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Abstract

In this paper, we study the problem of learning in quantum games with scalar,1

payoff-based feedback. For concreteness, we focus on the widely used matrix2

multiplicative weights (MMW) algorithm and, instead of requiring players to have3

full knowledge of the game (and/or each other’s chosen states), we introduce a suite4

of minimal-information matrix multiplicative weights (3MW) methods tailored to5

different information frameworks. The main difficulty to attaining convergence in6

this setting is that, in contrast to classical finite games, quantum games have an7

infinite continuum of pure states (the quantum equivalent of pure strategies), so8

standard importance-weighting techniques for estimating payoff vectors cannot be9

employed. Instead, we borrow ideas from bandit convex optimization and we design10

a zeroth-order gradient sampler adapted to the semidefinite geometry of the problem11

at hand. As a first result, we show that the 3MW method with deterministic payoff12

feedback retains the O(1/
√
𝑇) convergence rate of the vanilla, full information13

MMW algorithm in quantum min-max games, even though the players only observe14

a single scalar. Subsequently, we relax the algorithm’s information requirements15

even further and we provide a 3MW method that only requires players to observe a16

random realization of their payoff observable, and converges to equilibrium at an17

O(𝑇−1/4) rate. Finally, going beyond zero-sum games, we show that a regularized18

variant of the proposed 3MW method guarantees local convergence with high19

probability to all equilibria that satisfy a certain first-order stability condition.20

1 Introduction21

The integration of quantum information theory into computer science and machine learning [4, 39, 49]22

has the potential to disrupt the field by providing faster and more efficient computing resources, new23

encryption and security protocols, and improved machine learning algorithms, enabling advancements24

in areas such as quantum cryptography, shadow tomography, QGANs, and adversarial learning25

[1, 11, 14, 31]. As a well-known example, Google’s “Sycamore” 54-qubit processor recently26

showcased this “quantum advantage” by training an autonomous vehicle model in less than 20027

seconds [4], a fact made possible by the ability of quantum computers to prepare superpositions28

of qubits that exceed the operational capabilities of standard Boolean gates. [By contrast, classical29

computers are limited by their binary alphabet and memory structure in this regard.]30

Deploying such models within a multi-agent context, such as the utilization of QGANs or autonomous31

vehicles, leads to a significant transformation compared to classical non-cooperative environments.32

This shift primarily arises due to the inherent properties of quantum systems, namely the decoherence33

and entanglement principle. Specifically, these quantum notions enable quantum players to possess34

an edge over "classical" ones, attaining greater payoffs than would be achievable [16, 36]. This35

phenomenon occurs due to the disparity in probabilistic mixing between the quantum and classical36
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domains. Unlike classical games, where a mixed strategy is a probabilistic mixture of the underlying37

pure strategies, quantum games utilize mixed states, which represent probabilistic mixtures of38

quantum projectors. As a consequence, a mixed quantum state can yield payoffs that cannot be39

expressed as a convex combination of classical pure strategies.40

In light of this, quantum learning has drawn significant attention in recent years [2, 21, 22, 27, 28, 46].41

In a multi-agent context, the most widely used framework is the so-called matrix multiplicative42

weights (MMW) algorithm [2, 12, 21, 22, 29]: First introduced by Tsuda et al. [45] in the context43

of matrix and dictionary learning, MMW can be viewed as a semidefinite analogue of the standard44

Hedge / EXP3 methods for multi-armed bandits [6, 30, 47], and is a special case of the mirror descent45

family of algorithms [37]. Specifically, in the contrete setting of two-player, zero-sum quantum games,46

Jain & Watrous [21] showed that players using the MMW algorithm can learn an 𝜀-equilibrium47

in O(1/𝜀2) iterations – or, in terms of speed of convergence after 𝑇 iterations, they converge to48

equilibrium at a O(1/
√
𝑇) rate.49

To the best of our knowledge, this result remains the tightest known bound for Nash equilibrium50

learning in quantum games. Following the work of [21], Jain et al. [22] studied its continuous-time51

analogue – the quantum replicator dynamics (QRD) – in quantum min-max games, focusing on the52

recurrence and volume conservation properties of the players’ actual trajectory of play. Going beyond53

quantum min-max games, [32] examined the convergence of learning under the dynamics of “follow54

the quantum leader” (FTQL), a class of continuous-time dynamics that includes the continuous-time55

analogue of MMW as a special case. Their main result was that the only states that are asymptotically56

stable under the (continuous-time) dynamics of FTQL are those that satisfy a certain first-order57

stationarity condition known as variational stability. In a similar line of work, Lin et al. [29] studied58

the continuous-time QRD, and discrete-time MMW dynamics in quantum potential games, utilizing59

a Riemannian metric to obtain a gradient flow.60

Our contributions in the context of previous work. Importantly, all works mentioned above,61

in both continuous and discrete time, assume full information, i.e., players have access to their62

individual gradients – which, among others, might imply that they have full knowledge of the game.63

However, this condition is rarely met in online learning environments where players only observe their64

in-game payoffs; this is precisely the starting point of our paper which aims to derive a convergent65

payoff-based, gradient-free variant of MMW algorithm for learning in quantum games.66

A major roadblock in this is that standard approaches from learning in finite games fail in the quantum67

setup for two reasons: First and foremost, there is a continuum of pure states available to every player,68

unlike classical finite games where there is only a finite set of pure actions. Second, even after the69

realization of the pure states of the players, there is an inherent uncertainty and randomness due to the70

payoff-generating quantum process (an aspect that has no classical counterpart). To overcome this71

hurdle, we employ a continuous-action reformulation of quantum games, and we leverage techniques72

from bandit convex optimization for estimating the players’ payoff gradients.73

Our first contribution is a variant of MMW that only requires mixed payoff observations and achieves74

an O(1/
√
𝑇) equilibrium convergence rate in two-player zero-sum quantum games, matching the75

rate of the full information MMW in [21]. Then, to account for information-starved environments76

where players are only able to observe their in-game, realized payoff observable, we also develop a77

bandit variant of MMW which utilizes a single-point gradient estimation technique in the spirit of78

[43] and achieves an O(𝑇−1/4) equilibrium convergence rate. Finally, we also examine the behavior79

of the MMW algorithm with bandit information in general 𝑁-player games, where we show that80

variationally stable equilibria are locally attracting with high probability.81

As far as we are aware, there are no comparable convergence results in the literature, a fact we believe82

opens an intriguing research agenda for equilibrium learning in quantum games.83

2 Problem setup and preliminaries84

We begin by reviewing some basic notions from the theory of quantum games, mainly intended to set85

notation and terminology; for a comprehensive introduction, see [19]. To streamline our presentation,86

we introduce the various primitives of quantum games in a 2-player setting; the extension to the87

general case is straightforward, but the notation heavier, so we postpone this until needed.88
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Notation. Given a (complex) Hilbert space H, we will use Dirac’s bra-ket notation and write |𝜓〉89

for an element of H and 〈𝜓 | for its adjoint; otherwise, when a specific basis is implied by the context,90

we will use the dagger notation “†” to denote the Hermitian transpose 𝜓† of 𝜓. We will also write91

ℍ𝑑 for the space of 𝑑 × 𝑑 Hermitian matrices, and ℍ𝑑
+ for the cone of positive-semidefinite matrices92

in ℍ𝑑 . Finally, we denote by ‖A‖𝐹 =
√︁

tr[A†A] the Frobenius norm of A in ℍ𝑑 .93

Quantum games. Following [16, 19], a 2-player quantum game consists of the following:94

1. Each player 𝑖 ∈ N B {1, 2} has access to a complex Hilbert space H𝑖 � ℂ𝑑𝑖 describing the95

set of (pure) quantum states available to the player (typically a discrete register of qubits). A96

quantum state is an element 𝜓𝑖 of H𝑖 with unit norm, so the set of pure states is the unit sphere97

Ψ𝑖 B {𝜓𝑖 ∈ H𝑖 : ‖𝜓𝑖 ‖𝐹 = 1} of H𝑖 . We will write Ψ B Ψ1 ×Ψ2 for the space of all ensembles98

𝜓 = (𝜓1, 𝜓2) of pure states 𝜓𝑖 ∈ Ψ𝑖 that are independently prepared by each player.99

2. The rewards that players receive are based on their individual payoff functions 𝑢𝑖 : Ψ→ ℝ, and100

they are derived through a positive operator-valued measure (POVM) quantum measurement101

process. Following [13], this unfolds as follows: Given a finite set of measurement outcomes Ω102

that a referee can observe from the players’ quantum states (e.g., measure a player-prepared qubit103

to be “up” or “down”), each outcome 𝜔 ∈ Ω is associated to a positive semi-definite operator104

P𝜔 : H→ H defined on the tensor product H B H1 ⊗H2 of the players’ individual state spaces.105

We further assume that
∑

𝜔∈Ω P𝜔 = I so the probability of observing 𝜔 ∈ Ω at state 𝜓 ∈ Ψ is106

𝑃𝜔 (𝜓) = 〈𝜓1 ⊗ 𝜓2 |P𝜔 |𝜓1 ⊗ 𝜓2〉.107

The payoff of each player is then generated by this measurement process via a payoff observable108

𝑈𝑖 : Ω→ ℝ: specifically, the measurement 𝜔 is drawn from Ω based on the players’ state profile109

𝜓 = (𝜓1, 𝜓2), and each player 𝑖 ∈ N receives as reward the quantity 𝑈𝑖 (𝜔). Accordingly, the110

player’s expected payoff at state 𝜓 ∈ Ψ will be 𝑢𝑖 (𝜓) B 〈𝑈𝑖〉 ≡
∑

𝜔 𝑃𝜔 (𝜓)𝑈𝑖 (𝜔).111

A quantum game is then defined as a tuple Q ≡ Q(N ,Ψ, 𝑢) with players, states, and payoff as above.112

Mixed states. Apart from pure states, each player 𝑖 ∈ N may prepare probabilistic mixtures113

thereof, known as mixed states. These mixed states differ from mixed strategies used in classical,114

finite games as they do not correspond to convex combinations of their pure counterparts; instead,115

given a family of pure quantum states 𝜓𝑖𝛼𝑖
∈ Ψ𝑖 indexed by 𝛼𝑖 ∈ A𝑖 , a mixed state is described by a116

density matrix of the form117

X𝑖 =
∑︁

𝛼𝑖 ∈A𝑖
𝑥𝑖𝛼𝑖
|𝜓𝑖𝛼𝑖
〉〈𝜓𝑖𝛼𝑖

| (1)

where the mixing weights 𝑥𝑖𝛼𝑖
≥ 0 of each 𝜓𝑖𝛼𝑖

are normalized so that tr X𝑖 = 1. By Born’s rule, this118

means that if each player 𝑖 ∈ N prepares a density matrix X𝑖 as per (1), the probability of observing119

𝜔 ∈ Ω under X = (X1,X2) will be120

𝑃𝜔 (X) =
∑︁

𝛼1∈A1

∑︁
𝛼2∈A2

𝑥1,𝛼1𝑥2,𝛼2𝑃𝜔 (𝜓𝛼). (2)

where 𝜓𝛼 = 𝜓1,𝛼1 ⊗ 𝜓2,𝛼2 . Therefore, in a slight abuse of notation, the expected payoff of player121

𝑖 ∈ N under X will be 𝑢𝑖 (X) =
∑

𝛼∈A 𝑥𝛼𝑢𝑖 (𝜓𝛼). which, equivalently, can be written as:122

𝑢𝑖 (X) =
∑︁
𝜔∈Ω

𝑈𝑖 (𝜔) tr[P𝜔 X1 ⊗ X2] = tr[W𝑖 X1 ⊗ X2] (3)

where the tensor W𝑖 =
∑

𝜔∈Ω𝑈𝑖 (𝜔)P𝜔 ∈ H incorporates all the payoff information of the game123

and is the quantum equivalent of the “payoff matrix” of player 𝑖 ∈ N . In light of this, (3) gives a124

clearer and more succint representation of the payoff structure of Q – see also Eq. (5) below.125

Contrasting to other classes of games. The expression for a player’s expected payoff under a126

mixed state appears similar to mixed extensions of classical finite games, but this similarity is only127

skin-deep. The key conceptual differences with classical, finite games are as follows:128

1. There is an infinite continuum of pure states 𝜓 ∈ Ψ; by contrast, in finite normal form games,129

there is always a finite number of strategies.130

2. The decomposition (1) of a density matrix into pure states is not exclusive; there can be different131

sets of pure states and corresponding mixing weights that produce the same density matrix.132

3. The superposition 𝜆𝜓 + (1 − 𝜆)𝜓 ′ of two pure states 𝜓 and 𝜓 ′ may lead to quantum interference133

terms of the form |𝜓〉〈𝜓 ′ | and |𝜓 ′〉〈𝜓 | in the induced payoff; this has no analogue in finite games.134
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Continuous game reformulation. In view of the above, treating a quantum game as a “tensorial”135

extension of a finite game can be misleading. For our purposes, it would be more suitable to treat a136

quantum game as a continuous game where each player 𝑖 ∈ N controls a matrix variable X𝑖 drawn137

from the “spectraplex” defined as X 𝑖 = {X𝑖 ∈ ℍ𝑑𝑖
+ : tr X𝑖 = 1}. In this interpretation, the players’138

payoff functions 𝑢𝑖 : X ≡ X 1 ×X 2 → ℝ are linear in each player’s density matrix X𝑖 ∈ X 𝑖 , 𝑖 ∈ N .139

Since 𝑢1, 𝑢2 are linear in X1 and X2, the individual payoff gradients of each player will be given by140

V1 (X) B ∇X>1 𝑢1 (X) = W1 (I ⊗ X2) and V2 (X) B ∇X>2 𝑢2 (X) = W2 (X1 ⊗ I) (4)

so we can further write each player’s payoff function as141

𝑢1 (X) = tr[X1V1 (X)] and 𝑢2 (X) = tr[X2V2 (X)] for all X ∈ X . (5)

Since X is compact and each 𝑢𝑖 is multilinear in X, the players’ payoff functions are automatically142

bounded, Lipschitz continuous and Lipschitz smooth, i.e., there exist constants 𝐵𝑖 , 𝐺𝑖 and 𝐿𝑖 , 𝑖 ∈ N ,143

such that, for all X,X′ ∈ X , we have:144

1. Boundedness: |𝑢𝑖 (X) | ≤ 𝐵𝑖145

2. Lipschitz continuity: |𝑢𝑖 (X) − 𝑢𝑖 (X′) | ≤ 𝐺𝑖 ‖X − X′‖𝐹146

3. Lipschitz smoothness: ‖V𝑖 (X) − V𝑖 (X′)‖𝐹 ≤ 𝐿𝑖 ‖X − X′‖𝐹147

Nash equilibrium. The most widely used solution concept in game theory is that of a Nash148

equilibrium (NE). In our context, it is mixed profile X∗ ∈ X from which no player has incentive to149

deviate, i.e., 𝑢1 (X∗) ≥ 𝑢1 (X1; X∗2) and 𝑢2 (X∗) ≥ 𝑢2 (X∗1; X2) for all X1 ∈ X 1, X2 ∈ X 2. Since X 𝑖 is150

convex and 𝑢𝑖 linear in X𝑖 , the existence of Nash equilibria follows from the Debreu’s theorem [15].151

Zero-sum quantum games. In the case where 𝑢1 = −𝑢2, and setting L : X 1 ×X 2 → ℝ, the Nash152

equilibria points of Q are the saddle points of L, i.e., the solutions of the minimax equality153

L∗ B max
X1∈X 1

min
X2∈X 2

L(X1,X2) = min
X2∈X 2

max
X1∈X 1

L(X1,X2) (6)

where the quantity L∗ is often called the value of the game. The set of Nash equilibria is nonempty154

due to Sion’s minimax theorem [42] for the bilinear function L. Finally, for (X∗1,X
∗
2) a NE-point,155

we readily get that L(X∗1,X
∗
2) = maxX1∈X 1 L(X1,X∗2) = minX2∈X 2 L(X∗1,X2) , and we define the156

duality gap of X = (X1,X2) with respect to L as the quantity:157

GapL (X) B L(X∗1,X2) − L(X1,X∗2) (7)
In particular, X∗ is an 𝜀-Nash equilibrium of Q if and only if GapL (X∗) ≤ 𝜀.158

