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– Appendix –

Table A: Table of Notation.

Notation Shape Definition

l R3 A random 3D location
µg R3 Location of Gaussians in 3DGS
⌃ R3⇥3 Covariance matrix of Gaussians
S R3⇥3 Scale matrix of Gaussians
R R3⇥3 Rotation matrix of Gaussians
↵ R Opacity of Gaussians after 2D projection
c R3 View-dependent color of Gaussians
C R3 The obtained pixel value after rendering
f geo R8 Geometry attribute
f col R48 Color attribute
f gau R56 Concat of f geo and f col

x Input to the autoencoder, either f geo or f col

y RDy
Latent space of x

z RDz
Hyperprior y

x̂ Decoded version of x
ŷ RDy

Quantized version of y
ẑ RDz

Quantized version of z
m R The adaptive mask in MEM
Dy Number of channels of y
Dz Number of channels of z
ga The synthesis transform
gs The analysis transform
ha The hyper synthesis transform
hs The hyper analysis transform
N g Number Gaussians for each 3DGS scene
N s Number of batches for the inter-Gaussian context model
N c Number of chunks for the intra-Gaussian context model
ns One batch for the inter-Gaussian context model
nc One chunk for the intra-Gaussian context model
v R3 A voxel of the grids
fv Feature of the voxel v
w Weight for interpolation
c Channel amount per chunk for the intra-Gaussian context model

µh, �h, ⇡h RDy
for each The set of Gaussian distribution parameter from hyperprior

µs, �s, ⇡s RDy
for each The set of Gaussian distribution parameter from inter-Gaussian context model

µc, �c, ⇡c RDy
for each The set of Gaussian distribution parameter from intra-Gaussian context model

✓ The softmax-nomalized weight for GMM mixing
p Probability
bit Bit consumption calculated from the probability
I The ground truth multi-view image
Î The multi-view image render from x̂
� The cumulative Gaussian distribution function

Y[ns] Set of ŷ for the nc-th batch
V Usually used in the form of Vµg

, meaning voxels forming a µg’s minimum bounding box.
Q The quantization operation
q The learnable quantization step as model parameters

Sig The Sigmoid function
✏m The hyperparameter for the binary thresholding of the mask
emb Sin-cos positional embedding for coordinates
� Concatenate operation

MLPm The MLP to deduce mask in MEM
MLPs The MLP to deduce Gaussian distribution parameters in inter-Gaussian context
MLPc The MLP to deduce Gaussian distribution parameters in intra-Gaussian context
�m The tradeoff parameter for mask rate (not used)
� The RD tradeoff parameter for bit and fidelity
L The overall loss function

Lfidelity The fidelity loss function
Lentropy The entropy loss function
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A STATISTICAL DATA FOR DL3DV-GS

Using the DL3DV dataset (Ling et al., 2024), we generate our DL3DV-GS dataset through per-scene
optimization with 3DGS (Kerbl et al., 2023), resulting in a total of 6770 3DGS representations. In
this section, we present statistical data for the DL3DV-GS dataset, including its size and fidelity
metrics, as exhibited below. Note that, during per-scene optimization, we adhere to the 3DGS
train-test view splitting strategy, using 1 view for testing and 7 views for training across every 8
consecutive views. After optimization, we randomly select 100 scenes for testing, leaving the rest
for training. All the approaches are evaluated on the test scenes. For our FCGS, it is evaluated on
test views, while for other training-based methods, they are optimized (or trained) on training views
and then evaluated on test views.
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Figure A: Statistical data of the DL3DV-GS dataset. We also mark the mean values of each data in
the sub-figures.
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We also provide example images of this dataset. The images are randomly selected from test views
from test scenes, which presents high fidelity.
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Figure B: We randomly select several test views from test scenes for visualization, which showcase
high-fidelity quality. The PSNR (dB) values for these four example scenes are indicated at the
bottom-right corner of each image, which exhibit high fidelity.
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B ANALYSIS OF LIMITATIONS

