 0.

Proof of Lemma 3.1. We first define a joint marginal distribution Pcomb that samples from Pin(x) and
Pout(x) with equal probabilities. We then rewrite the objective in (4) in terms of the joint marginal
distribution:

Lscod(h, r) = Ex∼Pcomb
[T1(h(x), r(x)) + T2(h(x), r(x))]

T1(h(x), r(x)) = (1− cin − cout) · Ey|x∼Pin

[
Pin(x)

Pcomb(x)
· 1(y 6= h(x), r(x) = 0)

]
= (1− cin − cout) ·

∑
y∈[L]

Pin(y|x) · Pin(x)

Pcomb(x)
· 1(y 6= h(x), r(x) = 0)

T2(h(x), r(x)) = cin ·
Pin(x)

Pcomb(x)
· 1(r(x) = 1) + cout · 1(r(x) = 0).

The conditional risk that a classifier h incurs when abstaining (i.e., predicting r(x) = 1) on a fixed
instance x is given by:

cin ·
Pin(x)

Pcomb(x)
.

The conditional risk associated with predicting a base class y ∈ [L] on instance x is given by:

(1− cin − cout) ·
Pin(x)

Pcomb(x)
· (1− Pin(y|x)) + cout ·

Pout(x)

Pcomb(x)

The Bayes-optimal classifier then predicts the label with the lowest conditional risk. When Pin(x) = 0,
this amounts to predicting abstain (r(x) = 1). When Pin(x) > 0, the optimal classifier predicts
r(x) = 1 when:

cin ·
Pin(x)

Pcomb(x)
< (1− cin − cout) ·

Pin(x)

Pcomb(x)
· min
y∈[L]

(1− Pin(y|x)) + cout ·
Pout(x)

Pcomb(x)

⇐⇒ cin · Pin(x) < (1− cin − cout) · Pin(x) · min
y∈[L]

(1− Pin(y|x)) + cout · Pout(x)

⇐⇒ cin · Pin(x) < (1− cin − cout) · Pin(x) ·
(

1− max
y∈[L]

Pin(y|x)

)
+ cout · Pout(x)

⇐⇒ cin < (1− cin − cout) ·
(

1− max
y∈[L]

Pin(y|x)

)
+ cout ·

Pout(x)

Pin(x)
.

Otherwise, the classifier does not abstain (r(x) = 0), and predicts argmaxy∈[L] Pin(y|x), as desired.

Lemma 4.1. Suppose we have estimates P̂in(y | x) of the inlier class probabilities Pin(y | x),
estimates ŝood(x) of the density ratio Pin(x)

Pout(x)
, and SC scores ŝsc(x) = maxy∈[L] P̂in(y | x). Let

ĥ(x) ∈ argmaxy∈[L]P̂in(y | x), and r̂BB be a rejector defined according to (8) from ŝsc(x) and
ŝood(x). Let P∗(x) = 1

2 (Pin(x) + Pout(x)). Then, for the SCOD-risk (3) minimizers (h∗, r∗):

Lscod(ĥ, r̂BB) − Lscod(h∗, r∗)

≤ 2 · Ex∼P∗
[∑

y∈[L]

∣∣∣Pin(y | x)− P̂in(y | x)
∣∣∣ + 4 ·

∣∣∣ Pin(x)
Pin(x)+Pout(x)

− ŝood(x)
1+ŝood(x)

∣∣∣] .
15



Published as a conference paper at ICLR 2024

Proof of Lemma 4.1. Let P∗ denote the joint distribution that draws a sample from Pin and Pout with
equal probability. Denote γin(x) = Pin(x)

Pin(x)+Pout(x)
. The joint risk in (4) can be written as:

Lscod(h, r)

= (1− cin − cout) · Pin(y 6= h(x), r(x) = 0) + cin · Pin(r(x) = 1) + cout · Pout(r(x) = 0)

= Ex∼P∗
[
(1− cin − cout) · γin(x) ·

∑
y 6=h(x)

Pin(y | x) · 1(r(x) = 0)

+ cin · γin(x) · 1(r(x) = 1) + cout · (1− γin(x)) · 1(r(x) = 0)
]
.

For class probability estimates P̂in(y | x) ≈ Pin(y | x), and scorers ŝsc(x) = maxy∈[L] P̂in(y | x)

and ŝood(x) ≈ Pin(x)
Pout(x)

, we construct a classifier ĥ(x) ∈ argmaxy∈[L]η̂y(x) and black-box rejector:

r̂BB(x) = 1 ⇐⇒ (1− cin − cout) · (1− ŝsc(x)) + cout ·
(

1

ŝood(x)

)
> cin. (13)

Let (h∗, r∗) denote the optimal classifier and rejector as defined in (5). We then wish to bound the
following regret:

Lscod(ĥ, r̂BB)− Lscod(h∗, r∗) = Lscod(ĥ, r̂BB)− Lscod(h∗, r̂BB)︸ ︷︷ ︸
term1

+Lscod(h∗, r̂BB)− Lscod(h∗, r∗)︸ ︷︷ ︸
term2

.

We first bound the first term:

term1 = Ex∼P∗

(1− cin − cout) · γin(x) · 1(r̂BB(x) = 0) ·
( ∑
y 6=ĥ(x)

Pin(y | x)−
∑

y 6=h∗(x)

Pin(y | x)
)

= Ex∼P∗

ω(x) ·
( ∑
y 6=ĥ(x)

Pin(y | x)−
∑

y 6=h∗(x)

Pin(y | x)
) ,

where we denote ω(x) = (1− cin − cout) · γin(x) · 1(r̂BB(x) = 0).

Furthermore, we can write:

term1

= Ex∼P∗

ω(x) ·
( ∑
y 6=ĥ(x)

Pin(y | x)−
∑

y 6=h∗(x)

P̂in(y | x) +
∑

y 6=h∗(x)

P̂in(y | x)−
∑

y 6=h∗(x)

Pin(y | x)
)

≤ Ex∼P∗

ω(x) ·
( ∑
y 6=ĥ(x)

Pin(y | x)−
∑

y 6=ĥ(x)

P̂in(y | x) +
∑

y 6=h∗(x)

P̂in(y | x)−
∑

y 6=h∗(x)

Pin(y | x)
)

≤ 2 · Ex∼P∗

ω(x) ·
∑
y∈[L]

∣∣∣Pin(y | x)− P̂in(y | x)
∣∣∣


≤ 2 · Ex∼P∗

∑
y∈[L]

∣∣∣Pin(y | x)− P̂in(y | x)
∣∣∣
 ,

where the third step uses the definition of ĥ and the fact that ω(x) > 0; the last step uses the fact that
ω(x) ≤ 1.

We bound the second term now. For this, we first define:

Lrej(r) = Ex∼P∗
[(

(1− cin − cout) · γin(x) · (1− max
y∈[L]

Pin(y | x)) + cout · (1− γin(x))

)
· 1(r(x) = 0)
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+ cin · γin(x) · 1(r(x) = 1)

]
.

and

L̂rej(r) = Ex∼P∗
[(

(1− cin − cout) · γ̂in(x) · (1− max
y∈[L]

P̂in(y | x)) + cout · (1− γ̂in(x))

)
· 1(r(x) = 0)

+ cin · γ̂in(x) · 1(r(x) = 1)

]
,

where we denote γ̂in(x) = ŝood(x)
1+ŝood(x)

.

Notice that r∗ minimizes L(r) over all rejectors r : X → {0, 1}. Similarly, note that r̂BB minimizes
L̂(r) over all rejectors r : X → {0, 1}.
Then the second term can be written as:
term2 = Lrej(r̂BB)− Lrej(r

∗)

= Lrej(r̂BB)− L̂rej(r
∗) + L̂rej(r

∗)− Lrej(r
∗)

≤ Lrej(r̂BB)− L̂rej(r̂BB) + L̂rej(r
∗)− Lrej(r

∗)

≤ 2 · (1− cin − cout) ·
∣∣∣∣max
y∈[L]

Pin(y | x)− max
y∈[L]

P̂in(y | x)

∣∣∣∣ · |γin(x)− γ̂in(x)|

+ 2 ·
(
(1− cin − cout) + cout + cin

)
· |γin(x)− γ̂in(x)|

≤ 2 · (1− cin − cout) · (1) · |γin(x)− γ̂in(x)|+ 2 · (1) · |γin(x)− γ̂in(x)|
≤ 4 · |γin(x)− γ̂in(x)|

= 4 ·
∣∣∣∣ Pin(x)

Pin(x) + Pout(x)
− ŝood(x)

1 + ŝood(x)

∣∣∣∣ ,
where the third step follows from r̂BB being a minimizer of L̂rej(r), the fourth step uses the fact that∣∣∣maxy∈[L] Pin(y | x)−maxy∈[L] P̂in(y | x)

∣∣∣ ≤ 1, and the fifth step uses the fact that cin + cout ≤ 1.