3 The matrix multiplicative weights algorithm159

Throughout the sequel, we will focus on how the players of a quantum game can learn a Nash160

equilibrium. In the context of two-player, zero-sum quantum games, the state-of-the-art method is161

based on the so-called matrix multiplicative weights (MMW) algorithm [21, 23, 45] which updates as162

Y𝑖,𝑡+1 = Y𝑖,𝑡 + 𝛾𝑡V𝑖 (X𝑡 ) X𝑖,𝑡 =
exp(Y𝑖,𝑡 )

tr
[
exp(Y𝑖,𝑡 )

] (MMW)

In the above, (a) X𝑡 = (X1,𝑡 ,X2,𝑡 ) denotes the players’ density matrix profile at each stage163

𝑡 = 1, 2, . . . of the process; (b) V𝑖 (X𝑡 ) is the payoff gradient of player 𝑖 ∈ N under X𝑡 ; (c) Y𝑡 is164

an auxiliary state matrix that aggregates gradient steps over time; and (d) 𝛾𝑡 > 0, 𝑡 = 1, 2, . . . , is a165

learning rate (or step-size) parameter that can be freely tuned by the players.166

As we mentioned in the introduction, this algorithm has a long history in the learning literature, going167

back at least to [7, 45] for matrix learning. Importantly, as stated, (MMW) requires full information at168

the player end: specifically, at each stage 𝑡 = 1, 2, . . . of the process, each player 𝑖 ∈ N must receive169

their individual payoff gradient V𝑖 (X𝑡 ) in order to perform the gradient update step in (MMW).170

Under this assumption, Jain & Watrous [21] showed that the induced empirical frequency of play171

X̄𝑇 =
1
𝑇

∑︁𝑇

𝑡=1 X𝑡 (8)

converges to NE at a rate of O(1/
√
𝑇). Formally, adapted to our setting and notation, Jain & Watrous172

[21] provide the following explicit guarantee:173
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Theorem 1 (Jain & Watrous [21]). Suppose that each player of a 2-player zero-sum game Q follows174

(MMW) for 𝑇 epochs with learning rate 𝛾 = 𝐺−1
√︁

2𝐻/𝑇 where 𝐻 = log(𝑑1𝑑2). Then the players’175

empirical frequency of play enjoys the bound176

GapL (X̄𝑇 ) ≤ 𝐺
√︁

2𝐻/𝑇 (9)
In particular, if (MMW) is run for 𝑇 = O(1/𝜀2) iterations, X̄𝑇 will be an 𝜀-Nash equilibrium of Q.177

To the best of our knowledge, the above guarantee of Jain & Watrous [21] remains the tightest178

known bound for Nash equilibrium learning in 2-player zero-sum quantum games. At the same179

time, Theorem 1 relies crucially on the players having full information on their individual gradients –180

which, among others, might entail full knowledge of the game, full observation of the other player’s181

density matrix, etc. Our goal in the sequel will be to relax precisely this assumption and develop a182

payoff-based, gradient-free variant of (MMW) that can be employed without stringent information183

and observability requirements as above.184

4 Matrix learning without matrix feedback185

As we stated above, an online learning framework, it is more realistic to assume that players observe186

only the outcome of their actions – i.e., their individual payoffs. In this information-starved, payoff-187

based learning setting, our main goal will be to employ a minimal-information matrix multiplicative188

weights (3MW) algorithm that updates as189

Y𝑖,𝑡+1 = Y𝑖,𝑡 + 𝛾𝑡 V̂𝑖,𝑡 X𝑖,𝑡 =
exp(Y𝑖,𝑡 )

tr
[
exp(Y𝑖,𝑡 )

] (3MW)

where V̂𝑖,𝑡 is some payoff-based estimate of the payoff gradient V𝑖 (X𝑡 ) of player 𝑖 at X𝑡 , and all190

other quantities are defined as per (MMW). In this regard, the main challenge that arises is how to191

reconstruct each player’s payoff gradient matrices when this information is not readily available by192

an oracle (or other full-information mechanism).193

4.1. The classical approach: Importance weighted estimators. In the context of classical, finite194

games and multi-armed bandits, a standard approach for reconstructing V̂𝑖,𝑡 is via the so-called195

importance weighted estimator (IWE) [8, 10, 26]. To state it in the context of finite games, assume196

that each player has at their disposal a finite set of pure strategies 𝛼𝑖 ∈ A𝑖 , and if each player plays197

𝛼̂𝑖 ∈ A𝑖 , then, in obvious notation, their individual payoff will be 𝑢̂𝑖 = 𝑢𝑖 (𝛼̂𝑖; 𝛼̂−𝑖). Then, if each198

player is using a mixed strategy 𝑥𝑖 ∈ Δ(A𝑖) to draw their chosen action 𝛼̂𝑖 , the importance weighted199

estimator (IWE) for the payoff of the (possibly unplayed) action 𝛼𝑖 ∈ A𝑖 of player 𝑖 is defined as200

IWE𝑖𝛼𝑖
=
1{𝛼𝑖 = 𝛼̂𝑖}

𝑥𝑖𝛼𝑖

𝑢𝑖 (𝛼̂𝑖; 𝛼̂−𝑖) for all 𝛼𝑖 ∈ A𝑖 (IWE)

with the assumption that 𝑥𝑖 has full support, i.e., each action 𝛼𝑖 ∈ A𝑖 has strictly positive probability201

𝑥𝑖𝛼𝑖
of being chosen by the 𝑖-th player.1202

This approach has proven extremely fruitful in the context of multi-armed bandits and finite games203

where (IWE) is an essential ingredient of the optimal algorithms for each context [5, 8, 26, 50].204

However, in our case, there are two insurmountable difficulties in extending (IWE) to a quantum205

context: First and foremost, the quantum regime is characterized by a continuum of pure states with206

highly correlated payoffs (in the sense that quantum states that are close in the Bloch sphere will have207

highly correlated POVM payoff observables); this comes in stark contrast to the classical regime of208

finite normal-form games, where players only have to contend with a finite number of actions (with209

no prior payoff correlations between them). Secondly, even after the realization of the pure states of210

the players, there is an inherent uncertainty and randomness due to the quantum measurement process211

that is invovled in the payoff-generating process; as such, the players’ payoffs are also affected by an212

exogenous source of randomness which is altogether absent from (IWE).213

Our approach to tackle these issues will be to exploit the reformulation of a quantum game as a214

continuous game with multilinear payoffs over the spectraplex (or, rather, a product thereof), and215

use ideas from bandit convex optimization – in the spirit of [17, 25] – to estimate the players’ payoff216

gradients with minimal, scalar information requirements.217

1The assumption that 𝑥𝑖,𝑡 has full support is only for technical reasons. In practice, it can be relaxed by using
IWE with explicit exploration – see [26] for more details.
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4.2. Gradient estimation via finite-difference quotients on the spectraplex. To provide some218

intuition for the analysis to come, consider first a single-variable smooth function 𝑓 : ℝ→ ℝ and a219

point 𝑥 ∈ ℝ. Then, for error tolerance 𝛿 > 0, a two-point estimate of the derivative of 𝑓 at 𝑥 is given220

by the expression221

𝑓𝑥 =
𝑓 (𝑥 + 𝛿) − 𝑓 (𝑥 − 𝛿)

2𝛿
(10)

Going to higher dimensions, letting 𝑓 : ℝ𝑑 → ℝ be a smooth function, {𝑒1, . . . , 𝑒𝑑} be the standard222

basis of ℝ𝑑 and 𝑠 drawn from {𝑒1, . . . , 𝑒𝑑} uniformly at random, the estimator223

𝑓𝑥 =
𝑑

2𝛿
[ 𝑓 (𝑥 + 𝛿𝑠) − 𝑓 (𝑥 − 𝛿𝑠)]𝑠 (11)

is a O(𝛿)-approximation of the gradient, i.e., ‖𝔼𝑠 [ 𝑓𝑥] − ∇ 𝑓 (𝑥)‖𝐹 = O(𝛿). This idea is the basis of224

the Kiefer–Wolfowitzs stochastic approximation scheme [24] and will be the backbone of our work.225

Now, to employ this type of estimator for a function over the set of density matrices X in ℍ𝑑 , we226

need to ensure two things: (i) the feasibility of the sampling direction, and (ii) the feasibility of the227

evaluation point. The first caveat is due to the fact that the set of the density matrices forms a lower228

dimensional manifold in the set of Hermitian operators, and therefore, not all directions from a base229

of ℍ𝑑 are feasible. The second one is due to the fact that X is bounded, thus, even if the sampling230

direction is feasible, the evaluation point can lie outside the set X . We proceed to ensure all this in a231

series of concrete steps below.232

Sampling Directions. We begin with the issue of defining a proper sampling set for the estimator’s233

finite-difference directions. To that end, we will first construct an orthonormal basis of the tangent234

hull Z = {Z ∈ ℍ𝑑 : tr Z = 0} of X , i.e., the subspace of traceless matrices of ℍ𝑑 . Note that if235

Z ∈ Z then for any X ∈ ℍ𝑑 it holds (a) X + Z ∈ ℍ𝑑 , and (b) tr[X + Z] = tr[X].236

Denoting by 𝚫𝑘ℓ ∈ ℍ𝑑 the matrix with 1 in the (𝑘, ℓ)-position and 0’s everywhere else, it is easy to237

see that the set
{
{𝚫 𝑗 𝑗 }𝑑𝑗=1{e𝑘ℓ}𝑘<ℓ , {ẽ𝑘ℓ }𝑘<ℓ

}
is an orthonormal basis of ℍ𝑑 , where238

e𝑘ℓ =
1
√

2
𝚫𝑘ℓ +

1
√

2
𝚫ℓ𝑘 and ẽ𝑘ℓ =

𝑖
√

2
𝚫𝑘ℓ −

𝑖
√

2
𝚫ℓ𝑘 (12)

for 1 ≤ 𝑘 < ℓ ≤ 𝑑, where 𝑖 is the imaginary unit with 𝑖2 = −1. The next proposition provides a basis239

for the subspace Z , whose proof lies in the appendix.240

Proposition 1. Let E 𝑗 be defined as E 𝑗 =
1√

𝑗 ( 𝑗+1)

(
𝚫11 + · · · + 𝚫 𝑗 𝑗 − 𝑗𝚫 𝑗+1, 𝑗+1

)
for 𝑗 = 1, . . . , 𝑑 −1.241

Then, the set E =

{
{E 𝑗 }𝑑−1

𝑗=1 , {e𝑘ℓ }𝑘<ℓ , {ẽ𝑘ℓ }𝑘<ℓ
}

is an orthonormal basis of Z .242

In the sequel, we will use this basis as an orthnormal sampler from which to pick the finite-difference243

directions for the estimation of V.244

Feasibility Adjustment. After establishing an orthonormal basis for Z as per Proposition 1, we245

readily get that for any X ∈ X , any Z ∈ E± B
{
{±E 𝑗 }𝑑−1

𝑗=1 , {±e𝑘ℓ}𝑘<ℓ , {±ẽ𝑘ℓ }𝑘<ℓ
}

and 𝛿 > 0, the246

point X + 𝛿Z belongs to Z . However, depending on the value of the exploration parameter 𝛿 and the247

distance of X from the boundary of X , the point X + 𝛿Z ∈ ℍ𝑑 may fail to lie in X due to violation248

of the positive-semidefinite condition. On that account, we now treat the latter restriction, i.e., the249

feasibility of the evaluation point.250

To tackle this, the idea is to transfer the point X toward the interior of X and move along the sampled251

direction from there. For this, we need to find a reference point R ∈ ri(X ) and a “safety net” 𝑟 > 0252

such that R + 𝑟Z ∈ X for any Z ∈ E±. Then, for 𝛿 ∈ (0, 𝑟), the point253

X(𝛿) B X + 𝛿

𝑟
(R − X) (13)

lies in ri(X ), and moving along Z ∈ E±, the point X(𝛿) + 𝛿Z = (1 − 𝛿
𝑟
)X + 𝛿

𝑟
(R + 𝑟Z) remains254

in X as a convex combination of two elements in X . The following proposition provides an exact255

expression for R and 𝑟 , which we will use next to guarantee the feasibility of the sampled iterates.256

Proposition 2. Let R = 1
𝑑

∑𝑑
𝑗=1 𝚫 𝑗 𝑗 . Then, for 𝑟 = min

{
1√

𝑑 (𝑑−1)
,
√

2
𝑑

}
, it holds that R + 𝑟Z ∈ X for257

any direction Z ∈ E±.258
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5 Bandit learning in zero-sum quantum games259

With all these in hand, we are now ready to proceed to the presentation of the MMW with limited260

feedback information. To streamline our presentation, before delving into the more difficult “bandit261

feedback” case – where each player 𝑖 ∈ N only observes the realized payoff observable 𝑈𝑖 (𝜔) – we262

begin with the simpler case where players observe their mixed payoffs 𝑢𝑖 at a given profile X ∈ X .263

5.1. Learning with mixed payoff observations. Our main idea to exploit the observation of mixed264

payoffs and the finite-difference sampling to the fullest will be to introduce a “coordination phase”265

where players take a sampling step before updating their state variables and continue playing. In266

more detail, we will assume that players alternate between an “exploration” and an “exploitation”267

update that allows them to sample the landscape of L efficiently at each iteration. Concretely, writing268

X𝑡 and 𝛿𝑡 for the players’ state profile and sampling radius 𝛿𝑡 at stage 𝑡 = 1, 2, . . . , the sequence of269

events that we envision proceeds as follows:270

Step 1. Draw a sampling direction Z𝑖,𝑡 ∈ E𝑖 and 𝑠𝑖,𝑡 ∈ {±1} uniformly at random.271

Step 2. (a) Play X(𝛿)
𝑖,𝑡
+ 𝑠𝑖,𝑡 𝛿𝑡 Z𝑖,𝑡 and observe 𝑢𝑖 (X(𝛿)𝑡 + 𝑠𝑡𝛿𝑡Z𝑡 ).272

(b) Play X(𝛿)
𝑖,𝑡
− 𝑠𝑖,𝑡 𝛿𝑡 Z𝑖,𝑡 and observe 𝑢𝑖 (X(𝛿)𝑡 − 𝑠𝑡𝛿𝑡Z𝑡 ).273

Step 3. Approximate V𝑖 (X𝑡 ) via the two-point estimator (2PE):274

V̂𝑖,𝑡 B
𝐷𝑖

2𝛿𝑡

[
𝑢𝑖 (X(𝛿)𝑡 + 𝑠𝑡𝛿𝑡Z𝑡 ) − 𝑢𝑖 (X(𝛿)𝑡 − 𝑠𝑡𝛿𝑡Z𝑡 )

]
𝑠𝑖,𝑡Z𝑖,𝑡 (2PE)

where 𝐷𝑖 = 𝑑2
𝑖
− 1 is the dimension of ℍ𝑑𝑖 , and 𝐷 B max𝑖∈N 𝐷𝑖 .275

The main guarantee of the resulting algorithm (3MW) + (2PE) may then be stated as follows:276

Theorem 2. Suppose that each player of a 2-player zero-sum game Q follows (3MW) for 𝑇 epochs277

with learning rate 𝛾, sampling radius 𝛿, and gradient estimates provided by (2PE). Then the players’278

empirical frequency of play enjoys the duality gap guarantee279

𝔼
[
GapL (X̄𝑇 )

]
≤ 𝐻

𝛾𝑇
+ 8𝐷2𝐺2𝛾 + 16𝐷𝐿𝛿 (14)

where 𝐻 = log(𝑑1𝑑2). In particular, for 𝛾 = (𝐷𝐺)−1
√︁
𝐻/(8𝑇) and 𝛿 = (𝐺/𝐿)

√︁
𝐻/(8𝑇), the players280

enjoy the equilibrium convergence guarantee281

𝔼
[
GapL (X̄𝑇 )

]
≤ 8𝐷𝐺

√︁
2𝐻/𝑇. (15)

Compared to Theorem 1, the convergence rate (15) of Theorem 2 is quite significant because it only282

differs by a factor which is linear in the dimension of the ambient space and otherwise maintains283

the same O(
√
𝑇) dependence on the algorithm’s runtime. In this regard, Theorem 2 shows that284

the “explore-exploit” sampler underlying (2PE) is essentially as powerful as the full information285

framework of Jain & Watrous [21] – and this, despite the fact that players no longer require access to286

the gradient matrix V of L. This echoes a range of previous findings in stochastic convex optimization287

for the efficiency of two-point samplers [3, 41], a similarity we find particularly surprising given the288

stark differences between the two settings – non-commutativity, min-max versus min-min landscape.289

The key ingredients for the equilibrium convergence rate of Theorem 2 are the two technical results290

below. The first is a feedback-agnostic “energy inequality” which is tied to the update structure of291

(MMW) and is stated in terms of the quantum relative entropy function292

𝐷 (P,X) = tr[P(log P − log X)] (16)

for P,X ∈ X with X � 0. Concretely, we have the following estimate.293

Lemma 1. Fix some P ∈ X , and let X𝑡 ,X𝑡+1 be two successive iterates of (3MW), without any294

assumptions for the input sequence V̂𝑡 . We then have295

𝐷 (P,X𝑡+1) ≤ 𝐷 (P,X𝑡 ) + 𝛾𝑡 tr[V̂𝑡 (X𝑡 − P)] +
𝛾2
𝑡

2
‖V̂𝑡 ‖2𝐹 . (17)

The proof of Lemma 1 follows established techniques in the theory of (MMW), so we defer a detailed296

discussion to the appendix. The second result that we will need is tailored to the estimator (2PE) and297

provides a tight estimate of its moments conditioned on the history F𝑡 = F (X1, . . . ,X𝑡 ) of X𝑡 .298
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Algorithm 1: MMW with bandit feedback
1: Input: Y1 ← 0; safety parameter 𝑟𝑖 and anchor point R𝑖 , 𝑖 ∈ N ; step-size 𝛾𝑡 ; sampling radius 𝛿𝑡
2: for 𝑡 = 1, 2, . . . do simultaneously for all 𝑖 ∈ N
3: Set X𝑖,𝑡 = exp(Y𝑖,𝑡 )/tr[exp(Y𝑖,𝑡 )].
4: Sample Z𝑖,𝑡 uniformly from E±

𝑖
.