To compress 3DGS from feed-forward models, we set the mask m to all 0s for color attributes,
instead of using MEM to adaptively infer the mask m. This is because the characteristics in 3DGS
from feed-forward models like MVSplat (Chen et al., 2024c) differ significantly from our training
data (i.e., 3DGS from optimization). Specifically, for MVSplat (Chen et al., 2024c; Charatan et al.,
2024), it uses an SH of 4 degrees (which we truncate to 3 degrees without observing significant
fidelity loss), and applies a weighted mask that assigns lower weights to higher-degree SH. This re-
sults in the values of high-degree SH in its 3DGS being one order of magnitude smaller than in ours.
For LGM (Tang et al., 2024), it uses an SH degree of 0 (i.e., it only has DC coefficients). To make
our model compatible with its 3DGS, we need to pad zeros for high-degree coefficients to match the
shape. Due to these differences, values of these 3DGS vary greatly from ours. Failures mainly arise
from incorrect selections of m by MEM due to the domain gap: a Gaussian that should have been
assigned to the m = 0 path for fidelity preservation may be mistakenly assigned to m = 1, and the
autoencoder in this path fails to recover these Gaussian values properly from their latent space, lead-
ing to significant fidelity degradation. This issue becomes noticeable for 3DGS from feed-forward
models such as MVSplat (Chen et al., 2024c), due to a distribution gap between our training data
(3DGS from optimization) and those from feed-forward models like MVSplat. We mitigate this
problem by enforcing all Gaussians to the m = 0 path for compressing 3DGS from feed-forward
models, thereby prioritizing fidelity. For instance, to compress 3DGS from MVSplat, m deduced
from MEM may not be correct, which would result in a PSNR drop of approximately 0.7dB at a
slightly smaller compression size compared to setting all m as 0s. Overall, this is our major lim-
itation, which points out an interesting problem for future work: how to design optimization-free
compression models that can be well generalized to 3DGS with different value characteristics.

C EFFECT OF DIFFERENT RANDOM SEEDS ON GAUSSIAN SPLITTING

In our inter-Gaussian context models, we employ a random splitting strategy to uniformly divide
all Gaussians into N s batches and decode them progressively. For decoding, we maintain the same
random seed as encoding to guarantee the consistency of the contexts. In this section, we investigate
the effect of different random seeds on this splitting process and its impact on the final results.
Note that this only affects bit consumption but does not influence reconstruction fidelity. By testing
5 different random seeds over the test set of DL3DV-GS with � = 1e � 4, we observed a standard
deviation of 8e�4 MB, with a Coefficient of Variation (i.e., standard deviation divided by the mean)
of 3.6e� 5. This experiment demonstrates the stability of our splitting approach with respect to the
random seed.

We also investigated other sampling strategies like Farthest Point Sampling (FPS) in (Qi et al., 2017).
Since FPS is very time-consuming for massive points in 3DGS, we evaluated only scenes with fewer
than 500K Gaussians in the test set of DL3DV-GS. We observed an average bit increase of 0.6%.
This is because FPS tends to sample points located at corners (which have the farthest distances
from others), leading to non-uniform splitting and affecting the accuracy of context models.
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D DISCUSSIONS ON SOTA 3DGS COMPRESSION METHODS

The State-of-The-Art (SoTA) 3DGS compression methods are HAC (Chen et al., 2024b) and Con-
textGS (Wang et al., 2024b), which utilize a per-scene optimization-based compression pipeline
and exhibit better compression performance over our FCGS. However, since we configure FCGS
without per-scene optimization, this setup naturally puts it at a disadvantage when compared with
optimization-based methods, and indeed, there is a performance gap compared to these two methods
(i.e., HAC and ContextGS). However, these two approaches employ anchor-based structures (Lu
et al., 2024), whose representations diverge from the standard 3DGS structure and are inherently
about 5⇥ smaller than the vanilla 3DGS. In this paper, we target FCGS at the standard 3DGS struc-
ture, same as the comparative methods in our experiment. It is also promising to extend FCGS to
anchor-based 3DGS variants (Lu et al., 2024) to achieve better RD performance, which we leave for
future work.