Combining the bounds on term1 and term2 completes the proof.

Lemma 4.2. Let P∗(x, z) = 1
2 (Pin(x) · 1(z = 1) + Pout(x) · 1(z = −1)) denote a joint ID-OOD

distribution, with z = −1 indicating an OOD sample. Suppose `mc, `bc correspond to the softmax
and sigmoid cross-entropy. Let (f∗, s∗) be the minimizer of the decoupled loss in (10). For any
scorers f, s, with transformations py(x) =

exp(fy(x))∑
y′ exp(fy′ (x))

and p⊥(x) = 1
1+exp(−s(x)) :

Ex∼Pin

[∑
y∈[L]

∣∣py(x)− Pin(y | x)
∣∣] ≤ √2

√
E(x,y)∼Pin

[`mc(y, f(x))] − E(x,y)∼Pin
[`mc(y, f∗(x))]

Ex∼P∗
[∣∣∣p⊥(x)− Pin(x)

Pin(x)+Pout(x)

∣∣∣] ≤ 1√
2

√
E(x,z)∼P∗ [`bc(z, s(x))] − E(x,z)∼P∗ [`bc(z, s∗(x))] .

Proof of Lemma 4.2. We first note that f∗(x) ∝ log(Pin(y | x)) and s∗(x) = log
( P∗(z=1|x)
P∗(z=−1|x)

)
.

Regret Bound 1: We start with the first regret bound. We expand the multi-class cross-entropy loss
to get:

E(x,y)∼Pin
[`mc(y, f(x))] = Ex∼Pin

−∑
y∈[L]

Pin(y | x) · log (py(x))


E(x,y)∼Pin

[`mc(y, f
∗(x))] = Ex∼Pin

−∑
y∈[L]

Pin(y | x) · log (Pin(y | x))

 .
The right-hand side of the first bound can then be expanded as:

E(x,y)∼Pin
[`mc(y, f(x))]− E(x,y)∼Pin

[`mc(y, f
∗(x))] = Ex∼Pin

∑
y∈[L]

Pin(y | x) · log

(
Pin(y | x)

py(x)

) ,
(14)
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which the KL-divergence between Pin(y | x) and py(x).

The KL-divergence between two probability mass functions p and q over U can be lower bounded by:

KL(p||q) ≥ 1

2

(∑
u∈U
|p(u)− q(u)|

)2

(15)

via Pinsker’s inequality (Tsybakov, 2009, Section 2.8). Applying (15) to (14), we have:

∑
y∈[L]

Pin(y | x) · log

(
Pin(y | x)

py(x)

)
≥ 1

2

∑
y∈[L]

|Pin(y | x)− py(x)|

2

,

and therefore:

E(x,y)∼Pin
[`mc(y, f(x))]− E(x,y)∼Pin

[`mc(y, f
∗(x))] ≥ 1

2
· Ex∼Pin


∑
y∈[L]

|Pin(y | x)− py(x)|

2


≥ 1

2

Ex∼Pin

∑
y∈[L]

|Pin(y | x)− py(x)|

2

,

or

Ex∼Pin

∑
y∈[L]

∣∣Pin(y | x)− py(x)
∣∣ ≤ √2·

√
E(x,y)∼Pin

[`mc(y, f(x))] − E(x,y)∼Pin
[`mc(y, f∗(x))].

Regret Bound 2: We expand the binary sigmoid cross-entropy loss to get:

E(x,z)∼P∗ [`bc(z, s(x))] = Ex∼P∗ [−P∗(z = 1 | x) · log (p⊥(x)) − P∗(z = −1 | x) · log (1− p⊥(x))]

E(x,z)∼P∗ [`bc(z, s
∗(x))] = Ex∼P∗ [−P∗(z = 1 | x) · log (P∗(z = 1 | x)) − P∗(z = −1 | x) · log (P∗(z = −1 | x))] ,

and furthermore

E(x,z)∼P∗ [`bc(z, s(x))] − E(x,z)∼P∗ [`bc(z, s
∗(x))]

= Ex∼P∗
[
P∗(z = 1 | x) · log

(
P∗(z = 1 | x)

p⊥(x)

)
+ P∗(z = −1 | x) · log

(
P∗(z = −1 | x)

1− p⊥(x)

)]
≥ Ex∼P∗

[
1

2
(|P∗(z = 1 | x)− p⊥(x)|+ |P∗(z = −1 | x)− (1− p⊥(x))|)2

]
= Ex∼P∗

[
1

2
(|P∗(z = 1 | x)− p⊥(x)|+ |(1− P∗(z = 1 | x))− (1− p⊥(x))|)2

]
= 2 · Ex∼P∗

[
|P∗(z = 1 | x)− p⊥(x)|2

]
≥ 2 · (Ex∼P∗ [|P∗(z = 1 | x)− p⊥(x)|])2 ,

where the second step uses the bound in (15) and the last step uses Jensen’s inequality. Note here that
p⊥(x) serves as an approximation to P∗(z = 1 | x).

Taking square-root on both sides and noting that P∗(z = 1 | x) = Pin(x)
Pin(x)+Pout(x)

completes the
proof.

B RELATIONSHIP BETWEEN SELECTIVE CLASSIFICATION AND LEARNING TO
REJECT

There are two closely related formulations for classification problems with an abstention option:
one is selective classification (SC), where one uses the conditional error P(y 6= h(x) | r(x) = 0)
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Geifman and El-Yaniv (2019)); the other is learning to reject (L2R), where one instead uses the joint
error P(y 6= h(x), r(x) = 0) Ramaswamy et al. (2018).

There is a one-to-correspondence between the two formulations: owing to the constraint on P(r(x) =
1) in (1), it is not hard to see that:

min
h,r

P(y 6= h(x) | r(x) = 0): P(r(x) = 1) ≤ b

= min
h,r

P(y 6= h(x), r(x) = 0)

P(r(x) = 0)
: P(r(x) = 1) ≤ b

= min
h,r,a

P(y 6= h(x), r(x) = 0)

a
: P(r(x) = 1) ≤ b,P(r(x) = 0) ≥ a

= min
h,r,a

P(y 6= h(x), r(x) = 0)

a
: P(r(x) = 1) ≤ min(b, 1− a)

Thus, for a fixed a, the problem is equivalent to (1), with a modified choice of the constraint on
P(r(x) = 1). The Bayes-optimal classifier is thus unaffected.

C ALTERNATE FORMULATIONS FOR SCOD

Like us, the prior work of Xia and Bouganis (2022) also formulate SCOD as a constrained optimization
problem, and consider two types of constraints: (i) a constraint on the total fraction of abstention in
(3); and (ii) a constraint on the fraction of correctly classified ID samples that were accepted:

min
h,r

(1− cfn) · Pin(y 6= h(x), r(x) = 0) + cfn · Pout(r(x) = 0)

Pin(r(x) = 0 | y = h(x)) ≥ btnr,

for some budget btnr. As acknowledged by Xia and Bouganis (2022), the second constraint can be
limiting, as it only considers abstentions on the correctly classified samples (see Section 5.1 in their
paper). They argue that the coverage constraint we employ is more appropriate for SCOD.

Furthermore, the Lagrangian formulation we consider in (4) with costs cin and cout is fairly general,
and captures a wide range of SCOD formulations. For example, we can show under mild distributional
assumptions that for any SCOD problem of the following form:

min
h,r

(1− cfn) · Pin(y 6= h(x), r(x) = 0) + cfn · Pout(r(x) = 0)

κ00 · Pin(r(x) = 0) + κ01 · Pin(r(x) = 1) + κ10 · Pout(r(x) = 0) + κ11 · Pout(r(x) = 1) ≤ b,

where κ00, κ01, κ10, κ11, b ∈ R+, we can formulate an equivalent objective of the form in (4), for
appropriate choices of costs cin and cout.

D LAGRANGIAN ANALYSIS FOR SCOD

Let R(h, r) = Pin(y 6= h(x), r(x) = 0) + c · Pout(r(x) = 0). We wish to solve (3), which is
re-written below:

min
h,r

R(h, r) : Pte(r(x) = 1) ≤ b.

The Lagrangian for this problem is given by:

F (h, r, λ) = R(h, r) + λ · (Pte(r(x) = 1)− b) ,

where λ ≥ 0 is the Lagrange multiplier. We now explicate when it is admissible to use the
unconstrained Lagrangian to solve the constrained problem (3).