5: Play X(𝛿)
𝑖,𝑡
+ 𝛿𝑡Z𝑖,𝑡 .

6: Observe 𝑈𝑖 (𝜔𝑡 ).
7: Set V̂𝑖,𝑡 B 𝐷𝑖/𝛿𝑡 ·𝑈𝑖 (𝜔𝑡 )Z𝑖,𝑡 .
8: Update Y𝑖,𝑡+1 ← Y𝑖,𝑡 + 𝛾𝑡 V̂𝑖,𝑡 .
9: end for

Proposition 3. The estimator (2PE) enjoys the conditional bounds299

(𝑖)


𝔼[V̂𝑡 |F𝑡 ] − V(X𝑡 )




𝐹
≤ 4𝐷𝐿𝛿𝑡 and (𝑖𝑖) 𝔼

[
‖V̂𝑡 ‖2𝐹

��F𝑡

]
≤ 16𝐷2𝐺2 (18)

The defining element in Proposition 3 is that even though the estimator (2PE) is biased, its second300

moment is bounded as O(1). This is ultimately due to the multilinearity of the players’ payoff301

functions and plays a pivotal role in showing that the duality gap of X̄𝑡 under (3MW) is of the same302

order as under (MMW), because the bias can be controlled with affecting the variance of the estimator.303

We provide a detailed proof of Lemma 1, Proposition 3, and Theorem 2 in the appendix.304

5.2. Learning with bandit feedback. Despite its strong convergence guarantees, a major limiting305

factor in the applicability of Theorem 2 is that, in many cases, the game’s players may only be able to306

observe their realized payoff observables 𝑈𝑖 (𝜔), and their mixed payoffs 𝑢𝑖 (X) could be completely307

inaccessible. In particular, as we described in Section 2, each outcome 𝜔 ∈ Ω of the POVM occurs308

with probability 𝑃𝜔 (X𝑡 ) under the strategy profile X𝑡 . Accordingly, if this is the only information309

available to the players, they will need to estimate their individual payoff gradients through the single310

observation of the (random) scalar 𝑈𝑖 (𝜔𝑡 ) ∈ ℝ. In view of this, inspired by the single-point stochastic311

approximation approach of [17, 43] for single-agent online optimization problems with perfect value312

queries, we will consider the following sequence of events:313

Step 1. Each player draws a sampling direction Z𝑖,𝑡 ∈ E±𝑖 uniformly at random.314

Step 2. Each player plays X(𝛿)
𝑖,𝑡
+ 𝛿𝑡 Z𝑖,𝑡 .315

Step 3. Each player receives 𝑈𝑖 (𝜔𝑡 ).316

Step 4. Each player approximates V𝑖 (X𝑡 ) via the the one-point estimator (1PE):317

V̂𝑖,𝑡 B
𝐷𝑖

𝛿𝑡
𝑈𝑖 (𝜔𝑡 ) Z𝑖,𝑡 (1PE)

In this case, the players’ gradient estimates may be bounded as follows:318

Proposition 4. The estimator (1PE) enjoys the conditional bounds319

(𝑖) ‖𝔼[V̂𝑡 |F𝑡 ] − V(X𝑡 )‖𝐹 ≤ 4𝐷𝐿𝛿𝑡 and (𝑖𝑖) 𝔼[‖V̂𝑡 ‖2𝐹 |F𝑡 ] ≤ 4𝐷2𝐵2/𝛿2
𝑡 . (19)

The crucial difference between Propositions 3 and 4 is that the former leads to a gradient estimator320

with O(1) variance and magnitude, whereas the magnitude of the latter is inversely proportional321

to 𝛿𝑡 ; however, since 𝛿𝑡 in turn controls the bias of the gradient estimator, we must now resolve a322

bias-variance dilemma, which was absent in the case of (2PE). This leads to the following variant of323

Theorem 2 with bandit, realization-based feedback:324

Theorem 3. Suppose that each player of a 2-player zero-sum game Q follows (3MW) for 𝑇 epochs325

with learning rate 𝛾, sampling radius 𝛿, and gradient estimates provided by (1PE). Then the players’326

empirical frequency of play enjoys the duality gap guarantee327

𝔼
[
GapL (X̄𝑇 )

]
≤ 𝐻

𝛾𝑇
+ 2𝐷2𝐵2𝛾

𝛿2 + 16𝐷𝐿𝛿 (20)

where 𝐻 = log(𝑑1𝑑2). In particular, for 𝛾 =
(
𝐻
2𝑇

)3/4 1
2𝐷
√
𝐵𝐿

and 𝛿 =
(
𝐻
2𝑇

)1/4
√︃

𝐵
4𝐿 , the players enjoy328

the equilibrium convergence guarantee:329

𝔼
[
GapL (X̄𝑇 )

]
≤ 23/4 8𝐻1/4𝐷

√
𝐵𝐿

𝑇1/4 . (21)
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An important observation here is that the players’ equilibrium convergence rate under (3MW)+ (1PE)330

no longer matches the convergence rate of the vanilla MMW algorithm (Theorem 1). The reason331

for this is the bias-variance trade-off in the estimator (1PE), and is reminiscent of the drop in the332

rate of regret minimization from O(𝑇1/2) to O(𝑇2/3) under (IWE) with bandit feedback and explicit333

exploration in finite games. A kernel-based approach in the spirit of Bubeck et al. [9] could possibly334

be used to fill the O(𝑇1/4) gap between Theorems 1 and 3, but this would come at the cost of a335

possibly catastrophic dependence on the dimension (which is already quadratic in our setting). This336

consideration is beyond the scope of our work, but it would constitute an important future direction.337

6 Bandit learning in 𝑁-player quantum games338

We conclude our paper with an examination of the behavior of the MMW algorithm in general,339

𝑁-player quantum games. Here, a major difficulty that arises is that, in stark contrast to the min-max340

case, the set of the game’s equilibria can be disconnected, so any convergence result will have to341

be, by necessity, local. In addition, because general 𝑁-games do not have the amenable profile of a342

bilinear min-max problem – they are multilinear, multi-objective problems – it will not be possible343

to obtain any convergence guarantees for the game’s empirical frequency of play (since there is no344

convex structure to exploit). Instead, we will have to focus squarely on the induced trajectory of play,345

which carries with it a fair share of complications.346

Inspired by the very recent work of [32], we will not constrain our focus to a specific class of games,347

but to a specific class of equilibria. In particular, we will consider the behavior of MMW-based348

learning with respect to Nash equilibria X∗ ∈ X that satisfy the variational stability condition349

tr[V(X) (X − X∗)] < 0 for all X ∈ U\{X∗}. (VS)

This condition can be traced back to [35], and can be seen as a game-theoretic analogue of first-order350

stationarity in the context of continuous optimization, or as an equilibrium refinement in the spirit351

of the seminal concept of evolutionary stability in population games [33, 34].2 Importantly, as was352

shown in [32], variationally stable equilibria are the only equilibria that are asymptotically stable353

under the continuous-time dynamics of the “follow the regularized leader” (FTRL) class of learning354

policies, so it stands to reason to ask whether they enjoy a similar convergence landscape in the355

context of bona fide, discrete-time learning with minimal, payoff-based feedback.356

Our final result provides an unambiguously positive answer to this question:3357

Theorem 4. Fix some tolerance level 𝜂 ∈ (0, 1) and suppose that the players of an 𝑁-player quantum358

game follow (3MW) with bandit, realization-based feedback, and surrogate gradients provided by359

the estimator (1PE) with step-size and sampling radius parameters such that360

(𝑖) ∑∞
𝑡=1 𝛾𝑡 = ∞, (𝑖𝑖) ∑∞

𝑡=1 𝛾𝑡𝛿𝑡 < ∞, and (𝑖𝑖) ∑∞
𝑡=1 𝛾

2
𝑡 /𝛿2

𝑡 < ∞. (22)

If X∗ is variationally stable, there exists a neighborhoold U of X∗ such that361

ℙ(lim𝑡→∞ X𝑡 = X∗) ≥ 1 − 𝜂 whenever X1 ∈ U . (23)

It is worth noting that the last-iterate convergence guarantee of Theorem 4 is considerably stronger362

than the time-averaged variants of Theorems 1–3, and we are not aware of any comparable conver-363

gence guarantee for general quantum games. [Trivially, last-iterate convergence implies time-averaged364

convergence, but the converse, of course, may fail to hold] As such, especially in cases that require365

to track the trajectory of the system or the players’ day-to-day rewards, Theorem 4 provides an366

important guarantee for the realized sequence of events.367

On the other hand, in contrast to Theorem 4, it should be noted that the guarantees of Theorems 1–3368

are global. Given that general quantum games may in general possess a large number of disjoint369

Nash equilibria, this transition from global to local convergence guarantees seems unavoidable. It is,370

however, an open question whether (VS) could be exploited further in order to deduce the rate of371

convergence to such equilibria; we leave this as a direction for future research.372

2It should be noted here that, if reduced to the simplex, the stability condition (VS) is exactly equivalently to
the variational characterization of evolutionarily stable states due to Taylor [44].

3Strictly speaking, the algorithms (3MW) and (1PE) have been stated in the context of 2-player games. The
extension to 𝑁-player games is straightforward, so we do not present it here; for the details (which hide no
subtleties), see the appendix.
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Appendix480

In the series of technical appendices that follow, we provide the missing proofs from the main part of481

our paper, and we provide some numerical illustrations of the performance of the proposed algorithms.482

As a roadmap, we begin in Appendix A with some auxiliary results that are required throughout483

our analysis. Subsequently, in Appendices B–D, we provide the proofs of the results presented in484

Sections 4–6 respectively. Finally, in Appendix E, we provide a suite of numerical experiments to485

assess the practical performance of (3MW) using the estimators (2PE) and (1PE), and we compare it486

with the full information setting underlying (MMW).487

A Auxiliary Results488

We now introduce some notation for quantum games in a 𝑁-player setting, and explain how the489

extension from the 2-player setting is straightforward.490

𝑁-player quantum games. First of all, a quantum game Q consists of a finite set of players491

𝑖 ∈ N = {1, . . . , 𝑁}, where each player 𝑖 ∈ N has access to a complex Hilbert space H𝑖 � ℂ𝑑𝑖 . The492

set of pure states is the unit sphere Ψ𝑖 B {𝜓𝑖 ∈ H𝑖 : ‖𝜓𝑖 ‖𝐹 = 1} of H𝑖 . We will write Ψ B
∏

𝑖 Ψ𝑖 for493

the space of all ensembles 𝜓 = (𝜓1, . . . , 𝜓𝑁 ) of pure states 𝜓𝑖 ∈ Ψ𝑖 that are independently prepared494

by each 𝑖 ∈ N .495

In analogy with the 2-player case, each outcome 𝜔 ∈ Ω is associated to a positive semi-definite496

operator P𝜔 : H → H defined on the tensor product H B ⊗
𝑖 H𝑖 of the players’ individual state497

spaces; we further assume that
∑

𝜔∈Ω P𝜔 = I, thus, the probability of observing 𝜔 ∈ Ω at state 𝜓 ∈ Ψ498

is499

𝑃𝜔 (𝜓) = 〈𝜓1 ⊗ · · · ⊗ 𝜓𝑁 |P𝜔 |𝜓1 ⊗ · · · ⊗ 𝜓𝑁 〉 (A.1)
and, the player’s expected payoff at state 𝜓 ∈ Ψ will be500

𝑢𝑖 (𝜓) B 〈𝑈𝑖〉 ≡
∑︁

𝜔
𝑃𝜔 (𝜓)𝑈𝑖 (𝜔) (A.2)

Similarly to the 2-player setting, if each player 𝑖 ∈ N prepares a density matrix X𝑖 as per (1), the501

expected payoff of player 𝑖 ∈ N under X = (X1, . . . ,X𝑁 ) will be502

𝑢𝑖 (X) =
∑︁
𝜔∈Ω

𝑈𝑖 (𝜔) tr[P𝜔X1 ⊗ · · · ⊗ X𝑁 ] = tr[W𝑖 X1 ⊗ · · · ⊗ X𝑁 ] (A.3)

where W𝑖 =
∑

𝜔∈Ω𝑈𝑖 (𝜔)P𝜔 ∈ H for 𝑖 ∈ N . Finally, we denote by V𝑖 (X) the individual payoff503

gradient of player 𝑖 under X as504

V𝑖 (X) B ∇X>
𝑖
𝑢𝑖 (X) (A.4)

All other notions are extended, accordingly. ♦505

As noted in Section 2, we define the norm ‖𝐴‖𝐹 =
√︁

tr[𝐴†𝐴] for any 𝐴 ∈ ℍ𝑑𝑖 , i.e., (ℍ𝑑𝑖 , ‖·‖𝐹 ) is an506

inner-product space. With a slight abuse of notation, we define for X = (X1, . . . ,X𝑁 ) ∈ X its norm507

as:508

‖X‖𝐹 =

√︄
𝑁∑︁
𝑖=1
‖X𝑖 ‖2𝐹 (A.5)

Lemma A.1. For any X𝑖 ∈ X 𝑖 , it holds ‖X𝑖 ‖𝐹 ≤ 1, and diam(X ) = 2
√
𝑁 .509

Proof. For the first part, since X𝑖 ∈ X 𝑖 , it admits an orthonormal decomposition 𝑄Λ𝑄† such that510

𝑄𝑄† = 𝑄†𝑄 = I and Λ = diag(𝜆1, . . . , 𝜆𝑑𝑖 ) with
∑𝑑𝑖

𝑗=1 𝜆 𝑗 = 1, and 𝜆 𝑗 ≥ 0 for all 𝑗 . Hence511

‖X𝑖 ‖2𝐹 = tr[X†
𝑖
X𝑖] = tr[𝑄Λ𝑄†𝑄Λ𝑄†] = tr[𝑄Λ2𝑄†] =

𝑑𝑖∑︁
𝑗=1

𝜆2
𝑖 ≤

𝑑𝑖∑︁
𝑗=1

𝜆𝑖 = 1 (A.6)

where the last inequality holds, since 0 ≤ 𝜆 𝑗 ≤ 1, and the result follows.512
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For the second part, letting X = (X1, . . . ,X𝑁 ) and X′ = (X′1, . . . ,X
′
𝑁
) be two points in X , we have513