E MASK RATIO ANALYSIS IN MEM

We provide statistical data on the ratio of path m = 1 in MEM. As � increases, the model is expected
to achieve lower bitrates at the cost of reduced fidelity. To accomplish this, the model tends to assign
more 1s to the mask m, thereby allowing more color attributes f col to eliminate redundancies via
the autoencoder (i.e., the path of m = 1), and vice versa.

Table B: Ratio of path m = 1 in MEM.
� DL3DV-GS MipNeRF360 Tank&Temples

1e� 4 0.62 0.48 0.60
2e� 4 0.67 0.55 0.66
4e� 4 0.74 0.63 0.74
8e� 4 0.82 0.74 0.82
16e� 4 0.89 0.85 0.90
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F MORE FIDELITY METRICS AND TRAINING TIME

We provide additional fidelity metrics, including PSNR, SSIM, and LPIPS. We also report the train-
ing time for each method. For those marked with *, it represents the time taken for finetuning from
a common existing 3DGS. For those marked with **, it represents the time taken for training from
scratch. For our method, it is the encoding time using multiple/single GPUs.

Table C: Experiments on DL3DV-GS dataset. Methods marked with * are finetuned from a common
3DGS (our FCGS compresses the same 3DGS). Methods marked with ** are trained from scratch.
The notation “(751 +)” indicates the training time of the vanilla 3DGS.

Methods PSNR (dB) " SSIM " LPIPS # SIZE (MB) # TIME (s) #
3DGS 29.34 0.898 0.146 372.50 751
Light* 28.89 0.890 0.159 24.61 (751 +) 227
Navaneet* 28.36 0.884 0.169 13.60 (751 +) 546
Simon* 29.04 0.893 0.154 15.36 (751 +) 122
SOG** 28.54 0.888 0.156 16.50 1068
EAGLES** 28.53 0.884 0.170 24.04 518
Lee** 28.71 0.886 0.165 36.56 938
Ours-lowrate 28.86 0.891 0.156 15.83 (751 +) 9 / 16
Ours-highrate 29.26 0.897 0.148 27.44 (751 +) 11 / 20

Table D: Experiments on MipNeRF360 dataset. Methods marked with * are finetuned from a com-
mon 3DGS (our FCGS compresses the same 3DGS). Methods marked with ** are trained from
scratch. The notation “(1583 +)” indicates the training time of the vanilla 3DGS.

Methods PSNR (dB) " SSIM " LPIPS # SIZE (MB) # TIME (s) #
3DGS 27.52 0.813 0.221 741.12 1583
Light* 27.31 0.808 0.235 48.61 (1583 +) 422
Navaneet* 26.80 0.796 0.256 20.66 (1583 +) 973
Simon* 27.15 0.802 0.242 27.71 (1583 +) 195
SOG** 27.08 0.799 0.229 41.00 2391
EAGLES** 27.14 0.809 0.231 58.91 1245
Lee** 27.05 0.797 0.247 48.93 1885
Ours-lowrate 27.05 0.798 0.237 34.64 (1583 +) 10 / 31
Ours-highrate 27.39 0.806 0.226 64.05 (1583 +) 14 / 41

Table E: Experiments on Tank&Temples dataset. Methods marked with * are finetuned from a
common 3DGS (our FCGS compresses the same 3DGS). Methods marked with ** are trained from
scratch. The notation “(814 +)” indicates the training time of the vanilla 3DGS.