Assumption D.1. Pin(y | x), Pin(x), Pout(x) and Pte(x) are continuous in x.

Theorem D.2. Under Assumption D.1, there exists λ > 0 such that:

(h∗λ, r
∗
λ) ∈ argminh,rF (h, r, λ) =⇒ (h∗λ, r

∗
λ) ∈ argminh,r: Pte(r(x)=1)≤bR(h, r).
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We will find it useful to state the following lemma:
Lemma D.3. Let (h∗λ, r

∗
λ) be the minimizer of F (h, r, λ) for Lagrange multiplier λ ≥ 0. Then:

R(h∗λ, r
∗
λ) ≤ R(h, r),

for all (h, r) such that Pte(r(x) = 1) ≤ Pte(r
∗
λ(x) = 1).

Proof. Since (h∗λ, r
∗
λ) minimizes the Lagrangian, for any (h, r), F (h∗λ, r

∗
λ, λ) ≤ F (h, r, λ), i.e.,

R(h∗λ, r
∗
λ) ≤ R(h, r) + λ · (Pte(r(x) = 1)− Pte(r

∗
λ(x) = 1)) .

Since λ ≥ 0, for any (h, r) such that Pte(r(x) = 1) ≤ Pte(r
∗
λ(x) = 1),

R(h∗λ, r
∗
λ) ≤ R(h, r),

as desired.

We are now ready to prove Theorem D.2.

Proof of Theorem D.2. For a fixed λ ≥ 0, the minimizer of the Lagrangian F (h, r, λ) takes the form:

h∗λ(x) = argmaxy∈[L]Pin(y | x);

r∗λ(x) = 1 ⇐⇒
(

max
y∈[L]

Pin(y | x) + c− 1

)
· Pin(x)

Pout(x)
< λ.

The abstention rate for r∗λ(x) can then be written as:

Pte(r
∗
λ(x) = 1) =

∫
H(x)<λ

Pte(x)dx.

where H(x) =
(
maxy∈[L] Pin(y | x) + c− 1

)
· Pin(x)
Pout(x)

.

Since Pin(y | x), Pin(x), Pout(x) are continuous in x, H(x) is continuous in x. Furthermore, since
the density Pte(x) is also continuous, we can always find a λ ≥ 0 for which Pte(r

∗
λ(x) = 1) = b.

Applying Lemma D.3 with this choice of λ, we then have that R(h∗λ, r
∗
λ) ≤ R(h, r) for all (h, r)

such that Pte(r(x) = 1) ≤ b.

When the underlying distributions are discrete or mixed, there may be budgets b for which no
equivalent Lagrange multiplier λ exists. In such cases, one may choose the multiplier with coverage
closest to b and solve a relaxation to (3).

E GENERALIZATION ANALYSIS

For labeled set Sin ∼ Pin, and unlabeled set Sout ∼ Pout, we denote:

S∗ = {(x, 1) : (x, y) ∈ Sin} ∪ {(x,−1) : x ∈ Sout}.

Let nin = |Sin|, nout = |Sout| and n∗ = nin + nout. We denote the expected risks by:

Rmc(f) = E(x,y)∼Pin
[`mc(y, f(x))] ; Rbc(s) = E(x,z)∼P∗ [`bc(z, s(x))] ,

and their empirical counter-parts by:

R̂mc(f) =
1

nin

∑
(x,y)∈Sin

`mc(y, f(x)); R̂bc(s) =
1

n∗

∑
(x,z)∈S∗

`bc(z, s(x)).

Let F be a hypothesis class of bounded scorers of the form f : X → RL and G be a class of
bounded scorers s : X → R. Let N (F , ε) denote the covering number for F with the∞-norm, and
N (G, ε) similarly denote the covering number for G. Let (f̃, s̃) be the minimizer of the decoupled
loss Rmc(f) +Rbc(s) over F × G, and (f∗, s∗) be the minimizers over all measurable functions.
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Lemma E.1. Suppose `mc, `bc correspond to the softmax and sigmoid cross-entropy losses, with
`mc(·, ·) ≤ Bmc and `bc(·, ·) ≤ Bbc. Let (f̂, ŝ) be the minimizer of the empirical decoupled loss in

(10), i.e., of R̂mc(f) + R̂bc(s) over F × G. Let p̂y(x) =
exp(f̂y(x))∑
y′ exp(f̂y′ (x))

and p̂⊥(x) = 1
1+exp(−ŝ(x)) ,

with probability at least 1− δ over draw of Sin and Sout:

Ex∼Pin

∑
y∈[L]

∣∣p̂y(x)− Pin(y | x)
∣∣ ≤ 2

2 · inf
ε>0

ε+Bmc

√
2 · logN (G, ε/L)

nin

 + O

√ log(1/δ)

nin

1/2

+
√

2 ·
√
Rmc(f̃)−Rmc(f∗);

Ex∼P∗
[∣∣∣∣p̂⊥(x)− Pin(x)

Pin(x) + Pout(x)

∣∣∣∣] ≤ 2

(
2 · inf

ε>0

{
ε+Bbc

√
2 · logN (G, ε)

n∗

}
+ O

(√
log(1/δ)

n∗

))1/2

+
√

2 ·
√
Rbc(s̃)−Rbc(s∗).

The proof uses the following generalization bounds based on uniform convergence (Shalev-Shwartz
and Ben-David, 2014).
Lemma E.2. Suppose the losses `mc(·, ·) ≤ Bmc and `bc(·, ·) ≤ Bbc. For any δ ∈ (0, 1), with
probability at least 1− δ over draw of Sin and Sout, for any f ′ ∈ F and s′ ∈ G:∣∣∣Rmc(f

′)− R̂mc(f
′)
∣∣∣ ≤ 2 · inf

ε>0

ε+Bmc

√
2 · log (N (F , ε/L))

nin

 + O

√ log(1/δ)

nin

 ;

∣∣∣Rbc(s
′)− R̂bc(s

′)
∣∣∣ ≤ 2 · inf

ε>0

{
ε+Bbc

√
2 · log (N (G, ε))

n∗

}
+ O

(√
log(1/δ)

n∗

)
.

Proof of Lemma E.2. We prove the second bound. The first bound follows through similar arguments.
Let L = {(x, y) 7→ `bc(y, s(x)) | s ∈ G} be the class of sigmoid cross-entropy losses induced by
hypothesis class G. Let R̂(L) denote the empirical Radamacher complexity of L. Then a standard
two-sided Radamacher complexity bound gives us that with probability at least 1− δ (see C. Scott,
UMich EECS 598: Statistical Learning Theory, Winter 2014, Topic 10, Theorem 2):

sup
s′∈G

∣∣∣Rbc(s
′)− R̂bc(s

′)
∣∣∣ ≤ 2 · R̂(L) + O

(√
log(1/δ)

n∗

)
.

We next bound R̂(L) in terms of the covering number of L. Fix ε > 0. Let G̃ be an ε-cover for
G under the∞-norm. By our assumption there exists such a cover with size |G̃| = N (G, ε). This
implies that for any s ∈ G, there exists a s̃ ∈ G̃ such that supx |s(x)− s̃(x)| ≤ ε. Since the loss `bc
is 1-Lipschitz in its second argument, this further implies that for any s ∈ G, there exists a s̃ ∈ G̃
such that sup(x,y) |`bc(y, s(x))− `bc(y, s̃(x))| ≤ ε.
We then have:

R̂(G) = Eσ

[
sup
s∈G

1

n∗

n∗∑
i=1

σi · `bc(yi, s(xi))

]

= Eσ

[
sup
s∈G

1

n∗

n∗∑
i=1

σi · `bc(yi, s̃(xi)) +
1

n∗

n∗∑
i=1

σi · (`bc(yi, s(xi))− `bc(yi, s̃(xi)))

]

≤ Eσ

[
sup
s∈G

1

n∗

n∗∑
i=1

σi · `bc(yi, s̃(xi)) +
1

n∗

(
n∗∑
i=1

|σi|

)
· |`bc(yi, s(xi))− `bc(yi, s̃(xi))|

]

≤ Eσ

[
sup
s∈G

1

n∗

n∗∑
i=1

σi · `bc(yi, s̃(xi)) + ε

]
,
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where σ is a random variable drawn uniformly from {−1,+1}n∗ . By Massart’s lemma (Shalev-
Shwartz & Ben-David, 2014, Lemma 26.8) and using the fact that `bc(·, ·) ≤ Bbc, we have:

R̂(G) ≤ max
s∈G̃

√√√√ n∗∑
i=1

(`bc(yi, s̃(xi))2 ·

√
2 · log

(
|G̃|
)

n∗
+ ε

≤ Bbc ·
√
n∗ ·

√
2 · logN (G, ε)

n∗
+ ε

= Bbc ·
√

2 · logN (G, ε)
n∗

+ ε.