‖X − X′‖𝐹 =

√︄
𝑁∑︁
𝑖=1
‖X𝑖 − X′

𝑖
‖2
𝐹
≤

√︄
𝑁∑︁
𝑖=1
(2‖X𝑖 ‖2𝐹 + 2‖X′

𝑖
‖2
𝐹
) ≤ 2

√
𝑁 (A.7)

and since the equality is attained, we get the result. �514

Our next result concerns the quantum relative entropy515

𝐷 (P,X) =
𝑁∑︁
𝑖=1

𝐷𝑖 (P𝑖 ,X𝑖) (A.8)

where P = (P1, . . . ,P𝑁 ) ∈ X and X = (X1, . . . ,X𝑁 ) ∈ ri(X ) and516

𝐷𝑖 (P𝑖 ,X𝑖) B tr[P𝑖 (log P𝑖 − log X𝑖)] (A.9)
The lemma we will require is a semidefinite version of Pinsker’s inequality which reads as follows:517

Lemma A.2. For all P ∈ X and X ∈ ri(X ) we have518

𝐷 (P,X) ≥ 1
2
‖P − X‖2𝐹 (A.10)

Proof. Focusing on player 𝑖 ∈ N , we will show first that519

𝐷𝑖 (P𝑖 ,X𝑖) ≥
1
2
‖P𝑖 − X𝑖 ‖2𝐹 (A.11)

for all P = (P1, . . . ,P𝑁 ) ∈ X and X = (X1, . . . ,X𝑁 ) ∈ ri(X ).520

To this end, we define the function ℎ𝑖 : ℍ𝑑𝑖
+ → ℝ as ℎ𝑖 (X𝑖) = tr[X𝑖 log X𝑖], which is 1-strongly521

convex with respect to the nuclear norm ‖·‖1 [48], and since ‖X𝑖 ‖1 ≥ ‖X𝑖 ‖𝐹 for all X𝑖 ∈ X 𝑖 , we522

readily get that ℎ𝑖 is 1-strongly convex with respect to the Frobenius norm, as well.523

Letting ∇ℎ𝑖 (X𝑖) = log X𝑖 + I, by 1-strong convexity, we have for P = (P1, . . . ,P𝑁 ) ∈ X and524

X = (X1, . . . ,X𝑁 ) ∈ ri(X ):525

ℎ𝑖 (P𝑖) ≥ ℎ𝑖 (X𝑖) + tr[∇ℎ𝑖 (X𝑖) (P𝑖 − X𝑖)] +
1
2
‖P𝑖 − X𝑖 ‖2𝐹

= tr[X𝑖 log X𝑖] + tr[(P𝑖 − X𝑖) log X𝑖] + tr[P𝑖 − X𝑖] +
1
2
‖P𝑖 − X𝑖 ‖2𝐹

= tr[P𝑖 log X𝑖] +
1
2
‖P𝑖 − X𝑖 ‖2𝐹 (A.12)

where we used that tr[P𝑖 − X𝑖] = 0. Hence, by reordering, we automatically get that526

𝐷𝑖 (P𝑖 ,X𝑖) ≥
1
2
‖P𝑖 − X𝑖 ‖2𝐹 (A.13)

Therefore, we have:527

𝐷 (P,X) ≥ 1
2

𝑁∑︁
𝑖=1
‖P𝑖 − X𝑖 ‖2𝐹 =

1
2
‖P − X‖2𝐹 (A.14)

and the proof is completed. �528

B Omitted proofs from Section 4529

In this appendix, we develop the basic scaffolding required for the estimators (2PE) and (1PE). We530

begin with the construction of the estimators’ sampling basis, as encoded in Proposition 1, which we531

restate below for convenience:532

Proposition 1. Let E 𝑗 be defined as E 𝑗 =
1√

𝑗 ( 𝑗+1)

(
𝚫11 + · · · + 𝚫 𝑗 𝑗 − 𝑗𝚫 𝑗+1, 𝑗+1

)
for 𝑗 = 1, . . . , 𝑑 −1.533

Then, the set E =

{
{E 𝑗 }𝑑−1

𝑗=1 , {e𝑘ℓ }𝑘<ℓ , {ẽ𝑘ℓ }𝑘<ℓ
}

is an orthonormal basis of Z .534

Proof. First of all, note that535

𝚫𝑘ℓ𝚫𝑚𝑛 =

{
0 if ℓ ≠ 𝑚

𝚫𝑘𝑛 if ℓ = 𝑚
(B.1)
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Unit norm. To begin with, we will show that all elements in E have unit norm. Indeed, we have:536

• For 𝑗 = 1, . . . , 𝑑 − 1, we have:537

‖E 𝑗 ‖2𝐹 = tr[E†
𝑗
E 𝑗 ] =

1
𝑗 ( 𝑗 + 1) tr

[(
𝑗∑︁

𝑘=1
𝚫𝑘𝑘 − 𝑗𝚫( 𝑗+1) ( 𝑗+1)

) (
𝑗∑︁

𝑘=1
𝚫𝑘𝑘 − 𝑗𝚫( 𝑗+1) ( 𝑗+1)

)]
=

1
𝑗 ( 𝑗 + 1) tr

[(
𝑗∑︁

𝑘=1
𝚫𝑘𝑘 + 𝑗2𝚫( 𝑗+1) ( 𝑗+1)

)]
=

1
𝑗 ( 𝑗 + 1) ( 𝑗 + 𝑗2) = 1 (B.2)

• For 𝑘 < ℓ, we have:538

‖e𝑘ℓ ‖2𝐹 = tr[e†
𝑘ℓ

e𝑘ℓ] = tr
[(

1
√

2
𝚫ℓ𝑘 +

1
√

2
𝚫𝑘ℓ

) (
1
√

2
𝚫𝑘ℓ +

1
√

2
𝚫ℓ𝑘

)]
= tr

[
1
2
𝚫𝑘𝑘 +

1
2
𝚫ℓℓ

]
=

1
2
+ 1

2
= 1 (B.3)

• For 𝑘 < ℓ, we also have:539

‖ẽ𝑘ℓ ‖2𝐹 = tr[ẽ†
𝑘ℓ

ẽ𝑘ℓ] = tr
[(
− 𝑖
√

2
𝚫ℓ𝑘 +

𝑖
√

2
𝚫𝑘ℓ

) (
𝑖
√

2
𝚫𝑘ℓ −

𝑖
√

2
𝚫ℓ𝑘

)]
= tr

[
1
2
𝚫𝑘𝑘 +

1
2
𝚫ℓℓ

]
=

1
2
+ 1

2
= 1 (B.4)

Orthogonality. Now, we will show that any two elements of E are orthogonal to each other.540

• For 𝑚 < 𝑛, we have:541

tr[E†𝑚E𝑛] =
1√︁

𝑚(𝑚 + 1)
√︁
𝑛(𝑛 + 1)

tr

[(
𝑚∑︁
𝑘=1

𝚫𝑘𝑘 − 𝑚𝚫(𝑚+1) (𝑚+1)

) (
𝑛∑︁

𝑘=1
𝚫𝑘𝑘 − 𝑛𝚫(𝑛+1) (𝑛+1)

)]
=

1√︁
𝑚(𝑚 + 1)

√︁
𝑛(𝑛 + 1)

tr

[(
𝑚∑︁
𝑘=1

𝚫𝑘𝑘 − 𝑚𝚫(𝑚+1) (𝑚+1)

)]
=

1√︁
𝑚(𝑚 + 1)

√︁
𝑛(𝑛 + 1)

(𝑚 − 𝑚) = 0 (B.5)

• For 𝑘 < ℓ, we have:542

tr[e†
𝑘ℓ

ẽ𝑘ℓ] = tr
[(

1
√

2
𝚫ℓ𝑘 +

1
√

2
𝚫𝑘ℓ

) (
𝑖
√

2
𝚫𝑘ℓ −

𝑖
√

2
𝚫ℓ𝑘

)]
= tr

[
𝑖

2
𝚫ℓℓ −

𝑖

2
𝚫𝑘𝑘

]
=

𝑖

2
− 𝑖

2
= 0 (B.6)

• For (𝑘, ℓ) ≠ (𝑚, 𝑛) with 𝑘 < ℓ and 𝑚 < 𝑛, we have:543

tr
[
e†
𝑘ℓ

e𝑚𝑛

]
= tr

[
e†
𝑘ℓ

ẽ𝑚𝑛

]
= tr

[
ẽ†
𝑘ℓ

ẽ𝑚𝑛

]
= 0 (B.7)

since all the nonzero terms in e†
𝑘ℓ

e𝑚𝑛, e†𝑘ℓ ẽ𝑚𝑛 and ẽ†
𝑘ℓ

ẽ𝑚𝑛 are of the form 𝑐 · 𝚫𝛼𝛽 for some 𝑐 ∈ ℂ,544

and 𝛼, 𝛽 ∈ {𝑘, ℓ, 𝑚, 𝑛} with 𝛼 ≠ 𝛽. Thus, tr
[
𝑐 · 𝚫𝛼𝛽

]
= 0, since all the diagonal elements are equal545

to 0. Note that it is not possible to have 𝛼 = 𝛽 because this would imply that (𝑘, ℓ) = (𝑚, 𝑛).546

• For 𝑘 < ℓ and 𝑗 = 1, . . . , 𝑑 − 1, we have:547

tr
[
e†
𝑘ℓ

E 𝑗

]
= tr

[
ẽ†
𝑘ℓ

E 𝑗

]
= 0 (B.8)

since the non-zero terms of both e†
𝑘ℓ

E 𝑗 and ẽ†
𝑘ℓ

E 𝑗 are of the form 𝚫𝑘𝑛,𝚫ℓ𝑚 for 𝑘 ≠ 𝑛 and ℓ ≠ 𝑚.548
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We thus conclude that any two elements of E are orthogonal.549

Finally, it is clear E ⊆ aff (X 0), since E ⊆ ℍ𝑑 and tr[e𝑘ℓ] = tr[ẽ𝑘ℓ] = tr
[
E 𝑗

]
= 0, for 𝑘 < ℓ550

and 𝑗 = 1, . . . , 𝑑 − 1. Therefore, the elements in E form an orthonormal basis of aff (X 0) and551

dim(aff (X 0)) = 𝑑2 − 1. �552

We now proceed with the construction of the precise “safety net” that guarantees that the sampling553

perturbation of the gradient estimator remains within the problem’s feasible region. Again, for554

convenience, we restate the relevant result below:555

Proposition 2. Let R = 1
𝑑

∑𝑑
𝑗=1 𝚫 𝑗 𝑗 . Then, for 𝑟 = min

{
1√

𝑑 (𝑑−1)
,
√

2
𝑑

}
, it holds that R + 𝑟Z ∈ X for556

any direction Z ∈ E±.557

Proof. To begin with, it is clear that R ∈ ℍ𝑑 and tr[R] =
∑𝑑

𝑗=1 1/𝑑 = 1. Moreover, for any558

𝑢 ∈ ℂ𝑑 \ {0}, we have:559

𝑢†R𝑢 =
1
𝑑

𝑑∑︁
𝑗=1
|𝑢 𝑗 |2 > 0 (B.9)

where |𝑢 𝑗 | is the modulus of the complex number 𝑢 𝑗 ∈ ℂ. Therefore, R is positive definite, i.e., lies560

in ri(X ).561

Now, we need to find 𝑟 > 0 such that562

R + 𝑟Z ∈ X (B.10)
for any Z ∈ E±.563

It is clear that for any Z ∈ E±, we have tr[R + 𝑟Z] = tr[R] = 1, since tr[Z] = 0. Hence, it remains to564

consider the positive semi-definite constraint. For this, we will use the following identities, for 𝑘 < ℓ:565

𝑢† (𝚫𝑘ℓ + 𝚫ℓ𝑘 )𝑢 = 𝑢̄𝑘𝑢ℓ + 𝑢̄ℓ𝑢𝑘 = 2Re(𝑢̄𝑘𝑢ℓ) (B.11)

and566

𝑢† (𝑖𝚫𝑘ℓ − 𝑖𝚫ℓ𝑘 )𝑢 = 𝑖(𝑢̄𝑘𝑢ℓ − 𝑢̄ℓ𝑢𝑘 ) = −2 Im(𝑢̄𝑘𝑢ℓ) (B.12)

• For Z = 1√
2
(𝚫𝑘ℓ + 𝚫ℓ𝑘 ) and 𝑢 ∈ ℂ𝑑 \ {0}, and using (B.11), we have:567

𝑢† (R + 𝑟Z)𝑢 =
1
𝑑

𝑑∑︁
𝑗=1
|𝑢 𝑗 |2 +

𝑟
√

2
2Re(𝑢̄𝑘𝑢ℓ)

=
1
𝑑

∑︁
𝑗≠𝑘,ℓ

|𝑢 𝑗 |2 +
1
𝑑

(
|𝑢𝑘 |2 + |𝑢ℓ |2 +

𝑟𝑑
√

2
2Re(𝑢̄𝑘𝑢ℓ)

)
(B.13)

If Re(𝑢̄𝑘𝑢ℓ) > 0, we get that 𝑢† (R + 𝑟Z)𝑢 > 0, while if Re(𝑢̄𝑘𝑢ℓ) ≤ 0 and 𝑟 ≤
√

2/𝑑:568

𝑢† (R + 𝑟Z)𝑢 ≥ 1
𝑑

∑︁
𝑗≠𝑘,ℓ

|𝑢 𝑗 |2 +
1
𝑑
|𝑢𝑘 + 𝑢ℓ |2 ≥ 0 (B.14)

Hence, for 𝑟 ≤
√

2/𝑑, and Z = 1√
2
(𝚫𝑘ℓ + 𝚫ℓ𝑘 ), we have that 𝑢† (R + 𝑟Z)𝑢 ≥ 0 for all 𝑢 ∈ ℂ𝑑 .569

• For Z = − 1√
2
(𝚫𝑘ℓ + 𝚫ℓ𝑘 ), we have570

𝑢† (R + 𝑟Z)𝑢 =
1
𝑑

𝑑∑︁
𝑗=1
|𝑢 𝑗 |2 −

𝑟
√

2
2Re(𝑢̄𝑘𝑢ℓ)

=
1
𝑑

∑︁
𝑗≠𝑘,ℓ

|𝑢 𝑗 |2 +
1
𝑑

(
|𝑢𝑘 |2 + |𝑢ℓ |2 −

𝑟𝑑
√

2
2Re(𝑢̄𝑘𝑢ℓ)

)
(B.15)

If Re(𝑢̄𝑘𝑢ℓ) < 0, we get that 𝑢† (R + 𝑟Z)𝑢 > 0, while if Re(𝑢̄𝑘𝑢ℓ) ≥ 0 and 𝑟 ≤
√

2/𝑑:571

𝑢† (R + 𝑟Z)𝑢 ≥ 1
𝑑

∑︁
𝑗≠𝑘,ℓ

|𝑢 𝑗 |2 +
1
𝑑
|𝑢𝑘 − 𝑢ℓ |2 ≥ 0 (B.16)

Hence, for 𝑟 ≤
√

2/𝑑, and Z = − 1√
2
(𝚫𝑘ℓ + 𝚫ℓ𝑘 ), we have that 𝑢† (R + 𝑟Z)𝑢 ≥ 0 for all 𝑢 ∈ ℂ𝑑 .572
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• For Z = 𝑖√
2
(𝚫𝑘ℓ − 𝚫ℓ𝑘 ) and 𝑢 ∈ ℂ𝑑 \ {0}, and using (B.11), we have:573

𝑢† (R + 𝑟Z)𝑢 =
1
𝑑

𝑑∑︁
𝑗=1
|𝑢 𝑗 |2 −

𝑟
√

2
2Im(𝑢̄𝑘𝑢ℓ)

=
1
𝑑

∑︁
𝑗≠𝑘,ℓ

|𝑢 𝑗 |2 +
1
𝑑

(
|𝑢𝑘 |2 + |𝑢ℓ |2 −

𝑟𝑑
√

2
2Im(𝑢̄𝑘𝑢ℓ)

)
(B.17)

If Im(𝑢̄𝑘𝑢ℓ) < 0, we get that 𝑢† (R + 𝑟Z)𝑢 > 0, while if Im(𝑢̄𝑘𝑢ℓ) ≥ 0 and 𝑟 ≤
√

2/𝑑:574

𝑢† (R + 𝑟Z)𝑢 ≥ 1
𝑑

∑︁
𝑗≠𝑘,ℓ

|𝑢 𝑗 |2 +
1
𝑑
|𝑢𝑘 + 𝑖 𝑢ℓ |2 ≥ 0 (B.18)

Hence, for 𝑟 ≤
√

2/2𝑑, and Z = 𝑖√
2
(𝚫𝑘ℓ − 𝚫ℓ𝑘 ), we have that 𝑢† (R + 𝑟Z)𝑢 ≥ 0 for all 𝑢 ∈ ℂ𝑑 .575

