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We are given video walkthroughs collected by another agent
navigating in various indoor environments.
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The observed portions of the environment are shown in red.
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« We propose the masked-zone prediction task for self-supervised learning.
« The goal is to learn environment-level representations of egocentric
observation sequences.
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» First, we segment the walkthrough into K disjoint frame sets.

« Each frame set is called a zone.

# + Each zone contains a temporally contiguous set of N frames in the
video.
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» The structure of the zones is shown on the top-down view to the left.
* These zones typically capture partially overlapping regions in 3D.
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Masked-zone prediction - Step 2: zone masking

Masked zone

* Next, we mask out one or more zones from the left.

» The viewpoints belonging to a masked zone are shown on the left.
« Some images sampled from the masked zone are shown above.

» This zone contains a part of a kitchen.
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The sensor readings from the remaining zones serve as inputs
to the prediction model.
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Prediction

Inputs: frames + camera poses from input zones
Query: mean target pose from masked zone
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* Inputs: frames + camera poses from input zones
* Query: a target pose from masked zone

- Output; pfedicted visual feature /"
» Cantrastive loss function: Positive zone feature
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Next, we visualize the predictions made by our model
on the masked-zone prediction task.



Input zoneﬁs{ :
Masked zone

| S

Masked zong
viewpaoints® _*

Retrieved zones

- We visualize the zone prediction f* using inter-video retrieval.

« We compare the prediction with the ground-truth f* and zones
{fi} sampled from other scenes.

 We then visualize the top-4 similar zones from [f“, fi. ., fi,» -1
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« The model accurately retrieves the ground-truth masked zone at the top.
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The next two retrieved zones from other scenes also correspond to

4 kitchens. This suggests that our learned feature representation
. | == of -j Wl captures general semantic concepts.