This holds for any ε > 0. Taking an infimum over ε completes the proof.

Proof of Lemma E.1. Applying Lemma 4.2 to f̂ and ŝ, we have:

Ex∼Pin

[ ∑
y∈[L]

∣∣p̂y(x)− Pin(y | x)
∣∣]

≤
√

2 ·
√
Rmc(f̂)−Rmc(f∗)

≤
√

2 ·
√
Rmc(f̂)−Rmc(f̃) +

√
2 ·
√
Rmc(f̃)−Rmc(f∗)

=
√

2 ·
√
Rmc(f̂)− R̂mc(f̃) + R̂mc(f̃)−Rmc(f̃) +

√
2 ·
√
Rmc(f̃)−Rmc(f∗)

≤
√

2 ·
√
Rmc(f̂)− R̂mc(f̂) + R̂mc(f̃)−Rmc(f̃) +

√
2 ·
√
Rmc(f̃)−Rmc(f∗)

≤
√

2 ·
√
|Rmc(f̂)− R̂mc(f̂)|+ |Rmc(f̃)− R̂mc(f̃)|+

√
2 ·
√
Rmc(f̃)−Rmc(f∗)

≤ sup
f ′∈F

√
2 ·
√

2 · |Rmc(f ′)− R̂mc(f ′)|+
√

2 ·
√
Rmc(f̃)−Rmc(f∗),

where the third step uses the fact that R̂mc(f̂) ≤ R̂mc(f̃). This follows from the fact that (f̂, ŝ) is a
minimizer of the empirical decoupled loss in (10), i.e., of R̂mc(f) + R̂bc(s), over F × G; since the
losses are decoupled, f̂ is a minimizer of R̂mc(f) over F . We similarly have:

Ex∼P∗
[∣∣∣∣p̂⊥(x)− Pin(x)

Pin(x) + Pout(x)

∣∣∣∣]
≤ sup
s′∈G

√
2 ·
√

2 · |Rbc(s′)− R̂bc(s′)|+
√

2 ·
√
Rmc(s̃)−Rmc(s∗).

Substituting the right-hand sides with the bound from Lemma E.2 completes the proof.

F COUPLED LOSS FOR SCOD

Our second loss function seeks to learn an augmented scorer f̄ : X→ RL+1, with the additional score
corresponding to a “reject class”, denoted by ⊥, and is based on the following simple observation:
define

zy′(x) =

{
(1− cin − cout) · Pin(y | x) if y′ ∈ [L]

(1− 2 · cin − cout) + cout · Pout(x)
Pin(x)

if y′ =⊥,

and let ζy′(x) =
zy′ (x)

Z(x) for Z(x)
.
=
∑
y′′∈[L]∪{⊥} zy′′(x). Now suppose that one has an estimate ζ̂

of ζ. This yields an alternate plug-in estimator of the Bayes-optimal SCOD rule (5):
r̂(x) = 1 ⇐⇒ max

y′∈[L]
ζ̂y′(x) < ζ̂⊥(x). (16)

One may readily estimate ζy′ with a standard multi-class loss `mc, with suitable modification:
E

(x,y)∼Pin

[
`mc(y, f̄(x))

]
+ (1− cin) · E

x∼Pin

[
`mc(⊥, f̄(x))

]
+ cout · E

x∼Pout

[
`mc(⊥, f̄(x))

]
. (17)

Compared to the decoupled loss (10), the key difference is that the penalties on the rejection logit
f̄⊥(x) involve the classification logits as well.
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F.1 RELATION TO EXISTING LOSSES

Equation 10 generalises several existing proposals in the SC and OOD detection literature. In
particular, it reduces to the loss proposed in Verma and Nalisnick (2022), when Pin = Pout, i.e.,
when one only wishes to abstain on low confidence ID samples. Interestingly, this also corresponds
to the decoupled loss for OOD detection in Bitterwolf et al. (2022); crucially, however, they reject
only based on whether f̄⊥(x) < 0, rather than comparing f̄⊥(x) and maxy′∈[L] f̄y′(x). The latter
is essential to match the Bayes-optimal predictor in (5). Similarly, the coupled loss in (17) reduces
to the cost-sensitive softmax cross-entropy in Mozannar and Sontag (2020) when cout = 0, and the
OOD detection loss of Thulasidasan et al. (2021) when cin = 0, cout = 1.

G TECHNICAL DETAILS: ESTIMATING THE OOD MIXING WEIGHT πmix

To obtain the latter, we apply a simple transformation as follows.
Lemma G.1. Suppose Pmix = πmix · Pin + (1− πmix) · Pout with πmix < 1. Then, if Pin(x) > 0,

Pout(x)

Pin(x)
=

1

1− πmix
·
(
Pmix(x)

Pin(x)
− πmix

)
.

The above transformation requires knowing the mixing proportion πmix of inlier samples in the
unlabeled dataset. However, as it measures the fraction of OOD samples during deployment, πmix

is typically unknown. We may however estimate this with (A2). Observe that for a strictly inlier
example x ∈ S∗in, we have Pmix(x)

Pin(x)
= πmix, i.e., exp(−ŝ(x)) ≈ πmix. Therefore, we can estimate

ŝood(x) =

(
1

1− π̂mix
· (exp(−ŝ(x))− π̂mix)

)−1
where π̂mix =

1

|S∗in|
∑
x∈S∗in

exp(−ŝ(x)).

We remark here that this problem is roughly akin to class prior estimation for PU learning (Garg
et al., 2021), and noise rate estimation for label noise (Patrini et al., 2017). As in those literatures,
estimating πmix without any assumptions is challenging. Our assumption on the existence of a
Strict Inlier set S∗in is analogous to assuming the existence of a golden label set in the label noise
literature (Hendrycks et al., 2018).

Proof of Lemma G.1. Expanding the right-hand side, we have:

1

1− πmix
·
(
Pmix(x)

Pin(x)
− πmix

)
=

1

1− πmix
·
(
πmix · Pin(x) + (1− πmix) · Pout(x)

Pin(x)
− πmix

)
=

Pout(x)

Pin(x)
,

as desired.

H TECHNICAL DETAILS: PLUG-IN ESTIMATORS WITH AN ABSTENTION
BUDGET

Recall that the constrained SCOD objective stated in (3) is

min
h,r

(1− cfn) · Pin(y 6= h(x), r(x) = 0) + cfn · Pout(r(x) = 0): Pte(r(x) = 1) ≤ brej. (18)

The corresponding Lagrangian is
min
h,r

max
λ

F (h, r;λ)

where

F (h, r;λ)
.
= (1− cfn) · Pin(y 6= h(x), r(x) = 0) + cfn · Pout(r(x) = 0) + λ · Pte(r(x) = 1)− λ · brej
= (1− cfn) · Pin(y 6= h(x), r(x) = 0) + cfn · Pout(r(x) = 0) + λ · π∗in · Pin(r(x) = 1)+

=λ · (1− π∗in) · Pout(r(x) = 1)− λ · brej
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= (1− cfn) · Pin(y 6= h(x), r(x) = 0) + cfn · Pout(r(x) = 0) + λ · π∗in · Pin(r(x) = 1)+

=λ · (1− π∗in)− λ · (1− π∗in) · Pout(r(x) = 0)− λ · brej
= (1− cfn) · Pin(y 6= h(x), r(x) = 0) + cin(λ) · Pin(r(x) = 1)+

= cout(λ) · Pout(r(x) = 0) + νλ, (19)
where in the last line we define

cin(λ) = λ · π∗in
cout(λ) = cfn − λ · (1− π∗in)

νλ = λ · (1− π∗in)− λ · brej.
Solving (19) requires optimising over both (h, r) and λ. Suppose momentarily that λ is fixed. Then,
F (h, r;λ) is exactly a scaled version of the soft-penalty objective (4). Thus, we can use Algorithm 1
to construct a plug-in classifier that minimizes the above joint risk. To find the optimal λ, we only
need to implement the surrogate minimisation step in Algorithm 1 once to estimate the relevant
probabilities. We can then construct multiple plug-in classifiers for different values of λ, and perform
an inexpensive threshold search: amongst the classifiers satisfying the budget constraint, we pick the
one that minimises (19).

The above requires estimating π∗in, the fraction of inliers observed during deployment. Following
(A2), one plausible estimate is πmix, the fraction of inliers in the “wild” mixture set Smix. In some
industry production settings, it may be reasonable to estimate π∗in, through, for example, inspection
of logged data. This is the setting we assume in our experiments.