• For Z = − 𝑖√
2
(𝚫𝑘ℓ − 𝚫ℓ𝑘 ) and 𝑢 ∈ ℂ𝑑 \ {0}, and using (B.11), we have:576

𝑢† (R + 𝑟Z)𝑢 =
1
𝑑

𝑑∑︁
𝑗=1
|𝑢 𝑗 |2 +

𝑟
√

2
2Im(𝑢̄𝑘𝑢ℓ)

=
1
𝑑

∑︁
𝑗≠𝑘,ℓ

|𝑢 𝑗 |2 +
1
𝑑

(
|𝑢𝑘 |2 + |𝑢ℓ |2 +

𝑟𝑑
√

2
2Im(𝑢̄𝑘𝑢ℓ)

)
(B.19)

If Im(𝑢̄𝑘𝑢ℓ) > 0, we get that 𝑢† (R + 𝑟Z)𝑢 > 0, while if Im(𝑢̄𝑘𝑢ℓ) ≤ 0 and 𝑟 ≤
√

2/𝑑:577

𝑢† (R + 𝑟Z)𝑢 ≥ 1
𝑑

∑︁
𝑗≠𝑘,ℓ

|𝑢 𝑗 |2 +
1
𝑑
|𝑢𝑘 − 𝑖 𝑢ℓ |2 (B.20)

Hence, for 𝑟 ≤
√

2/2𝑑, and Z = − 𝑖√
2
(𝚫𝑘ℓ − 𝚫ℓ𝑘 ), we have that 𝑢† (R + 𝑟Z)𝑢 ≥ 0 for all 𝑢 ∈ ℂ𝑑 .578

• For Z = 1√
𝑗 ( 𝑗+1)

(
𝚫11 + · · · + 𝚫 𝑗 𝑗 − 𝑗𝚫( 𝑗+1) ( 𝑗+1)

)
, we have:579

𝑢† (R + 𝑟Z)𝑢 =
1
𝑑

𝑑∑︁
𝑘=1
|𝑢𝑘 |2 +

𝑟√︁
𝑗 ( 𝑗 + 1)

𝑗∑︁
𝑘=1
|𝑢𝑘 |2 −

𝑗𝑟√︁
𝑗 ( 𝑗 + 1)

|𝑢 𝑗+1 |2

=
1
𝑑

∑︁
𝑘≠ 𝑗+1

|𝑢𝑘 |2 +
𝑟√︁

𝑗 ( 𝑗 + 1)

𝑗∑︁
𝑘=1
|𝑢𝑘 |2 +

(
1
𝑑
− 𝑗𝑟√︁

𝑗 ( 𝑗 + 1)

)
|𝑢 𝑗+1 |2 (B.21)

Thus, we need to ensure that580

1
𝑑
− 𝑗𝑟√︁

𝑗 ( 𝑗 + 1)
≥ 0 (B.22)

for all 𝑗 = 1, . . . , 𝑑−1. Because the function 𝑥 ↦→
√︁
𝑥(𝑥 + 1)/𝑥 is decreasing, it obtains the smallest581

value from 𝑥 = 𝑑 − 1. Therefore, for 𝑟 ≤ 1/
√︁
𝑑 (𝑑 − 1), we readily obtain that 𝑢† (R + 𝑟Z)𝑢 ≥ 0 for582

all 𝑢 ∈ ℂ𝑑 .583

• For Z = − 1√
𝑗 ( 𝑗+1)

(
𝚫11 + · · · + 𝚫 𝑗 𝑗 − 𝑗𝚫( 𝑗+1) ( 𝑗+1)

)
, we have:584

𝑢† (R + 𝑟Z)𝑢 =
1
𝑑

𝑑∑︁
𝑘=1
|𝑢𝑘 |2 −

𝑟√︁
𝑗 ( 𝑗 + 1)

𝑗∑︁
𝑘=1
|𝑢𝑘 |2 +

𝑗𝑟√︁
𝑗 ( 𝑗 + 1)

|𝑢 𝑗+1 |2

=

(
1
𝑑
− 𝑟√︁

𝑗 ( 𝑗 + 1)

)
𝑗∑︁

𝑘=1
|𝑢𝑘 |2 +

1
𝑑

𝑑∑︁
𝑘= 𝑗+1

|𝑢𝑘 |2 +
𝑗𝑟√︁

𝑗 ( 𝑗 + 1)
|𝑢 𝑗+1 |2 (B.23)

Thus, we need to ensure that585

1
𝑑
− 𝑟√︁

𝑗 ( 𝑗 + 1)
≥ 0 (B.24)
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for all 𝑗 = 1, . . . , 𝑑 − 1. Because it holds that586

1
𝑑
− 𝑟√︁

𝑗 ( 𝑗 + 1)
≥ 1

𝑑
− 𝑗𝑟√︁

𝑗 ( 𝑗 + 1)
(B.25)

we obtain the inequality for free by the previous case, i.e., for 𝑟 ≤ 1/
√︁
𝑑 (𝑑 − 1).587

Therefore, for588

𝑟 = min

{
1√︁

𝑑 (𝑑 − 1)
,

√
2
𝑑

}
(B.26)

we readily obtain that 𝑢† (R + 𝑟Z)𝑢 ≥ 0 for all 𝑢 ∈ ℂ𝑑 , and our proof is complete. �589

C Omitted proofs from Section 5590

Our aim in this appendix will be to prove the basic guarantees of (3MW) with payoff-based feedback.591

The structure of this appendix shadows that of Section 5 and is broken into two parts, depending on592

the specific type of input available to the players. The only point of departure is the energy inequality593

of Lemma 1, which is common to both algorithms, and which we restate and prove below:594

Lemma 1. Fix some P ∈ X , and let X𝑡 ,X𝑡+1 be two successive iterates of (3MW), without any595

assumptions for the input sequence V̂𝑡 . We then have596

𝐷 (P,X𝑡+1) ≤ 𝐷 (P,X𝑡 ) + 𝛾𝑡 tr[V̂𝑡 (X𝑡 − P)] +
𝛾2
𝑡

2
‖V̂𝑡 ‖2𝐹 . (17)

Proof. By the definition of 𝐷, it is easy to see that for P ∈ X and X,X′ ∈ ri(X ), we have597

𝐷 (P,X′) = 𝐷 (P,X) + 𝐷 (X,X′) + tr[(log X′ − log X) (X − P)] (C.1)

Since ∇ℎ(X) = log X + I, the above equality can be written as:598

𝐷 (P,X′) = 𝐷 (P,X) + 𝐷 (X,X′) + tr[(∇ℎ(X′) − ∇ℎ(X)) (X − P)] (C.2)

Setting X as X𝑡+1, and X′ as X𝑡 , and invoking the easily verifiable fact that ∇ℎ(X𝑡+1)−∇ℎ(X𝑡 ) = 𝛾𝑡 V̂𝑡 ,599

we get600

𝐷 (P,X𝑡 ) = 𝐷 (P,X𝑡+1) + 𝐷 (X𝑡+1,X𝑡 ) − 𝛾𝑡 tr[V̂𝑡 (X𝑡+1 − P)] (C.3)

and hence:601

𝐷 (P,X𝑡+1) = 𝐷 (P,X𝑡 ) − 𝐷 (X𝑡+1,X𝑡 ) + 𝛾𝑡 tr[V̂𝑡 (X𝑡+1 − P)]

≤ 𝐷 (P,X𝑡 ) −
1
2
‖X𝑡+1 − X𝑡 ‖2𝐹 + 𝛾𝑡 tr[V̂𝑡 (X𝑡+1 − P)]

= 𝐷 (P,X𝑡 ) −
1
2
‖X𝑡+1 − X𝑡 ‖2𝐹 + 𝛾𝑡 tr[V̂𝑡 (X𝑡 − P)] + 𝛾𝑡 tr[V̂𝑡 (X𝑡+1 − X𝑡 )]

≤ 𝐷 (P,X𝑡 ) + 𝛾𝑡 tr[V̂𝑡 (X𝑡 − P)] +
𝛾2
𝑡

2
‖V̂𝑡 ‖2𝐹 (C.4)

where the first inequality holds due to Lemma A.2, and in the last step we used that ‖·‖𝐹 is an602

inner-product norm on X , so603

1
2
‖X𝑡+1 − X𝑡 ‖2𝐹 +

𝛾2
𝑡

2
‖V̂𝑡 ‖2𝐹 ≥ 𝛾𝑡 tr[V̂𝑡 (X𝑡+1 − X𝑡 )] (C.5)

This concludes our proof. �604

With this template inequality in hand, we proceed with the guarantees of (3MW) in the next sections.605
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C.1. Learning with mixed payoff observations. We begin with the statistics of the 2-point sampler606

(2PE), which we restate below:607

Proposition 3. The estimator (2PE) enjoys the conditional bounds608

(𝑖)


𝔼[V̂𝑡 |F𝑡 ] − V(X𝑡 )




𝐹
≤ 4𝐷𝐿𝛿𝑡 and (𝑖𝑖) 𝔼

[
‖V̂𝑡 ‖2𝐹

��F𝑡

]
≤ 16𝐷2𝐺2 (18)

Proof. We prove each part separately.609

(i) Let Ξ(+)
𝑖,𝑡

and Ξ
(−)
𝑖,𝑡

be defined for all players 𝑖 ∈ {1, 2} as610

Ξ
(+)
𝑖,𝑡

= (X(𝛿)
𝑖,𝑡
+ 𝑠𝑖,𝑡𝛿𝑡Z𝑖,𝑡 ) − X𝑖,𝑡

= 𝑠𝑖,𝑡𝛿𝑡Z𝑖,𝑡 +
𝛿𝑡

𝑟𝑖
(R𝑖 − X𝑖,𝑡 ) = 𝛿𝑡

[
𝑠𝑖,𝑡Z𝑖,𝑡 +

1
𝑟𝑖
(R𝑖 − X𝑖,𝑡 )

]
(C.6)

and611

Ξ
(−)
𝑖,𝑡

= (X(𝛿)
𝑖,𝑡
− 𝑠𝑖,𝑡𝛿𝑡Z𝑖,𝑡 ) − X𝑖,𝑡 = 𝛿𝑡

[
−𝑠𝑖,𝑡Z𝑖,𝑡 +

1
𝑟𝑖
(R𝑖 − X𝑖,𝑡 )

]
(C.7)

Taking a first-order Taylor expansion of 𝑢𝑖 , we obtain:612

𝑢𝑖 (X(𝛿)𝑡 + 𝑠𝑡𝛿𝑡Z𝑡 ) = 𝑢𝑖 (X𝑡 ) +
∑︁
𝑗∈N

tr
[
∇X>

𝑗
𝑢𝑖 (X𝑡 )†Ξ(+)𝑗 ,𝑡

]
+ 𝑅2 (Ξ(+)𝑡 ) (C.8a)

and613

𝑢𝑖 (X(𝛿)𝑡 − 𝑠𝑡𝛿𝑡Z𝑡 ) = 𝑢𝑖 (X𝑡 ) +
∑︁
𝑗∈N

tr
[
∇X>

𝑗
𝑢𝑖 (X𝑡 )†Ξ(−)𝑗 ,𝑡

]
+ 𝑅2 (Ξ(−)𝑡 ) (C.8b)

where 𝑅2 (·) is the 2nd order Taylor remainder. Now, for 𝑗 ≠ 𝑖 ∈ N , since 𝑠𝑖,𝑡 is zero-mean614

and independent of any other process:615

𝔼

[
tr
[
∇X>

𝑗
𝑢𝑖 (X𝑡 )† (Ξ(+)𝑗 ,𝑡 − Ξ

(−)
𝑗 ,𝑡
)
]
𝑠𝑖,𝑡Z𝑖,𝑡

���F𝑡

]
= 0 (C.9)

and using that Ξ(+)
𝑖,𝑡
− Ξ(−)

𝑖,𝑡
= 2𝑠𝑖,𝑡𝛿𝑡Z𝑖,𝑡 , we have:616

𝔼

[
tr
[
∇X>

𝑖
𝑢𝑖 (X𝑡 )† (Ξ(+)𝑖,𝑡

− Ξ(−)
𝑖,𝑡
)
]
𝑠𝑖,𝑡Z𝑖,𝑡

���F𝑡

]
= 𝔼

[
tr
[
V𝑖 (X𝑡 )† (2𝑠𝑖,𝑡𝛿𝑡Z𝑖,𝑡 )

]
𝑠𝑖,𝑡Z𝑖,𝑡 | F𝑡

]
= 2𝛿𝑡 𝔼

[
tr
[
V𝑖 (X𝑡 )†Z𝑖,𝑡

]
𝑠2
𝑖,𝑡Z𝑖,𝑡 | F𝑡

]
= 2𝛿𝑡 𝔼

[
tr
[
V𝑖 (X𝑡 )†Z𝑖,𝑡

]
Z𝑖,𝑡 | F𝑡

]
=

2𝛿𝑡
𝐷𝑖

∑︁
𝑊 ∈E𝑖

tr
[
V𝑖 (X𝑡 )†𝑊

]
𝑊

=
2𝛿𝑡
𝐷𝑖

projE𝑖
(V𝑖 (X𝑡 )) =

2𝛿𝑡
𝐷𝑖

V𝑖 (X𝑡 ) (C.10)

where in the last step, with a slight abuse of notation, we identify projE𝑖
(V𝑖 (X𝑡 )) with V𝑖 (X𝑡 ).617

The reason for this is that we apply the differential operator V𝑖 (X𝑡 ) only on elements of X 𝑖 ,618

and thus, we can ignore the component of V𝑖 (X𝑡 ) that is orthogonal to span(E𝑖).619

Moreover, we have that620

|𝑅2 (Ξ(+)𝑡 ) | ≤
𝐿

2
‖Ξ(+)𝑡 ‖2𝐹 ≤ 𝐿𝛿2

𝑡 (C.11)

and similarly, we get the same bound for |𝑅2 (Ξ(−)𝑡 ) |. Therefore, in light of the above, we obtain621

the bound:622

‖𝔼[V̂𝑖,𝑡 |F𝑡 ] − V𝑖 (X𝑡 )‖𝐹 ≤
1
2
𝐷𝑖𝐿𝛿𝑡 (C.12a)

and, hence623

‖𝔼[V̂𝑡 |F𝑡 ] − V(X𝑡 )‖𝐹 ≤
√

2
2

𝐷𝐿𝛿𝑡 (C.12b)
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(ii) By the definition of V̂𝑖,𝑡 , we have:624

‖V̂𝑖,𝑡 ‖𝐹 =
𝐷𝑖

2𝛿𝑡

���𝑢𝑖 (X(𝛿)𝑡 + 𝑠𝑡 𝛿𝑡 Z𝑡 ) − 𝑢𝑖 (X(𝛿)𝑡 − 𝑠𝑡 𝛿𝑡 Z𝑡 )
��� ‖𝑠𝑖,𝑡Z𝑖,𝑡 ‖𝐹

≤ 𝐷𝑖

2𝛿𝑡
𝐺‖2𝑠𝑡 𝛿𝑡 Z𝑡 ‖𝐹 ≤

√
2𝐷𝑖𝐺 (C.13)

and therefore, we readily obtain that:625

𝔼
[
‖V̂𝑖,𝑡 ‖2𝐹

��F𝑡

]
≤ 2𝐷2

𝑖𝐺
2 (C.14)

so626

𝔼
[
‖V̂𝑡 ‖2𝐹

��F𝑡

]
≤ 4𝐷2𝐺2 (C.15)

and our proof is complete. �627

With all these technical elements in place, we are finally in a position to prove our convergence628

result for (3MW) run with 2-point gradient estimators. As before, we restate our result below for629

convenience:630

Theorem 2. Suppose that each player of a 2-player zero-sum game Q follows (3MW) for 𝑇 epochs631

with learning rate 𝛾, sampling radius 𝛿, and gradient estimates provided by (2PE). Then the players’632

empirical frequency of play enjoys the duality gap guarantee633

𝔼
[
GapL (X̄𝑇 )

]
≤ 𝐻

𝛾𝑇
+ 8𝐷2𝐺2𝛾 + 16𝐷𝐿𝛿 (14)

where 𝐻 = log(𝑑1𝑑2). In particular, for 𝛾 = (𝐷𝐺)−1
√︁
𝐻/(8𝑇) and 𝛿 = (𝐺/𝐿)