Remark. The previous work of Katz-Samuels et al. (2022) for OOD detection also seeks to solve an
optimization problem with explicit constraints on abstention rates. However, there are some subtle,
but important, technical differences between their formulation and ours.

Like us, Katz-Samuels et al. (2022) also seek to jointly learn a classifier and an OOD scorer, with
constraints on the classification and abstention rates, given access to samples from Pin and Pmix. For
a joint classifier h : X→ [L] and rejector r : X→ {0, 1}, their formulation can be written as:

min
h

Pout (r(x) = 0) (20)

s.t. Pin (r(x) = 1) ≤ κ
Pin (h(x) 6= y, r(x) = 0) ≤ τ,

for given targets κ, τ ∈ (0, 1).

While Pout is not directly available, Katz-Samuels et al. provide a simple solution to solving
(20) using only access to Pmix and Pin. They show that under some mild assumptions, replacing
Pout with Pmix in the above problem does not alter the optimal solution. The intuition behind
this is that when the first constraint on the inlier abstention rate is satisfied with equality, we have
Pmix (r(x) = 0) = πmix · (1− cin) + (1− πmix) · Pout (r(x) = 0), and minimizing this objective is
equivalent to minimizing the OOD objective in (20).

This simple trick of replacing Pout with Pmix will only work when we have an explicit constraint
on the inlier abstention rate, and will not work for the formulation we are interested in (19). This
is because in our formulation, we impose a budget on the overall abstention rate (as this is a more
intuitive quantity that a practitioner may want to constraint), and do not explicitly control the
abstention rate on Pin.

In comparison to Katz-Samuels et al. (2022), the plug-in based approach we prescribe is more
general, and can be applied to optimize any objective that involves as a weighted combination of the
mis-classification error and the abstention rates on the inlier and OOD samples. This includes both
the budget-constrained problem we consider in (19), and the constrained problem of Katz-Samuels
et al. in (20).

I ILLUSTRATING THE FAILURE OF MSP FOR OOD DETECTION

I.1 MSP FAILS FOR OPEN-SET RECOGNITION

We show that MSP may result in arbitrarily bad rejection decisions even for the special case of
OOD detection wherein there is a strong relationship between Pin and Pout that a-priori would
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appear favourable to the MSP. Specifically, given some distribution Pte over X × Y, consider the
open-set classification (OSC) setting (Scheirer et al., 2013; Vaze et al., 2021): during training, one
only observes samples from a distribution Pin over X× Yin, where Yin ⊂ Y. Here, Pin is a restriction
of Pte to a subset of labels. At evaluation time, one seeks to accurately classify samples possessing
these labels, while rejecting samples with unobserved labels Y− Yin.

Under this setup, thresholding maxy∈Yin Pin(y | x) might appear a reasonable approach. However,
we now demonstrate that it may lead to arbitrarily poor decisions. In what follows, for simplicity we
consider the OSC problem wherein Yin = Y− {L}, so that there is only one label unobserved in the
in-distribution sample. Further, we focus on the setting where cin + cout = 1. We have the following.

Lemma I.1. Under the open-set setting, the Bayes-optimal classifier for the SCOD problem is:

r∗(x) = 1 ⇐⇒ Pte(L | x) > t∗osc ⇐⇒ max
y′ 6=L

Pin(y′ | x) ≥ 1

1− t∗osc
·max
y′ 6=L

Pte(y
′ | x),

where t∗osc
.
= F

(
cin·Pte(y=L)
cout·Pte(y 6=L)

)
for F : z 7→ z/(1 + z).

Lemma I.1 shows that the optimal decision is to reject when the maximum softmax probability (with
respect to Pin) is higher than some (sample-dependent) threshold. This is the precise opposite of the
MSP baseline, which rejects when the maximum probability is lower than some threshold. What
is the reason for this stark discrepancy? Intuitively, the issue is that we would like to threshold
Pte(y | x), not Pin(y | x); however, these two distributions may not align, as the latter includes a
normalisation term that causes unexpected behaviour when we threshold. We make this concrete with
a simple example; see also Figure 1 for an illustration.
Example I.2 (Failure of MSP baseline). Consider a setting where the class probabilities Pte(y

′ | x)
are equal for all the known classes y′ 6= L. This implies that Pin(y′ | x) = 1

L−1 ,∀y
′ 6= L. The

Bayes-optimal classifier rejects a sample when Pte(L | x) > cin
cin+cout

. On the other hand, MSP
rejects a sample iff the threshold tmsp <

1
L−1 . Notice that the rejection decision is independent of

the unknown class density Pte(L | x), and therefore will not agree with the Bayes-optimal classifier
in general. The following lemma formalizes this observation.

Lemma I.3. Pick any tmsp ∈ (0, 1), and consider the corresponding MSP baseline which rejects
x ∈ X iff maxy 6=L Pin(y | x) < tmsp. Then, there exists a class-probability function Pte(y | x) for
which the Bayes-optimal rejector Pte(L | x) > t∗osc disagrees with MSP ∀tmsp ∈ (0, 1).

Proof of Lemma I.1. Recall that in open-set classification, the outlier distribution is Pout(x) =
Pte(x | y = L), while the training distribution is

Pin(x | y) = Pte(x | y)

πin(y) = Pin(y)

=
1(y 6= L)

1− πte(L)
· πte(y).

We will find it useful to derive the following quantities.

Pin(x, y) = πin(y) · Pin(x | y)

=
1(y 6= L)

1− πte(L)
· πte(y) · Pte(x | y)

=
1(y 6= L)

1− πte(L)
· Pte(x, y)

Pin(x) =
∑
y∈[L]

Pin(x, y)

=
∑
y∈[L]

πin(y) · Pin(x | y)

=
1

1− πte(L)

∑
y 6=L

πte(y) · Pte(x | y)
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=
1

1− πte(L)

∑
y 6=L

Pte(y | x) · Pte(x)

=
Pte(y 6= L | x)

1− πte(L)
· Pte(x)

Pin(y | x) =
Pin(x, y)

Pin(x)

=
1(y 6= L)

1− πte(L)
· 1− πte(L)

Pte(y 6= L | x)
· Pte(x, y)

Pte(x)

=
1(y 6= L)

Pte(y 6= L | x)
· Pte(y | x).

The first part follows from standard results in cost-sensitive learning (Elkan, 2001):

r∗(x) = 1 ⇐⇒ cin · Pin(x)− cout · Pout(x) < 0

⇐⇒ cin · Pin(x) < cout · Pout(x)

⇐⇒ cin · Pte(x | y 6= L) < cout · Pte(x | y = L)

⇐⇒ cin · Pte(y 6= L | x) · Pte(y = L) < cout · Pte(y = L | x) · Pte(y 6= L)

⇐⇒ cin · Pte(y = L)

cout · Pte(y 6= L)
<

Pte(y = L | x)

Pte(y 6= L | x)

⇐⇒ Pte(y = L | x) > F

(
cin · Pte(y = L)

cout · Pte(y 6= L)

)
.

We further have for threshold t∗osc
.
= F

(
cin·Pte(y=L)
cout·Pte(y 6=L)

)
,

Pte(y = L | x) ≥ t∗osc ⇐⇒ Pte(y 6= L | x) ≤ 1− t∗osc

⇐⇒ 1

Pte(y 6= L | x)
≥ 1

1− t∗osc

⇐⇒ maxy′ 6=L Pte(y
′ | x)

Pte(y 6= L | x)
≥ maxy′ 6=L Pte(y

′ | x)

1− t∗osc

⇐⇒ max
y′ 6=L

Pin(y′ | x) ≥ maxy′ 6=L Pte(y
′ | x)

1− t∗osc
.

That is, we want to reject when the maximum softmax probability is higher than some (sample-
dependent) threshold.

Proof of Lemma I.3. Fix ε ∈ (0, 1). We consider two cases for threshold tmsp:

Case (i): tmsp ≤ 1
L−1 . Consider a distribution where for all instances x, Pte(y = L | x) = 1 − ε

and Pte(y
′ | x) = ε

L−1 ,∀y
′ 6= L. Then the Bayes-optimal classifier accepts any instance x for all

thresholds t ∈
(
0, 1− ε

)
. In contrast, Chow’s rule would compute maxy 6=L Pin(y | x) = 1

L−1 , and
thus reject all instances x.

Case (ii): tmsp >
1

L−1 . Consider a distribution where for all instances x, Pte(y = L | x) = ε and
Pte(y

′ | x) = 1−ε
L−1 ,∀y

′ 6= L. Then the Bayes-optimal classifier would reject any instance x for
thresholds t ∈

(
ε, 1
)
, whereas Chow’s rule would accept all instances.

Taking ε→ 0 completes the proof.

I.2 ILLUSTRATION OF MSP FAILURE FOR OPEN-SET CLASSIFICATION

Figure 1 shows a graphical illustration of the example discussed in Example I.2, wherein the MSP
baseline can fail for open-set classification. Figure 2 has another example setting.

26



Published as a conference paper at ICLR 2024

1 2 3 4 5 6 7 8 9 10
Classes

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

∗ (y|x)

1 2 3 4 5 6 7 8 9
Classes

0.0

0.1

0.2

0.3

0.4

0.5

0.6 in(y|x)

(a)

1 2 3 4 5 6 7 8 9 10
Classes

0.0

0.1

0.2

0.3

0.4

0.5

0.6
∗ (y|x)

1 2 3 4 5 6 7 8 9
Classes

0.0

0.1

0.2

0.3

0.4

0.5

0.6 in(y|x)

(b)

Figure 1: Examples of two open-set classification settings (a) and (b) with L = 10 classes, where
the inlier class distributions Pin(y | x) = Pte(y|x)

Pte(y 6=10|x) over the first 9 classes are identical, but the
unknown class density P∗(10|x) is significantly different. Consequently, the MSP baseline, which
relies only on the inlier class probabilities, will output the same rejection decision for both settings,
whereas the Bayes-optimal classifier, which rejects by thresholding P∗(10|x), may output different
decisions for the two settings.
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(b) Open-set classification.

Figure 2: Example of two settings where the maximum softmax probability (MSP) baseline fails
for OOD detection. Setting (a) considers low-density OOD detection, where positive and negative
samples drawn from a one-dimensional Gaussian distribution. Samples away from the origin will
have P(x) ∼ 0, and are thus outliers under the Bayes-optimal OOD detector. However, the MSP
baseline will deem samples near the origin to be outliers, as these have maximal maxy P(y | x).
This illustrates the distinction between abstentions favoured by L2R (low label certainty) and OOD
detection (low density). Setting (b) considers open-set classification where there are L = 4 total
classes, with the fourth class (denoted by H) assumed to comprise outliers not seen during training.
Each class-conditional is an isotropic Gaussian (left). Note that the maximum inlier class-probability
Pin(y | x) scores OOD samples significantly higher than ID samples (right). Thus, the MSP baseline,
which declares samples with low maxy Pin(y | x) as outliers, will perform poorly.

I.3 ILLUSTRATION OF MAXIMUM LOGIT FAILURE FOR OPEN-SET CLASSIFICATION

we show in Figure 3 the maximum logit computed over the inlier distribution. As with the maximum
probability, the outlier samples tend to get a higher score than the inlier samples.

For the same reason, rejectors that threshold the margin between the highest and the second-highest
probabilities, instead of the maximum class probability, can also fail. The use of other SC methods
such as the cost-sensitive softmax cross-entropy (Mozannar and Sontag, 2020) may not be successful
either, because the optimal solutions for these methods have the same form as MSP.

J ADDITIONAL EXPERIMENTS

We provide details about the hyper-parameters and dataset splits used in the experiments, as well
as, additional experimental results and plots that were not included in the main text. The in-training
experimental results are averaged over 5 random trials.
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Figure 3: For the same setting as Figure 2, we show the maximum logit computed over the inlier
distribution. As with the maximum probability, the outlier samples tend to get a higher score than the
inlier samples.

Rejector Tunable
Parameter

Estimated
Parameter

Training Samples Validation/Test Samples

Black-box (BB)
(Tab. 2–4, 6–12)

λ - ID samples ID + OOD (te) samples

Loss-based (LB)
(Tab. 2–3, 6–10)

λ πmix ID, Unlabeled mix of ID +
OOD (tr), Strictly ID

ID + OOD (te) samples

Table 5: Summary of hyper-parameters and dataset splits for different settings. We assume the
practitioner specifies cfn and brej, and that π∗in is known.

J.1 HYPER-PARAMETER CHOICES

We provide details of the learning rate (LR) schedule and other hyper-parameters used in our
experiments.

Dataset Model LR Schedule Epochs Batch size
CIFAR-40/100 CIFAR ResNet 56 1.0 anneal 256 1024

We use SGD with momentum as the optimization algorithm for all models. For annealing schedule,
the specified learning rate (LR) is the initial rate, which is then decayed by a factor of ten after each
epoch in a specified list. For CIFAR, these epochs are 15, 96, 192 and 224.

Furthermore, as noted in §4.3, the proposed plug-in estimators requires specification of cin and
cout, which we are given by cin = cfn − λ · (1 − π∗in) and cout = λ · π∗in, where λ is a tunable
parameter, and π∗in is the proportion of ID samples in the test population, which we assume to be
known. Interestingly, we find our plug-in estimators to be robust to the specification of this parameter.
Table 5 summarizes the details for both the black-box (§4.1) and loss-based (§4.2) settings.

J.2 BASELINE DETAILS

We provide further details about the baselines we compare with. The following baselines are trained
on only the inlier data.

• MSP or Chow’s rule: Train a scorer f : X → RL using CE loss, and threshold the MSP to decide
to abstain (Chow, 1970; Hendrycks and Gimpel, 2017).

• MaxLogit: Same as above, but instead threshold the maximum logit maxy∈[L] fy(x) (Hendrickx
et al., 2021).

• Energy score: Same as above, but threshold the energy function − log
∑
y exp(fy(x)) (Liu et al.,

2020a).
• DOCTOR: Same as above, but threshold the scorer 1 −

∑
y softmaxy(f(x))2 (Granese et al.,

2021).
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Table 6: AUC-RC (↓) for CIFAR-100 as ID, and a “wild” comprising of 90% ID and only 10% OOD.
The OOD part of the wild set is drawn from the same OOD dataset from which the test set is drawn.
We compare the proposed methods with the cost-sensitive softmax (CSS) learning-to-reject loss of
Mozannar and Sontag (2020) and the ODIN method of Hendrickx et al. (2021). The test set contains
50% ID and 50% OOD samples. We set cfn = 0.75.

ID + OOD training with Ptr
out = Pte

out

Method / Pte
out SVHN Places OpenImages

CSS 0.286 0.263 0.254
ODIN 0.218 0.217 0.217
Plug-in BB [L1] 0.196 0.210 0.222
Plug-in BB [Res] 0.198 0.236 0.251
Plug-in LB* 0.221 0.199 0.225

• ODIN: Train a scorer f : X → RL using CE loss, and uses a combination of input noise and
temperature-scaled MSP to decide when to abstain Hendrickx et al. (2021).

• k-NN: Train a scorer f : X → RL using CE loss, compute embeddings from the embedding layer
of the scorer, and threshold the (negative) 2-norm distance to the k-th nearest training sample in
the embedding space (Sun et al., 2022).

• SIRC: Train a scorer f : X → RL using CE loss, and compute a post-hoc deferral rule that
combines the MSP score with either the L1-norm or the residual score of the embedding layer
from the scorer f (Xia and Bouganis, 2022).

• CSS: Minimize the cost-sensitive softmax L2R loss of Mozannar and Sontag (2020) using only
the inlier dataset to learn a scorer f : X→ RL+1, augmented with a rejection score f⊥(x), and
abstain iff f⊥(x) > maxy′∈[L] fy′(x) + t, for threshold t.

The following baselines additional use the unlabeled data containing a mix of inlier and OOD samples.

• Coupled CE (CCE): Train a scorer f : X→ RL+1, augmented with a rejection score f⊥(x) by
optimizing the CCE loss of Thulasidasan et al. (2021), and abstain iff f⊥(x) > maxy′∈[L] fy′(x)+
t, for threshold t.

• De-coupled CE (DCE): Same as above but uses the DCE loss of Bitterwolf et al. (2022) for
training.

• Outlier Exposure (OE): Train a scorer using the OE loss of Hendrycks et al. (2019) and threshold
the MSP.

J.3 DATA SPLIT DETAILS

For the CIFAR-100 experiments where we use a wild sample containing a mix of ID and OOD
examples, we split the original CIFAR-100 training set into two halves, use one half as the inlier
sample and the other half to construct the wild sample. For evaluation, we combine the orignal
CIFAR-100 test set with the respective OOD test set. In each case, the larger of the ID and OOD
dataset is down-sampled to match the desired ID-OOD ratio. The experimental results are averaged
over 5 random trials.

For the pre-trained ImageNet experiments, we sample equal number of examples from the ImageNet
validation sample and the OOD dataset, and annotate them with the pre-trained model. The number
of samples is set to the smaller of the size of the OOD dataset or 5000.