√︁
𝐻/(8𝑇), the players634

enjoy the equilibrium convergence guarantee635

𝔼
[
GapL (X̄𝑇 )

]
≤ 8𝐷𝐺

√︁
2𝐻/𝑇. (15)

Proof. Let X∗ ∈ X be a NE point. By Lemma 1 for P = X∗, and setting 𝐹𝑡 B 𝐷 (X∗,X𝑡 ) for all636

𝑡 = 1, 2 . . . , we have637

𝐹𝑡+1 ≤ 𝐹𝑡 + 𝛾𝑡 tr[V̂†𝑡 (X𝑡 − X∗)] +
𝛾2
𝑡

2
‖V̂𝑡 ‖2𝐹 (C.16)

or, equivalently638

tr[V̂†𝑡 (X∗ − X𝑡 )] ≤
1
𝛾𝑡
(𝐹𝑡 − 𝐹𝑡+1) +

𝛾𝑡

2
‖V̂𝑡 ‖2𝐹 (C.17)

Summing over the whole sequence 𝑡 = 1, . . . , 𝑇 , we get:639

𝑇∑︁
𝑡=1

tr[V̂†𝑡 (X∗ − X𝑡 )] ≤
𝑇∑︁
𝑡=1

1
𝛾𝑡
(𝐹𝑡 − 𝐹𝑡+1) +

1
2

𝑇∑︁
𝑡=1

𝛾𝑡 ‖V̂𝑡 ‖2𝐹 (C.18)

which can be rewritten by setting 𝛾0 = ∞, as:640

𝑇∑︁
𝑡=1

tr[V̂†𝑡 (X∗ − X𝑡 )] ≤
𝑇∑︁
𝑡=1

𝐹𝑡

(
1
𝛾𝑡
− 1
𝛾𝑡−1

)
+ 1

2

𝑇∑︁
𝑡=1

𝛾𝑡 ‖V̂𝑡 ‖2𝐹 (C.19)

Decomposing V̂𝑡 as641

V̂𝑡 = V(X𝑡 ) + 𝑏𝑡 +𝑈𝑡 (C.20)

with642

(i) 𝑏𝑡 = 𝔼
[
V̂𝑡

��F𝑡

]
− V(X𝑡 )643

(ii) 𝑈𝑡 = V̂𝑡 − 𝔼
[
V̂𝑡

��F𝑡

]
644
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equation (D.18) becomes:645

𝑇∑︁
𝑡=1

tr[V(X𝑡 )† (X∗ − X𝑡 )] ≤
𝑇∑︁
𝑡=1

𝐹𝑡

(
1
𝛾𝑡
− 1
𝛾𝑡−1

)
+ 1

2

𝑇∑︁
𝑡=1

𝛾𝑡 ‖V̂𝑡 ‖2𝐹

+
𝑇∑︁
𝑡=1

tr[𝑏†𝑡 (X𝑡 − X∗)] +
𝑇∑︁
𝑡=1

tr[𝑈†𝑡 (X𝑡 − X∗)]

≤
𝑇∑︁
𝑡=1

𝐹𝑡

(
1
𝛾𝑡
− 1
𝛾𝑡−1

)
+ 1

2

𝑇∑︁
𝑡=1

𝛾𝑡 ‖V̂𝑡 ‖2𝐹

+ 4
𝑇∑︁
𝑡=1
‖𝑏𝑡 ‖𝐹 +

𝑇∑︁
𝑡=1

tr[𝑈†𝑡 (X𝑡 − X∗)] (C.21)

The left-hand side (LHS) of (D.20) gives:646

𝑇∑︁
𝑡=1

tr[V(X𝑡 )† (X∗ − X𝑡 )] =
𝑇∑︁
𝑡=1

tr[V1 (X𝑡 )† (X∗1 − X1,𝑡 )] +
𝑇∑︁
𝑡=1

tr[V2 (X𝑡 )† (X∗2 − X2,𝑡 )]

=
𝑇∑︁
𝑡=1

(
𝑢1 (X∗1,X2,𝑡 ) − 𝑢1 (X𝑡 )

)
+

𝑇∑︁
𝑡=1

(
𝑢2 (X1,𝑡 ,X∗2) − 𝑢2 (X𝑡 )

)
=

𝑇∑︁
𝑡=1

(
L(X∗1,X2,𝑡 ) − L(X1,𝑡 ,X∗2)

)
(C.22)

Hence, dividing by 𝑇 , we get:647

L(X∗1, X̄2,𝑇 ) − L(X̄1,𝑇 ,X∗2) ≤
1
𝑇

𝑇∑︁
𝑡=1

tr[V(X𝑡 )† (X∗ − X𝑡 )] (C.23)

or, equivalently,648

GapL (X̄𝑇 ) ≤
1
𝑇

𝑇∑︁
𝑡=1

tr[V(X𝑡 )† (X∗ − X𝑡 )]

≤ 1
𝑇

𝑇∑︁
𝑡=1

𝐹𝑡

(
1
𝛾𝑡
− 1
𝛾𝑡−1

)
+ 1

2𝑇

𝑇∑︁
𝑡=1

𝛾𝑡 ‖V̂𝑡 ‖2𝐹

+ 4
𝑇

𝑇∑︁
𝑡=1
‖𝑏𝑡 ‖𝐹 +

1
𝑇

𝑇∑︁
𝑡=1

tr[𝑈†𝑡 (X𝑡 − X∗)] (C.24)

Now, we focus on the right-hand side (RHS) of (D.20). Specifically, we have:649

𝔼[tr[𝑈†𝑡 (X𝑡 − X∗)]] = 𝔼[𝔼[tr[𝑈†𝑡 (X𝑡 − X∗)] |F𝑡 ]] = 0 (C.25)

since X𝑡 is F𝑡 -measurable and 𝔼[𝑈𝑡 |F𝑡 ] = 0.650

Moreover, by Proposition 3, we have:651

‖𝑏𝑖,𝑡 ‖𝐹 =


𝔼[

V̂𝑖,𝑡 | F𝑡

]
− V𝑖 (X𝑡 )




𝐹
≤ 2𝐷𝑖𝐿𝛿𝑡 (C.26a)

and652

𝔼

[

V̂𝑖,𝑡



2
𝐹

]
= 𝔼

[
𝔼

[

V̂𝑖,𝑡



2
𝐹
| F𝑡

] ]
≤ 4𝐷2

𝑖𝐺
2 (C.26b)

Hence, taking expectation in (D.20), we obtain:653

𝔼
[
GapL (X̄𝑇 )

]
≤ 1

𝑇

𝑇∑︁
𝑡=1

𝔼[𝐹𝑡 ]
(

1
𝛾𝑡
− 1
𝛾𝑡−1

)
+ 1

2𝑇

𝑇∑︁
𝑡=1

𝛾𝑡 𝔼[‖V̂𝑡 ‖2𝐹 ] +
4
𝑇

𝑇∑︁
𝑡=1

𝔼[‖𝑏𝑡 ‖𝐹 ]

≤ 1
𝑇

𝑇∑︁
𝑡=1

𝔼[𝐹𝑡 ]
(

1
𝛾𝑡
− 1
𝛾𝑡−1

)
+ 8𝐷2𝐺2

𝑇

𝑇∑︁
𝑡=1

𝛾𝑡 +
16𝐷𝐿

𝑇

𝑇∑︁
𝑡=1

𝛿𝑡 (C.27)
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Setting 𝛾𝑡 = 𝛾 and 𝛿𝑡 = 𝛿, we obtain:654

𝔼
[
GapL (X̄𝑇 )

]
≤ 𝐹1

𝛾𝑇
+ 8𝐷2𝐺2𝛾 + 16𝐷𝐿𝛿 (C.28)

and finally, noting that655

𝐹1 = 𝐷 (X∗,X1) ≤ log(𝑑1𝑑2) (C.29)

we get:656

𝔼
[
GapL (X̄𝑇 )

]
≤ 𝐻

𝛾𝑇
+ 8𝐷2𝐺2𝛾 + 16𝐷𝐿𝛿 (C.30)

for 𝐻 = log(𝑑1𝑑2). Hence, after tuning 𝛾 to optimize this last expression, our result follows by657

setting 𝛾 =

√︃
𝐻

8𝑇 𝐷2𝐺2 and 𝛿 =

√︃
𝐺2𝐻
8𝐿2𝑇

. �658

C.2. Learning with bandit feedback. We now proceed with the more arduous task of proving the659

bona fide, bandit guarantees of (3MW) with 1-point, stochastic, payoff-based feedback. The key660

difference with our previous analysis lies in the different statistical properties of the 1-point estimator661

(1PE). The relevant result that we will need is restated below:662

Proposition 4. The estimator (1PE) enjoys the conditional bounds663

(𝑖) ‖𝔼[V̂𝑡 |F𝑡 ] − V(X𝑡 )‖𝐹 ≤ 4𝐷𝐿𝛿𝑡 and (𝑖𝑖) 𝔼[‖V̂𝑡 ‖2𝐹 |F𝑡 ] ≤ 4𝐷2𝐵2/𝛿2
𝑡 . (19)

Proof. We prove each part separately.664

(i) Let Ξ𝑖,𝑡 be defined for all players 𝑖 ∈ N :665

Ξ𝑖,𝑡 = X(𝛿)
𝑖,𝑡
− X𝑖,𝑡 = 𝛿𝑡Z𝑖,𝑡 +

𝛿𝑡

𝑟𝑖
(R𝑖 − X𝑖,𝑡 ) = 𝛿𝑡

[
Z𝑖,𝑡 +

1
𝑟𝑖
(R𝑖 − X𝑖,𝑡 )

]
(C.31)

Taking a first-order Taylor expansion of 𝑢𝑖 , we obtain:666

𝑢𝑖 (X(𝛿)𝑡 + 𝛿𝑡Z𝑡 ) = 𝑢𝑖 (X𝑡 ) +
∑︁
𝑗∈N

tr
[
∇X>

𝑗
𝑢𝑖 (X𝑡 )†Ξ 𝑗 ,𝑡

]
+ 𝑅2 (Ξ𝑡 ) (C.32)

Since 𝔼[𝑈𝑖 (𝜔𝑡 ) |F𝑡 ,Z𝑡 ] = 𝑢(X(𝛿)𝑡 + 𝛿𝑡Z𝑡 ), combining it with (D.3), we readily get:667

𝔼[V̂𝑖,𝑡 |F𝑡 ,Z𝑡 ] =
𝐷𝑖

𝛿𝑡
𝑢𝑖 (X(𝛿)𝑡 + 𝛿𝑡Z𝑡 ) Z𝑖,𝑡 (C.33)

=
𝐷𝑖

𝛿𝑡
𝑢𝑖 (X𝑡 )Z𝑖,𝑡 +

𝐷𝑖

𝛿𝑡

∑︁
𝑗∈N

tr
[
∇X>

𝑗
𝑢𝑖 (X𝑡 )†Ξ 𝑗 ,𝑡

]
Z𝑖,𝑡 +

𝐷𝑖

𝛿𝑡
𝑅2 (Ξ𝑡 )Z𝑖,𝑡 (C.34)

Now, because 𝔼
[
Z𝑖,𝑡

��F𝑡

]
= 0 and Z𝑖,𝑡 is sampled independent of any other process, we have:668

𝔼
[
𝑢𝑖 (X𝑡 )Z𝑖,𝑡

��F𝑡

]
= 𝑢𝑖 (X𝑡 ) 𝔼

[
Z𝑖,𝑡

��F𝑡

]
= 0 (C.35)

and for 𝑗 ≠ 𝑖 ∈ N :669

𝔼

[
tr
[
∇X>

𝑗
𝑢𝑖 (X𝑡 )†Ξ 𝑗 ,𝑡

]
Z𝑖,𝑡

���F𝑡

]
= 0 (C.36)

Therefore, we obtain:670

𝔼

[∑︁
𝑗∈N

tr
[
∇X>

𝑗
𝑢𝑖 (X𝑡 )†Ξ 𝑗 ,𝑡

]
Z𝑖,𝑡 | F𝑡

]
= 𝔼

[
tr
[
V𝑖 (X𝑡 )†Ξ𝑖,𝑡

]
Z𝑖,𝑡 | F𝑡

]
= 𝛿𝑡 𝔼

[
tr
[
V𝑖 (X𝑡 )†Z𝑖,𝑡

]
Z𝑖,𝑡 | F𝑡

]
=

𝛿𝑡

𝐷𝑖

∑︁
𝑊 ∈E𝑖

tr
[
V𝑖 (X𝑡 )†𝑊

]
𝑊

=
𝛿𝑡

𝐷𝑖

projE𝑖
(V𝑖 (X𝑡 )) =

𝛿𝑡

𝐷𝑖

V𝑖 (X𝑡 ) (C.37)
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where in the last step, we identify projE𝑖
(V𝑖 (X𝑡 )) with V𝑖 (X𝑡 ), as explained in the proof of671

Proposition 3. Moreover, we have that672

|𝑅2 (Ξ𝑡 ) | ≤
𝐿

2
‖Ξ𝑡 ‖2𝐹 ≤ 𝐿𝛿2

𝑡 (C.38)

In view of the above, we have:673

‖𝔼[V̂𝑖,𝑡 |F𝑡 ] − V𝑖 (X𝑡 )‖𝐹 = 𝐷𝑖𝐿𝛿𝑡 (C.39)

and, therefore,674

‖𝔼[V̂𝑡 |F𝑡 ] − V(X𝑡 )‖𝐹 =
√

2𝐷𝐿𝛿𝑡 (C.40)

(ii) By the definition of V̂𝑖,𝑡 , we have:675

‖V̂𝑖,𝑡 ‖𝐹 =
𝐷𝑖

𝛿𝑡

���𝑢𝑖 (X(𝛿)𝑡 + 𝛿𝑡 Z𝑡 )
��� ‖Z𝑖,𝑡 ‖𝐹 ≤

𝐷𝑖𝐵

𝛿𝑡
(C.41)

and therefore, we readily obtain that:676

𝔼
[
‖V̂𝑖,𝑡 ‖2𝐹

��F𝑡

]
≤

𝐷2
𝑖
𝐵2

𝛿2
𝑡

(C.42)

We thus obtain677

𝔼
[
‖V̂𝑡 ‖2𝐹

��F𝑡

]
≤ 2𝐷2𝐵2

𝛿2
𝑡

(C.43)

and our proof is complete. �678

The only step missing is the proof of the actual guarantee of (3MW) with bandit feedback. We restate679

and prove the relevant result below:680

Theorem 3. Suppose that each player of a 2-player zero-sum game Q follows (3MW) for 𝑇 epochs681

with learning rate 𝛾, sampling radius 𝛿, and gradient estimates provided by (1PE). Then the players’682

empirical frequency of play enjoys the duality gap guarantee683

𝔼
[
GapL (X̄𝑇 )

]
≤ 𝐻

𝛾𝑇
+ 2𝐷2𝐵2𝛾

𝛿2 + 16𝐷𝐿𝛿 (20)

where 𝐻 = log(𝑑1𝑑2). In particular, for 𝛾 =
(
𝐻
2𝑇

)3/4 1
2𝐷
√
𝐵𝐿

and 𝛿 =
(
𝐻
2𝑇

)1/4
√︃

𝐵
4𝐿 , the players enjoy684

the equilibrium convergence guarantee:685

𝔼
[
GapL (X̄𝑇 )

]
≤ 23/4 8𝐻1/4𝐷

√
𝐵𝐿

𝑇1/4 . (21)

Proof. Following the same procedure as in the proof of Theorem 2, we readily obtain:686

GapL (X̄𝑇 ) ≤
1
𝑇

𝑇∑︁
𝑡=1

tr[V(X𝑡 )† (X∗ − X𝑡 )]

≤ 1
𝑇

𝑇∑︁
𝑡=1

𝐹𝑡

(
1
𝛾𝑡
− 1
𝛾𝑡−1

)
+ 1

2𝑇

𝑇∑︁
𝑡=1

𝛾𝑡 ‖V̂𝑡 ‖2𝐹

+ 4
𝑇

𝑇∑︁
𝑡=1
‖𝑏𝑡 ‖𝐹 +

1
𝑇

𝑇∑︁
𝑡=1

tr[𝑈†𝑡 (X𝑡 − X∗)] (C.44)

Now, we have:687

𝔼[tr[𝑈†𝑡 (X𝑡 − X∗)]] = 𝔼[𝔼[tr[𝑈†𝑡 (X𝑡 − X∗)] |F𝑡 ]] = 0 (C.45)

since X𝑡 is F𝑡 -measurable and 𝔼[𝑈𝑡 |F𝑡 ] = 0.688
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Moreover, by Proposition 4, we have:689