J.4 COMPARISON TO CSS AND ODIN BASELINES

We present some representative results in Table 6 comparing our proposed methods against the
cost-sensitive softmax (CSS) of Mozannar and Sontag (2020), a representative learning-to-reject
baseline, and the ODIN method of Hendrickx et al. (2021), an OOD detection baseline. As expected,
the CSS baseline, which does not have OOD detection capabilities is seen to under-perform. The
ODIN, baseline, on the other hand, is occasionally seen to be competitive.
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Table 7: Area Under the Risk-Coverage Curve (AUC-RC) for methods trained with CIFAR-100 as
the ID sample and a mix of CIFAR-100 and 300K Random Images as the wild sample, and with the
proportion of OOD samples in test set varied. The wild set contains 10% ID and 90% OOD. The test
sets contain 50% ID and 50% OOD samples. Base model is ResNet-56. cfn = 0.75. A * against a
method indicates that it uses both ID and OOD samples for training. Lower values are better.

Test OOD proportion = 0.25 Test OOD proportion = 0.75
Method / Pte

out SVHN Places LSUN LSUN-R Texture SVHN Places LSUN LSUN-R Texture

MSP 0.166 0.185 0.178 0.221 0.188 0.488 0.519 0.507 0.559 0.520

MaxLogit 0.154 0.183 0.166 0.211 0.181 0.461 0.507 0.488 0.544 0.509

Energy 0.156 0.183 0.169 0.211 0.185 0.462 0.508 0.489 0.542 0.511

DOCTOR 0.166 0.184 0.176 0.220 0.189 0.488 0.519 0.505 0.559 0.522

SIRC [L1] 0.147 0.184 0.161 0.219 0.172 0.464 0.515 0.486 0.557 0.507

SIRC [Res] 0.133 0.183 0.155 0.219 0.166 0.442 0.516 0.477 0.555 0.494

CCE* 0.175 0.191 0.153 0.131 0.154 0.460 0.487 0.425 0.374 0.429

DCE* 0.182 0.200 0.155 0.136 0.162 0.467 0.498 0.414 0.372 0.428

OE* 0.179 0.174 0.147 0.117 0.148 0.492 0.487 0.440 0.371 0.440

Plug-in BB [L1] 0.124 0.180 0.135 0.207 0.139 0.395 0.490 0.412 0.508 0.422
Plug-in BB [Res] 0.110 0.180 0.134 0.194 0.146 0.378 0.503 0.416 0.476 0.451

Plug-in LB* 0.160 0.169 0.133 0.099 0.132 0.468 0.489 0.418 0.351 0.430

Test OOD proportion = 0.01 Test OOD proportion = 0.99
Method / Pte

out SVHN Places LSUN LSUN-R Texture SVHN Places LSUN LSUN-R Texture

MSP 0.063 0.064 0.063 0.065 0.063 0.731 0.732 0.731 0.734 0.733

MaxLogit 0.069 0.070 0.070 0.071 0.068 0.727 0.736 0.734 0.734 0.739

Energy 0.071 0.072 0.071 0.072 0.071 0.727 0.734 0.734 0.736 0.735

DOCTOR 0.062 0.064 0.063 0.065 0.063 0.730 0.731 0.731 0.733 0.733

SIRC [L1] 0.062 0.063 0.062 0.064 0.062 0.728 0.731 0.731 0.735 0.730

SIRC [Res] 0.062 0.063 0.062 0.065 0.062 0.726 0.731 0.730 0.734 0.731

CCE* 0.105 0.106 0.104 0.103 0.105 0.727 0.735 0.724 0.715 0.727

DCE* 0.115 0.115 0.113 0.113 0.113 0.732 0.735 0.724 0.714 0.729

OE* 0.084 0.085 0.084 0.082 0.083 0.730 0.729 0.726 0.715 0.725

Plug-in BB [L1] 0.062 0.062 0.062 0.065 0.063 0.722 0.733 0.725 0.731 0.728

Plug-in BB [Res] 0.062 0.064 0.062 0.065 0.062 0.719 0.735 0.727 0.728 0.731

Plug-in LB* 0.065 0.065 0.064 0.062 0.062 0.727 0.729 0.724 0.709 0.725

J.5 VARYING OOD MIXING PROPORTION IN TEST SET

We repeat the experiments in Table 2 on CIFAR-100 and 100K Random Images with varying
proportions of OOD samples in the test set, and present the results in Table 7. In each case, we
assume that the proportion of OOD samples in the test set is known when computing cin and cout
(§4.3), although we find our plug-in estimators to be robust to this parameter. We find one among the
proposed plug-in methods continues to perform the best.

J.6 VARYING OOD COST PARAMETER

We repeat the experiments in Table 2 on CIFAR-100 and 100K Random Images with varying values
of cost parameter cfn, and present the results in Table 8. One among the proposed plug-in methods
continues to perform the best. The lower the value of cfn, the closer the SCOD problem in (3) is
to classical OOD detection (i.e., lower is the importance given to classification accuracy on inlier
samples). When cfn = 1, the AUC-RC metric in (11) solely evaluates the quality of OOD detection
(ignoring inlier classification performance).
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Table 8: Area Under the Risk-Coverage Curve (AUC-RC) for methods trained with CIFAR-100
as the ID sample and a mix of CIFAR-100 and 300K Random Images as the wild sample, and for
different values of cost parameter cfn. The wild set contains 10% ID and 90% OOD. The test sets
contain 50% ID and 50% OOD samples. Base model is ResNet-56.

cfn = 0.5 cfn = 0.9
Method / Pte

out SVHN Places LSUN LSUN-R Texture SVHN Places LSUN LSUN-R Texture

MSP 0.256 0.271 0.265 0.297 0.275 0.336 0.376 0.358 0.442 0.381

MaxLogit 0.253 0.275 0.263 0.294 0.277 0.301 0.359 0.325 0.414 0.359

Energy 0.254 0.276 0.263 0.295 0.279 0.301 0.359 0.325 0.414 0.363

DOCTOR 0.255 0.271 0.263 0.296 0.273 0.335 0.376 0.357 0.440 0.381

SIRC [L1] 0.248 0.271 0.259 0.296 0.267 0.300 0.372 0.324 0.438 0.346

SIRC [Res] 0.240 0.272 0.254 0.295 0.263 0.269 0.372 0.313 0.435 0.333

CCE* 0.296 0.307 0.283 0.269 0.286 0.282 0.318 0.233 0.179 0.240

DCE* 0.303 0.317 0.285 0.270 0.292 0.289 0.331 0.225 0.177 0.238

OE* 0.287 0.283 0.270 0.255 0.272 0.327 0.315 0.252 0.173 0.251

Plug-in BB [L1] 0.237 0.270 0.244 0.289 0.248 0.208 0.333 0.223 0.358 0.237
Plug-in BB [Res] 0.232 0.271 0.244 0.279 0.255 0.187 0.347 0.225 0.305 0.270

Plug-in LB* 0.256 0.265 0.243 0.222 0.245 0.299 0.326 0.234 0.165 0.246

Table 9: Area Under the Risk-Coverage Curve (AUC-RC) for methods trained with CIFAR-100 as
the ID sample and a mix of CIFAR-100 and 300K Random Images as the wild sample, with 95%
confidence intervals included. The wild set contains 10% ID and 90% OOD. The test sets contain
50% ID and 50% OOD samples. Base model is ResNet-56. We set cfn = 0.75.

Method / Pte
out SVHN Places LSUN LSUN-R Texture

MSP 0.307± 0.015 0.335± 0.017 0.322± 0.009 0.387± 0.027 0.340± 0.004

MaxLogit 0.282± 0.014 0.327± 0.015 0.302± 0.009 0.368± 0.030 0.332± 0.007

Energy 0.282± 0.013 0.327± 0.015 0.300± 0.010 0.369± 0.031 0.329± 0.007

DOCTOR 0.305± 0.014 0.337± 0.016 0.324± 0.008 0.385± 0.028 0.341± 0.004

SIRC [L1] 0.281± 0.012 0.334± 0.018 0.300± 0.009 0.385± 0.028 0.318± 0.005

SIRC [Res] 0.256± 0.011 0.336± 0.018 0.290± 0.007 0.382± 0.028 0.309± 0.005

CCE* 0.288± 0.017 0.315± 0.018 0.252± 0.004 0.213± 0.001 0.255± 0.004

DCE* 0.295± 0.015 0.326± 0.028 0.246± 0.004 0.212± 0.001 0.260± 0.005

OE* 0.313± 0.015 0.304± 0.006 0.261± 0.001 0.204± 0.002 0.260± 0.002

Plug-in BB [L1] 0.223± 0.006 0.318± 0.025 0.237± 0.008 0.351± 0.040 0.244± 0.004
Plug-in BB [Res] 0.205± 0.002 0.324± 0.020 0.240± 0.005 0.319± 0.026 0.265± 0.004

Plug-in LB* 0.290± 0.017 0.306± 0.016 0.243± 0.003 0.186± 0.001 0.248± 0.006

J.7 CONFIDENCE INTERVALS

In Table 9, we report 95% confidence intervals for the experiments on CIFAR-100 and 100K Random
Images from Table 2. In each case, the differences between the best performing plug-in method and
the baselines are statistically significant.