‖𝑏𝑖,𝑡 ‖𝐹 =


𝔼[

V̂𝑖,𝑡 | F𝑡

]
− V𝑖 (X𝑡 )




𝐹
≤ 2𝐷𝑖𝐿𝛿𝑡 (C.46)

and690

𝔼

[

V̂𝑖,𝑡



2
𝐹

]
= 𝔼

[
𝔼

[

V̂𝑖,𝑡



2
𝐹
| F𝑡

] ]
≤

𝐷2
𝑖
𝐵2

𝛿2
𝑡

(C.47)

Hence, taking expectation in (D.34), we obtain:691

𝔼
[
GapL (X̄𝑇 )

]
≤ 1

𝑇

𝑇∑︁
𝑡=1

𝔼[𝐹𝑡 ]
(

1
𝛾𝑡
− 1
𝛾𝑡−1

)
+ 1

2𝑇

𝑇∑︁
𝑡=1

𝛾𝑡 𝔼[‖V̂𝑡 ‖2𝐹 ] +
4
𝑇

𝑇∑︁
𝑡=1

𝔼[‖𝑏𝑡 ‖𝐹 ]

≤ 1
𝑇

𝑇∑︁
𝑡=1

𝔼[𝐹𝑡 ]
(

1
𝛾𝑡
− 1
𝛾𝑡−1

)
+ 2𝐷2𝐵2

𝑇

𝑇∑︁
𝑡=1

𝛾𝑡

𝛿2
𝑡

+ 16𝐷𝐿

𝑇

𝑇∑︁
𝑡=1

𝛿𝑡 (C.48)

Setting 𝛾𝑡 = 𝛾 and 𝛿𝑡 = 𝛿, we obtain:692

𝔼
[
GapL (X̄𝑇 )

]
≤ 𝔼[𝐹1]

𝛾𝑇
+ 2𝐷2𝐵2𝛾

𝛿2 + 16𝐷𝐿𝛿 (C.49)

and finally, noting that693

𝔼[𝐹1] = 𝐷 (X∗,X1) ≤ log(𝑑1𝑑2) (C.50)

we get:694

𝔼
[
GapL (X̄𝑇 )

]
≤ 𝐻

𝛾𝑇
+ 2𝐷2𝐵2𝛾

𝛿2 + 16𝐷𝐿𝛿 (C.51)

where 𝐻 = log(𝑑1𝑑2). Hence, after tuning 𝛾 and 𝛿 to optimize this last expression, our result follows695

by setting 𝛾 =
(
𝐻
2𝑇

)3/4 1
2𝐷
√
𝐵𝐿

and 𝛿 =
(
𝐻
2𝑇

)1/4
√︃

𝐵
4𝐿 . �696

D Omitted proofs from Section 6697

We provide first the bounds of the estimator (1PE) in a 𝑁-player quantum game. Formally, we have:698

Lemma D.1. The estimator (1PE) in a 𝑁-player quantum game Q enjoys the conditional bounds699

(𝑖) ‖𝔼[V̂𝑡 |F𝑡 ] − V(X𝑡 )‖𝐹 ≤
1
2
𝐷𝐿𝑁3/2𝛿𝑡 and (𝑖𝑖) 𝔼[‖V̂𝑡 ‖2𝐹 |F𝑡 ] ≤

𝐷2𝐵2𝑁

𝛿2
𝑡

. (D.1)

Proof. We prove each part separately.700

(i) Let Ξ𝑖,𝑡 be defined for all players 𝑖 ∈ N :701

Ξ𝑖,𝑡 = X(𝛿)
𝑖,𝑡
− X𝑖,𝑡 = 𝛿𝑡Z𝑖,𝑡 +

𝛿𝑡

𝑟𝑖
(R𝑖 − X𝑖,𝑡 ) = 𝛿𝑡

[
Z𝑖,𝑡 +

1
𝑟𝑖
(R𝑖 − X𝑖,𝑡 )

]
(D.2)

Taking a 1st-order Taylor expansion of 𝑢𝑖 , we obtain:702

𝑢𝑖 (X(𝛿)𝑡 + 𝛿𝑡Z𝑡 ) = 𝑢𝑖 (X𝑡 ) +
∑︁
𝑗∈N

tr
[
∇X>

𝑗
𝑢𝑖 (X𝑡 )†Ξ 𝑗 ,𝑡

]
+ 𝑅2 (Ξ𝑡 ) (D.3)

Since 𝔼[𝑈𝑖 (𝜔𝑡 ) |F𝑡 ,Z𝑡 ] = 𝑢(X(𝛿)𝑡 + 𝛿𝑡Z𝑡 ), combining it with (D.3), we readily get:703

𝔼[V̂𝑖,𝑡 |F𝑡 ,Z𝑡 ] =
𝐷𝑖

𝛿𝑡
𝑢𝑖 (X(𝛿)𝑡 + 𝛿𝑡Z𝑡 ) Z𝑖,𝑡

=
𝐷𝑖

𝛿𝑡
𝑢𝑖 (X𝑡 )Z𝑖,𝑡 +

𝐷𝑖

𝛿𝑡

∑︁
𝑗∈N

tr
[
∇X>

𝑗
𝑢𝑖 (X𝑡 )†Ξ 𝑗 ,𝑡

]
Z𝑖,𝑡 +

𝐷𝑖

𝛿𝑡
𝑅2 (Ξ𝑡 )Z𝑖,𝑡 (D.4)
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Now, because 𝔼
[
Z𝑖,𝑡

��F𝑡

]
= 0 and Z𝑖,𝑡 is sampled independent of any other process, we have:704

𝔼
[
𝑢𝑖 (X𝑡 )Z𝑖,𝑡

��F𝑡

]
= 𝑢𝑖 (X𝑡 ) 𝔼

[
Z𝑖,𝑡

��F𝑡

]
= 0 (D.5)

and for 𝑗 ≠ 𝑖 ∈ N :705

𝔼

[
tr
[
∇X>

𝑗
𝑢𝑖 (X𝑡 )†Ξ 𝑗 ,𝑡

]
Z𝑖,𝑡

���F𝑡

]
= 0 (D.6)

Therefore, we obtain:706

𝔼

[∑︁
𝑗∈N

tr
[
∇X>

𝑗
𝑢𝑖 (X𝑡 )†Ξ 𝑗 ,𝑡

]
Z𝑖,𝑡 | F𝑡

]
= 𝔼

[
tr
[
V𝑖 (X𝑡 )†Ξ𝑖,𝑡

]
Z𝑖,𝑡 | F𝑡

]
= 𝛿𝑡 𝔼

[
tr
[
V𝑖 (X𝑡 )†Z𝑖,𝑡

]
Z𝑖,𝑡 | F𝑡

]
=

𝛿𝑡

𝐷𝑖

∑︁
𝑊 ∈E𝑖

tr
[
V𝑖 (X𝑡 )†𝑊

]
𝑊

=
𝛿𝑡

𝐷𝑖

projE𝑖
(V𝑖 (X𝑡 )) =

𝛿𝑡

𝐷𝑖

V𝑖 (X𝑡 ) (D.7)

where in the last step, we identify projE𝑖
(V𝑖 (X𝑡 )) with V𝑖 (X𝑡 ), as explained in the proof of707

Proposition 3. Moreover, we have that708

|𝑅2 (Ξ𝑡 ) | ≤
𝐿

2
‖Ξ𝑡 ‖2𝐹 ≤

1
2
𝐿𝑁𝛿2

𝑡 (D.8)

In view of the above, we have:709

‖𝔼[V̂𝑖,𝑡 |F𝑡 ] − V𝑖 (X𝑡 )‖𝐹 ≤
1
2
𝐷𝑖𝐿𝑁𝛿𝑡 (D.9)

and, therefore,710

‖𝔼[V̂𝑡 |F𝑡 ] − V(X𝑡 )‖𝐹 ≤
1
2
𝐷𝐿𝑁3/2𝛿𝑡 (D.10)

(ii) By the definition of V̂𝑖,𝑡 , we have:711

‖V̂𝑖,𝑡 ‖𝐹 =
𝐷𝑖

𝛿𝑡

���𝑢𝑖 (X(𝛿)𝑡 + 𝛿𝑡 Z𝑡 )
��� ‖Z𝑖,𝑡 ‖𝐹 ≤

𝐷𝑖𝐵

𝛿𝑡
(D.11)

and therefore, we readily obtain that:712

𝔼
[
‖V̂𝑖,𝑡 ‖2𝐹

��F𝑡

]
≤

𝐷2
𝑖
𝐵2

𝛿2
𝑡

(D.12)

Hence, ultimately, we get the bound713

𝔼
[
‖V̂𝑡 ‖2𝐹

��F𝑡

]
≤ 𝐷2𝐵2𝑁

𝛿2
𝑡

(D.13)

and our proof is complete. �714

With all this in hand, we are finally in a position to proceed with the proof of Theorem 4, which we715

restate below for convenience:716

Theorem 4. Fix some tolerance level 𝜂 ∈ (0, 1) and suppose that the players of an 𝑁-player quantum717

game follow (3MW) with bandit, realization-based feedback, and surrogate gradients provided by718

the estimator (1PE) with step-size and sampling radius parameters such that719

(𝑖) ∑∞
𝑡=1 𝛾𝑡 = ∞, (𝑖𝑖) ∑∞

𝑡=1 𝛾𝑡𝛿𝑡 < ∞, and (𝑖𝑖) ∑∞
𝑡=1 𝛾

2
𝑡 /𝛿2

𝑡 < ∞. (22)

If X∗ is variationally stable, there exists a neighborhoold U of X∗ such that720

ℙ(lim𝑡→∞ X𝑡 = X∗) ≥ 1 − 𝜂 whenever X1 ∈ U . (23)
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Proof. Since X∗ is variationally stable, there exists a neighborhood Uvs of it such that721

tr[V(X) (X − X∗)] < 0 for all X ∈ Uvs\{X∗}. (D.14)

For any 𝜀′ > 0, defining722

U ′𝜀 B {X ∈ X : 𝐷 (X∗,X) < 𝜀′} (D.15)

we readily obtain by the continuity of X ↦→ 𝐷 (X∗,X) at X∗ that there exists a neighborhood U 𝜀 of723

X∗ such that U 𝜀 ⊆ Uvs. Note that if 𝜀1 < 𝜀2, we automatically get that U 𝜀1 ⊆ U 𝜀2 .724

In view of this, we let X1 ∈ U 𝜀/4 ⊆ U 𝜀 ⊆ Uvs. We divide the rest of the proof in steps.725

Step 1. Deriving the general energy inequality726

By Lemma 1 we have that:727

𝐷 (X∗,X𝑡+1) ≤ 𝐷 (X∗,X𝑡 ) + 𝛾𝑡 tr[V̂𝑡 (X𝑡 − X∗)] +
𝛾2
𝑡

2
‖V̂𝑡 ‖2𝐹 . (D.16)

Decomposing V̂𝑡 into728

V̂𝑡 = V(X𝑡 ) + 𝑏𝑡 +𝑈𝑡 (D.17)

as per (C.20) and applying (D.16) inequality iteratively, we get that729

𝐷 (X∗,X𝑡+1) ≤ 𝐷 (X∗,X1) +
𝑡∑︁

𝑠=1
𝛾𝑠 tr[V̂𝑠 (X𝑠 − X∗)] + 1

2

𝑡∑︁
𝑠=1

𝛾2
𝑠 ‖V̂𝑠 ‖2𝐹

≤ 𝐷 (X∗,X1) +
𝑡∑︁

𝑠=1
𝛾𝑠 tr[V(X𝑠) (X𝑠 − X∗)] +

𝑡∑︁
𝑠=1

𝛾𝑠 tr[𝑏𝑠 (X𝑠 − X∗)]

+
𝑡∑︁

𝑠=1
𝛾𝑠 tr[𝑈𝑠 (X𝑠 − X∗)] + 1

2

𝑡∑︁
𝑠=1

𝛾2
𝑠 ‖V̂𝑠 ‖2𝐹

≤ 𝐷 (X∗,X1) +
𝑡∑︁

𝑠=1
𝛾𝑠 tr[V(X𝑠) (X𝑠 − X∗)] +

𝑡∑︁
𝑠=1

𝛾𝑠 ‖𝑏𝑠 ‖𝐹 ‖X𝑠 − X∗‖𝐹

+
𝑡∑︁

𝑠=1
𝛾𝑠 tr[𝑈𝑠 (X𝑠 − X∗)] + 1

2

𝑡∑︁
𝑠=1

𝛾2
𝑠 ‖V̂𝑠 ‖2𝐹

≤ 𝐷 (X∗,X1) +
𝑡∑︁

𝑠=1
𝛾𝑠 tr[V(X𝑠) (X𝑠 − X∗)] + diam(X )

𝑡∑︁
𝑠=1

𝛾𝑠 ‖𝑏𝑠 ‖𝐹

+
𝑡∑︁

𝑠=1
𝛾𝑠 tr[𝑈𝑠 (X𝑠 − X∗)] + 1

2

𝑡∑︁
𝑠=1

𝛾2
𝑠 ‖V̂𝑠 ‖2𝐹 (D.18)

Defining the processes Ψ𝑡 , 𝑀𝑡 and 𝑍𝑡 for 𝑡 = 1, 2, . . . as730

Ψ𝑡 B
1
2

𝑡∑︁
𝑠=1

𝛾2
𝑠 ‖V̂𝑠 ‖2𝐹 (D.19a)

𝑀𝑡 B
𝑡∑︁

𝑠=1
𝛾𝑠 tr[𝑈𝑠 (X𝑠 − X∗)] (D.19b)

𝑍𝑡 B diam(X )
𝑡∑︁

𝑠=1
𝛾𝑠 ‖𝑏𝑠 ‖𝐹 (D.19c)

equation (D.18) can be rewritten as731

𝐷 (X∗,X𝑡+1) ≤ 𝐷 (X∗,X1) +
𝑡∑︁

𝑠=1
𝛾𝑠 tr[V(X𝑠) (X𝑠 − X∗)] + 𝑍𝑡 + 𝑀𝑡 +Ψ𝑡 (D.20)

Step 2. Bounding the noise terms732

Let 𝜀 > 0 as defined in the beginning of the proof.733
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• Regarding the term 𝑍𝑡 , it is clear that the process {𝑍𝑡 : 𝑡 ≥ 1} is a sub-martingale. Hence,734

by Doob’s maximal inequality for sub-martingales [20], we get that:735

ℙ

(
sup
𝑠≤𝑡

𝑍𝑠 ≥ 𝜀/4
)
≤ 𝔼[𝑍𝑡 ]

𝜀/4

≤
diam(X )∑𝑡

𝑠=1 𝛾𝑠 𝔼[‖𝑏𝑠 ‖𝐹 ]
𝜀/4

≤
diam(X )∑∞

𝑡=1 𝛾𝑡 𝔼[‖𝑏𝑡 ‖𝐹 ]
𝜀/4

=
diam(X )∑∞

𝑡=1 𝛾𝑡 𝔼[𝔼[‖𝑏𝑡 ‖𝐹 |F𝑡 ]]
𝜀/4

≤
2 diam(X )𝐷𝐿𝑁3/2 ∑∞

𝑡=1 𝛾𝑡𝛿𝑡

𝜀
(D.21)

By ensuring that736
∞∑︁
𝑡=1

𝛾𝑡𝛿𝑡 ≤
𝜀𝜂

6 diam(X )𝐷𝐿𝑁3/2 (D.22)

and taking 𝑡 go to∞, (D.21) becomes:737

ℙ

(
sup
𝑡≥1

𝑍𝑡 ≥ 𝜀/4
)
≤ 𝜂/3 (D.23)

• Similarly, it is clear that the process {Ψ𝑡 : 𝑡 ≥ 1} is a sub-martingale. Following the same738

procedure, by Doob’s maximal inequality for sub-martingales [20], we get that:739

ℙ

(
sup
𝑠≤𝑡

Ψ𝑠 ≥ 𝜀/4
)
≤ 𝔼[Ψ𝑡 ]