J.8 COVARIATE-SHIFTED OOD SETTING

In Table 10, we present experimental results on a covariate-shifted OOD setting, where the ID dataset
is CIFAR-100, and the OOD dataset we evaluate on during test time is a noise corrupted version of
CIFAR-100 (Hendrycks and Dietterich, 2019; Tian et al., 2022), which we refer to as CIFAR-100-C.
Since both ID and OOD samples being variants of the same dataset. this task is more challenging
than the previous ones. We evaluate both methods that use only ID samples, and methods that are
additionally provided images from Random300K, as a part of a “wild” dataset. The latter are seen to
fare better, with our proposed loss-based plug-in method (Plug-in LB) performing the best.
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Table 10: Area Under the Risk-Coverage Curve (AUC-RC) for methods trained with CIFAR-100
as the ID sample and a mix of CIFAR-100 and either 300K Random Images as the wild sample
(cfn = 0.75). The OOD dataset we evaluate on during test time is a version of CIFAR-100 corrupted
by 15 types of noises (Hendrycks and Dietterich, 2019; Tian et al., 2022), referred to as CIFAR-100-C.
The wild set contains 10% ID and 90% OOD. The test sets contain 50% ID and 50% OOD samples.
Base model is ResNet-56. A * against a method indicates that it uses both ID and OOD samples for
training. Lower values are better.

Method CIFAR-100-C

MSP 0.359

MaxLogit 0.356

Energy 0.355

DOCTOR 0.361

SIRC [L1] 0.357

SIRC [Res] 0.355

CCE* 0.212

DCE* 0.214

OE* 0.204

Plug-in BB [L1] 0.357

Plug-in BB [Res] 0.343

Plug-in LB* 0.185

J.9 ADDITIONAL RESULTS ON PRE-TRAINED IMAGENET MODELS

Following Xia and Bouganis (2022), we present additional results with pre-trained models with
ImageNet-200 (a subset of ImageNet with 200 classes) as the inlier dataset in Table 11. The base
model is a ResNet-50. In Table 12, we once again present our experiments on ImageNet with the BiT
ResNet-101 base model, with additional comparisons with the nearest-neighbor scorers of Sun et al.
(2022).

K LIMITATIONS AND BROADER IMPACT

Recall that our proposed plug-in rejectors seek to optimize for overall classification and OOD
detection accuracy while keeping the total fraction of abstentions within a limit. However, the
improved overall accuracy may come at the cost of poorer performance on smaller sub-groups.
For example, Jones et al. (2021) show that Chow’s rule or the MSP scorer “can magnify existing
accuracy disparities between various groups within a population, especially in the presence of spurious
correlations”. It would be of interest to carry out a similar study with the two plug-in based rejectors
proposed in this paper, and to understand how both their inlier classification accuracy and their OOD
detection performance varies across sub-groups. It would also be of interest to explore variants of our
proposed rejectors that mitigate such disparities among sub-groups.

Another limitation of our proposed plug-in rejectors is that they are only as good as the estimators
we use for the density ratio Pin(x)

Pout(x)
. When our estimates of the density ratio are not accurate, the

plug-in rejectors are seen to often perform worse than the SIRC baseline that use the same estimates.
Exploring better ways for estimating the density ratio is an important direction for future work.

Beyond SCOD, the proposed rejection strategies are also applicable to the growing literature on
adaptive inference Liu et al. (2020a). With the wide adoption of large-scale machine learning models
with billions of parameters, it is becoming increasingly important that we are able to perform speed up
the inference time for these models. To this end, adaptive inference strategies have gained popularity,
wherein one varies the amount of compute the model spends on an example, by for example, exiting
early on “easy” examples. The proposed approaches for SCOD may be adapted to equip early-exit
models to not only exit early on high-confidence “easy” samples, but also exit early on samples that
are deemed to be outliers. In the future, it would be interesting to explore the design of such early-exit
models that are equipped with an OOD detector to aid in their routing decisions.
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Table 11: AUC-RC (↓) for methods trained with ImageNet-200 as the inlier dataset and without OOD
samples. The base model is a pre-trained ResNet-50 model. Lower values are better.

ID-only training
Method / Pte

out Places LSUN CelebA Colorectal iNaturalist-O Texture ImageNet-O Food32

MSP 0.183 0.186 0.156 0.163 0.161 0.172 0.217 0.181

MaxLogit 0.173 0.184 0.146 0.149 0.166 0.162 0.209 0.218

Energy 0.176 0.185 0.145 0.146 0.172 0.166 0.211 0.225

DOCTOR 0.179 0.185 0.152 0.155 0.159 0.170 0.226 0.175

NN (k = 1) 0.234 0.234 0.186 0.136 0.253 0.154 0.199 0.263

NN (k = 5) 0.239 0.252 0.171 0.139 0.222 0.143 0.204 0.285

NN (k = 10) 0.252 0.284 0.177 0.140 0.230 0.148 0.184 0.323

SIRC [L1] 0.185 0.195 0.155 0.165 0.166 0.172 0.214 0.184

SIRC [Res] 0.180 0.179 0.137 0.140 0.151 0.167 0.219 0.174

Plug-in BB [L1] 0.262 0.261 0.199 0.225 0.228 0.270 0.298 0.240

Plug-in BB [Res] 0.184 0.172 0.135 0.138 0.145 0.194 0.285 0.164

ID-only training
Method / Pte

out Near-ImageNet-200 Caltech65 Places32 Noise

MSP 0.209 0.184 0.176 0.188

MaxLogit 0.220 0.171 0.170 0.192

Energy 0.217 0.175 0.169 0.190

DOCTOR 0.198 0.170 0.171 0.187

NN (k = 1) 0.252 0.182 0.232 0.139

NN (k = 5) 0.280 0.182 0.227 0.141

NN (k = 10) 0.295 0.190 0.249 0.140

SIRC [L1] 0.205 0.182 0.174 0.191

SIRC [Res] 0.204 0.177 0.173 0.136

Plug-in BB [L1] 0.264 0.242 0.256 0.344

Plug-in BB [Res] 0.247 0.202 0.171 0.136
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Table 12: AUC-RC (↓) for methods trained with ImageNet-200 as the inlier dataset and without OOD
samples. The base model is a pre-trained ResNet-50 model. Lower values are better.

ID-only training
Method / Pte

out Places LSUN CelebA Colorectal iNaturalist-O Texture ImageNet-O Food32

MSP 0.183 0.186 0.156 0.163 0.161 0.172 0.217 0.181

MaxLogit 0.173 0.184 0.146 0.149 0.166 0.162 0.209 0.218

Energy 0.176 0.185 0.145 0.146 0.172 0.166 0.211 0.225

DOCTOR 0.179 0.185 0.152 0.155 0.159 0.170 0.226 0.175

NN (k = 1) 0.234 0.234 0.186 0.136 0.253 0.154 0.199 0.263

NN (k = 5) 0.239 0.252 0.171 0.139 0.222 0.143 0.204 0.285

NN (k = 10) 0.252 0.284 0.177 0.140 0.230 0.148 0.184 0.323

SIRC [L1] 0.185 0.195 0.155 0.165 0.166 0.172 0.214 0.184

SIRC [Res] 0.180 0.179 0.137 0.140 0.151 0.167 0.219 0.174

Plug-in BB [L1] 0.262 0.261 0.199 0.225 0.228 0.270 0.298 0.240

Plug-in BB [Res] 0.184 0.172 0.135 0.138 0.145 0.194 0.285 0.164

ID-only training
Method / Pte

out Near-ImageNet-200 Caltech65 Places32 Noise

MSP 0.209 0.184 0.176 0.188

MaxLogit 0.220 0.171 0.170 0.192

Energy 0.217 0.175 0.169 0.190

DOCTOR 0.198 0.170 0.171 0.187

NN (k = 1) 0.252 0.182 0.232 0.139

NN (k = 5) 0.280 0.182 0.227 0.141

NN (k = 10) 0.295 0.190 0.249 0.140

SIRC [L1] 0.205 0.182 0.174 0.191

SIRC [Res] 0.204 0.177 0.173 0.136

Plug-in BB [L1] 0.264 0.242 0.256 0.344

Plug-in BB [Res] 0.247 0.202 0.171 0.136
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