𝜀/4 ≤
1
2
∑𝑡

𝑠=1 𝛾
2
𝑠 𝔼

[
‖V̂𝑠 ‖2𝐹

]
𝜀/4

≤
1
2
∑∞

𝑡=1 𝛾
2
𝑡 𝔼

[
‖V̂𝑡 ‖2𝐹

]
𝜀/4

≤
2𝐷2𝐵2𝑁

∑∞
𝑡=1 𝛾

2
𝑡 /𝛿2

𝑡

𝜀
(D.24)

By ensuring that740
∞∑︁
𝑡=1

𝛾2
𝑡 /𝛿2

𝑡 ≤
𝜀𝜂

6𝐷2𝐵2𝑁
(D.25)

and taking 𝑡 →∞, (D.24) becomes:741

ℙ

(
sup
𝑡≥1

Ψ𝑡 ≥ 𝜀/4
)
≤ 𝜂/3 (D.26)

• Finally, regarding the term 𝑀𝑡 , the process {𝑀𝑡 : 𝑡 ≥ 1} is a martingale. Following the742

same procedure, by Doob’s maximal inequality for martingales [20], we get that:743

ℙ

(
sup
𝑠≤𝑡

𝑀𝑠 ≥ 𝜀/4
)
≤ ℙ

(
sup
𝑠≤𝑡
|𝑀𝑠 | ≥ 𝜀/4

)
≤

𝔼[𝑀2
𝑡 ]

(𝜀/4)2
=

∑𝑡
𝑠=1 𝛾

2
𝑠 𝔼

[
tr[𝑈𝑠 (X𝑠 − X∗)]2

]
(𝜀/4)2

≤
diam(X )2 ∑𝑡

𝑠=1 𝛾
2
𝑠 𝔼

[
‖𝑈𝑠 ‖2𝐹

]
(𝜀/4)2

≤
diam(X )2 ∑∞

𝑡=1 𝛾
2
𝑡 𝔼

[
‖𝑈𝑡 ‖2𝐹

]
(𝜀/4)2

≤
4 diam(X )2 ∑∞

𝑡=1 𝛾
2
𝑡 𝔼

[
‖V̂𝑡 ‖2𝐹

]
(𝜀/4)2

≤
4 diam(X )2𝐷2𝐵2𝑁

∑∞
𝑡=1 𝛾

2
𝑡 /𝛿2

𝑡

(𝜀/4)2
(D.27)
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where we used the fact that744

𝔼[𝑀2
𝑡 ] = 𝔼

[
𝑡∑︁

𝑠=1
𝛾2
𝑠 tr[𝑈𝑠 (X𝑠 − X∗)]2 +

∑︁
𝑘<ℓ

𝛾𝑘𝛾ℓ tr[𝑈𝑘 (X𝑘 − X∗)] tr[𝑈ℓ (Xℓ − X∗)]
]

= 𝔼

[
𝑡∑︁

𝑠=1
𝛾2
𝑠 tr[𝑈𝑠 (X𝑠 − X∗)]2

]
(D.28)

itself following from the total expectation745

𝔼[tr[𝑈𝑘 (X𝑘 − X∗)] tr[𝑈ℓ (Xℓ − X∗)]] = 𝔼[𝔼[tr[𝑈𝑘 (X𝑘 − X∗)] tr[𝑈ℓ (Xℓ − X∗)] |Fℓ]]
= 𝔼[tr[𝑈𝑘 (X𝑘 − X∗)] 𝔼[tr[𝑈ℓ (Xℓ − X∗)] |Fℓ]]
= 0 (D.29)

Now, by ensuring that746

∞∑︁
𝑡=1

𝛾2
𝑡 /𝛿2

𝑡 ≤
(𝜀/4)2𝜂

12 diam(X )2𝐷2𝐵2𝑁
(D.30)

and taking 𝑡 go to∞, (D.27) becomes:747

ℙ

(
sup
𝑡≥1

𝑀𝑡 ≥ 𝜀/4
)
≤ 𝜂/3 (D.31)

Therefore, combining (D.23), (D.26) and (D.31) and applying a union bound, we get:748

ℙ

({
sup
𝑡≥1

𝑍𝑡 ≥ 𝜀/4
}
∪

{
sup
𝑡≥1

Ψ𝑡 ≥ 𝜀/4
}
∪

{
sup
𝑡≥1

𝑀𝑡 ≥ 𝜀/4
})
≤ 𝜂 (D.32)

Thus, defining the event 𝐸 B
{
sup𝑡≥1 𝑍𝑡 +Ψ𝑡 + 𝑀𝑡 <

3
4𝜀

}
, Eq. (D.32) readily implies that:749

ℙ(𝐸) ≥ 1 − 𝜂 (D.33)

Step 3. X𝑡 ∈ Uvs with high probability750

Since X1 ∈ U 𝜀/4 ⊆ Uvs, by induction on 𝑡 we have that under the event 𝐸751

𝐷 (X∗,X𝑡+1) ≤ 𝐷 (X∗,X1) +
𝑡∑︁

𝑠=1
𝛾𝑠 tr[V(X𝑠) (X𝑠 − X∗)] + 𝑍𝑡 + 𝑀𝑡 +Ψ𝑡 (D.34)

≤ 𝜀

4
+ 𝜀

4
+ 𝜀

4
+ 𝜀

4
= 𝜀 (D.35)

where in the last step we used the inductive hypothesis that X𝑠 ∈ Uvs for all 𝑠 = 1, . . . , 𝑡,752

which implies tr[V(X𝑠) (X𝑠 − X∗)] < 0. This implies that X𝑡+1 ∈ U 𝜀 ⊆ Uvs.753

Therefore, we obtain that X𝑡+1 ∈ U 𝜀 ⊆ Uvs for all 𝑡 ≥ 1. For the rest of the proof we will754

work under the event 𝐸 .755

Step 4. Subsequential convergence756

Now we will show that there exists a subsequence {X𝑡𝑘 : 𝑘 ≥ 1} suct that lim𝑘→∞ X𝑡𝑘 = X∗.757

Suppose it does not. Then, this would mean that the quantity tr[V(X𝑡 ) (X𝑡 −X∗)] is bounded758

away from zero. Combining it with the fact that X𝑡 ∈ Uvs for all 𝑡 ≥ 0, we readily get that759

there exists 𝑐 > 0 such that:760

tr[V(X𝑠) (X𝑠 − X∗)] < −𝑐 (D.36)

Then, (D.20) would give:761

𝐷 (X∗,X𝑡+1) ≤ 𝜀 − 𝑐
𝑡∑︁

𝑠=1
𝛾𝑠 (D.37)

Hence, taking 𝑡 → ∞, and using that
∑

𝑡≥1 𝛾𝑡 = ∞, we would get that 𝐷 (X∗,X𝑡 ) → −∞,762

which is a contradiction, since 𝐷 (X∗,X𝑡 ) ≥ 0.763

Hence, there exists a subsequence {X𝑡𝑘 : 𝑘 ≥ 1} suct that lim𝑘→∞ X𝑡𝑘 = X∗, i.e.,764

lim
𝑘→∞

𝐷 (X∗,X𝑡𝑘 ) = 0. (D.38)
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Step 5. Existence of lim𝑡→∞ 𝐷 (X∗,X𝑡 )765

We define the sequence of events {𝐸𝑡 : 𝑡 ≥ 1} as766

𝐸𝑡 B

{
sup
𝑠≤𝑡−1

𝑍𝑠 +Ψ𝑠 + 𝑀𝑠 <
3
4
𝜀

}
for 𝑡 ≥ 2 (D.39)

and767

𝐸1 B
{
X1 ∈ U 𝜀/4

}
(D.40)

Then we have that 𝐸𝑡 ∈ F𝑡 and 𝐸𝑡 ⊆ {X𝑠 ∈ Uvs : 𝑠 = 1, . . . , 𝑡}.768

Defining the random process
{
𝐷̃𝑡 : 𝑡 ≥ 1

}
as769

𝐷̃𝑡 = 𝐷 (X∗,X𝑡 ) 1𝐸𝑡
(D.41)

Then, by (D.16) we have770

𝐷 (X∗,X𝑡+1) ≤ 𝐷 (X∗,X1) + 𝛾𝑡 tr[V(X𝑡 ) (X𝑡 − X∗)] + diam(X )𝛾𝑡 ‖𝑏𝑡 ‖𝐹

+ 𝛾𝑡 tr[𝑈𝑡 (X𝑡 − X∗)] + 1
2
𝛾2
𝑡 ‖V̂𝑡 ‖2𝐹 (D.42)

Multiplying the above relation with 1𝐸𝑡
, and noting that 1𝐸𝑡+1 ≤ 1𝐸𝑡

, since 𝐸𝑡+1 ⊆ 𝐸𝑡 , we771

have772

𝐷̃𝑡+1 ≤ 𝐷̃𝑡 + 𝛾𝑡 tr[V(X𝑡 ) (X𝑡 − X∗)] 1𝐸𝑡
+ diam(X )𝛾𝑡 ‖𝑏𝑡 ‖𝐹 1𝐸𝑡

+ 𝛾𝑡 tr[𝑈𝑡 (X𝑡 − X∗)] 1𝐸𝑡
+1

2
𝛾2
𝑡 ‖V̂𝑡 ‖2𝐹 1𝐸𝑡

(D.43)

≤ 𝐷̃𝑡 + diam(X )𝛾𝑡 ‖𝑏𝑡 ‖𝐹 1𝐸𝑡
+𝛾𝑡 tr[𝑈𝑡 (X𝑡 − X∗)] 1𝐸𝑡

+1
2
𝛾2
𝑡 ‖V̂𝑡 ‖2𝐹 1𝐸𝑡

(D.44)

where in the last step we used that tr[V(X𝑡 ) (X𝑡 − X∗)] 1𝐸𝑡
≤ 0. Therefore, we obtain that:773

𝔼[𝐷̃𝑡+1 |F𝑡 ] ≤ 𝐷̃𝑡 + diam(X )𝛾𝑡 1𝐸𝑡
𝔼[‖𝑏𝑡 ‖𝐹 |F𝑡 ] +

1
2
𝛾2
𝑡 1𝐸𝑡

𝔼[‖V̂𝑡 ‖2𝐹 |F𝑡 ] (D.45)

where we used that774

𝔼
[
tr[V(X𝑡 ) (X𝑡 − X∗)] 1𝐸𝑡

��F𝑡

]
= 1𝐸𝑡

𝔼[tr[V(X𝑡 ) (X𝑡 − X∗)] |F𝑡 ] = 0 (D.46)

Therefore,
{
𝐷̃𝑡 : 𝑡 ≥ 1

}
is an almost super-martingale [40] and, thus, there exists 𝐷̃∞ with775

𝐷̃∞ finite (a.s.) and 𝐷̃𝑡 → 𝐷̃∞ (a.s.).776

Since 𝐸 = ∩𝑡≥1𝐸𝑡 , we have:777

ℙ

(
lim
𝑡→∞

𝐷 (X∗,X𝑡 ) exists
��� 𝐸)

=
ℙ({lim𝑡→∞ 𝐷 (X∗,X𝑡 ) exists} ∩ 𝐸)

ℙ(𝐸) (D.47)

=
ℙ
({

lim𝑡→∞ 𝐷̃𝑡 exists
}
∩ 𝐸

)
ℙ(𝐸) = 1 (D.48)

Hence, lim𝑡→∞ 𝐷̃𝑡 exists on 𝐸 and by Step 3 we readily get that lim𝑡→∞ 𝐷̃𝑡 = 0 on 𝐸 . Thus,778

by Lemma A.2, we get779

lim
𝑡→∞

X𝑡 = X∗ on the event 𝐸 (D.49)

and setting U = U 𝜀/4, we obtain780

ℙ

(
lim
𝑡→∞

X𝑡 = X∗
)
≥ 1 − 𝜂 whenever X1 ∈ U . (D.50)

This concludes our discussion and our proof. �781

E Numerical experiments782

In this last appendix, we provide a series of numerical simulations to validate and explore the783

performance of (MMW) with payoff-based feedback.784
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Figure 1: Performance evaluation of the (3MW) with the (2PE) and (1PE) estimators and comparison with the
full information (MMW). The solid lines correspond to the mean values of the duality gap of each method, and
the shaded regions enclose the area of ±1 (sample) standard deviation among the 10 different runs.

Game setup. Our testbed is a two-player zero-sum quantum game, which is the quantum analogue785

of a 2 × 2 min-max game with actions {𝛼1, 𝛼2} and {𝛽1, 𝛽2}, and payoff matrix786

𝑃 =

(
(4,−4) (2,−2)
(−4, 4) (−2, 2)

)
(E.1)

In the quantum regime, the payoff information of the quantum game is encoded in the Hermitian787

matrices W1 = diag(4, 2,−4,−2), and W2 = −W1 as per Eq. (3) in Section 2. By elementary788

considerations, the action profile (𝛼1, 𝛽2) is a strict Nash equilibrium of the classical zero-sum game,789

which corresponds to the pure quantum state with density matrix profile X∗ = (X∗1,X
∗
2) where790

X∗1 =

(
1 0
0 0

)
and X∗2 =

(
0 0
0 1

)
(E.2)

in the standard basis in which W1 and W2 are diagonal.791

Convergence speed analysis. In Fig. 1, we evaluate the convergence properties of (3MW) using792

the estimators (2PE) and (1PE), and compare it with the full information variant (MMW). For each793

method, we perform 10 different runs, with 𝑇 = 105 steps each, and compute the mean value of the794

duality gap as a function of the iteration 𝑡 = 1, 2, . . . , 𝑇 . The solid lines correspond to the mean795

values of the duality gap of each method, and the shaded regions enclose the area of ±1 (sample)796

standard deviation among the 10 different runs. Note that the red line, which corresponds to the full797

information (MMW), does not have a shaded region, since there is no randomness in the algorithm.798

All the runs for the three different methods were initialized for Y = 0 and we used 𝛾 = 10−2 for799

all methods. In particular, for (3MW) with gradient estimates given by (2PE) estimator, we used a800

sampling radius 𝛿 = 10−2, and for (3MW) with (1PE) estimator, we used 𝛿 = 10−1 (in tune with our801

theoretical results which suggest the use of a tighter sampling radius when mixed payoff information802

is available to the players).803

Figure 1 has several important take-aways. First and foremost, as is to be expected, the payoff-based804

methods lag behind the full-information variant of (MMW); however, what is particularly surprising805

is that the drop in performance is singularly mild. The 2-point variant of (3MW) only lags behind806

(MMW) by a factor of approximately 15%, while the 1-point, stochastic bandit variant of (3MW),807

despite lagging behind by more, still achieves essentially the same convergence speed (compare the808

slopes in Fig. 1). This is the second important take-away from our numerical experiments. In all our809

runs, the various algorithms achieved a rate of convergence closer to O(1/𝑇), which is significantly810

faster than O(1/
√
𝑇) and/or O(1/𝑇1/4). This suggests that, in practice, the bandit variants of (MMW)811

may yield excellent performance benefits, despite the high degree of uncertainty incurred by the812

complete lack of information on the game being played.813
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(a) Full information (MMW).

(b) (3MW) with the (2PE) estimator

(c) (3MW) with the (1PE) estimator

Figure 2: Trajectories of the three methods for different initial conditions. The red points correspond to player
1, and the blue points to player 2. The initial points of the red trajectories are marked with •, while the initial
points of the blue ones are marked with �.

Trajectory analysis. Finally, in Fig. 2, we provide a visualization of the actual trajectories of play814

generated by the three methods with the same parameters as before, for different initial conditions.815

The trajectories are presented in Bloch spheres [38], where the points |0〉 and |1〉 in the figure816

correspond to the density matrices817

|0〉 =
(
1 0
0 0

)
and |1〉 =

(
0 0
0 1

)
(E.3)

respectively. In all figures, the points in red indicate the trajectory of Player 1, while the points in818

blue are for Player 2. The initial points of the red trajectories are marked with •, while the initial819

points of the blue ones are marked with �. [Each column of Bloch spheres in Fig. 2 has the same820

initial conditions.]821

An important remark here is that, as suggested by Theorem 4, the trajectories of all methods converge822

– and quite rapidly at that – to the game’s (strict) Nash equilibrium. In fact, given that the trajectories823

converge to a pure state, this goes to explain the faster convergence rates observed in Fig. 1: instead824
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of oscillating around a solution, the MMW orbits actually converge to equilibrium in this case,825

so the trailing average converges at a much faster rate. This holds in all zero-sum games with a826

pure equilibrium, thus indicating a very important class of zero-sum games where the worst-case827

guarantees of MMW algorithms can be significantly improved.828
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