Methods PSNR (dB) " SSIM " LPIPS # SIZE (MB) # TIME (s) #
3DGS 23.71 0.845 0.179 432.03 814
Light* 23.62 0.837 0.197 28.60 (814 +) 241
Navaneet* 23.15 0.831 0.205 13.64 (814 +) 587
Simon* 23.63 0.842 0.187 17.65 (814 +) 120
SOG** 23.66 0.837 0.187 23.10 1219
EAGLES** 23.28 0.835 0.203 28.99 604
Lee** 23.35 0.832 0.202 39.38 1007
Ours-lowrate 23.48 0.832 0.193 17.89 (814 +) 10 / 16
Ours-highrate 23.62 0.839 0.184 32.02 (814 +) 13 / 24
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G ANALYSIS OF STORAGE SIZE OF DIFFERENT COMPONENTS

We provide the storage size of each component from the DL3DV-GS dataset, as shown in the tables
below. These two tables exhibit the total storage size (in MB) and the per-parameter size (in bit) of
each component, respectively. For the coordinates µg, they are consistently compressed using the
same GPCC command across different � values, resulting in a same size. For other components, as
� decreases, the storage required for both geometry attributes f geo and color attributes f col (m = 1
plus m = 0) reduces. Focusing on the color attributes f col, the mask rate increases as � becomes
larger, shifting more f col to the m = 1 path for redundancy elimination via the autoencoder struc-
ture. With a higher portion of f col going through the m = 1 path, the overall storage of this path
may increase (while the bits per parameter still reduce). The storage for the m = 0 path decreases
significantly due to simultaneously reduced selection ratios of this path and decreased per-parameter
size under stronger entropy constraints. The mask size itself also reduces as the mask rate increases,
since in a binary distribution, greater dominance of one value (i.e., 1 in our case) lowers the entropy.

Regarding the challenges in compression, Table G shows that f col (m = 1) is the easiest to com-
press, as it is compressed in a latent space using autoencoder. In contrast, f geo is more difficult
to compress due to the complexity and sensitivity of geometric attributes, which have greater vari-
ability and less mutual information. The compression ratio could be calculated as 32 divided by
a bit value in Table G, since the original parameters (i.e., those before compression) are stored in
float32, which allocates 32 bits for each parameter.

Table F: Storage size of different components on the DL3DV-GS dataset. All sizes are measured in
MB. The mask rate indicates the proportion of color attributes f col assigned to the m = 1 path (i.e.,
compressed via the autoencoder).

� Total size µg f col (m=1) f col (m=0) f geo Mask size Mask rate

1e� 4 27.44 3.25 2.61 10.92 10.50 0.17 0.62
2e� 4 24.15 3.25 2.72 8.10 9.93 0.16 0.67
4e� 4 21.12 3.25 2.77 5.67 9.29 0.14 0.74
8e� 4 18.14 3.25 3.01 3.42 8.34 0.12 0.82
16e� 4 15.83 3.25 2.94 1.76 7.80 0.08 0.89

Table G: Per-parameter bits of different components on the DL3DV-GS dataset. All sizes are
measured in bit. The mask rate indicates the proportion of color attributes f col assigned to the
m = 1 path (i.e., compressed via the autoencoder).

� Weighted AVG µg f col (m=1) f col (m=0) f geo Mask size Mask rate

1e� 4 2.51 5.92 0.45 3.29 6.94 0.94 0.62
2e� 4 2.21 5.92 0.43 2.92 6.56 0.89 0.67
4e� 4 1.94 5.92 0.40 2.58 6.14 0.81 0.74
8e� 4 1.67 5.92 0.39 2.32 5.51 0.66 0.82
16e� 4 1.45 5.92 0.36 2.10 5.15 0.48 0.89
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H ANALYSIS OF ENCODING/DECODING TIME OF DIFFERENT COMPONENTS

We provide the encoding/decoding time for each component from the DL3DV-GS dataset, as shown
in the tables below. For the coordinates µg, the same GPCC command is applied consistently across
different � values, resulting in a similar time consumption. Other components (i.e., f col, f geo and
the mask) are encoded/decoded using arithmetic codec. As � increases, entropy decreases, leading
to reduced codec time. With a higher �, an increased mask rate shifts more f col to the m = 1
path, which raises the time for this path (though the time per parameter still reduces considering the
increased mask rate). The time for the m = 0 path decreases significantly due to simultaneously
reduced selection ratios of this path and decreased per-parameter time under stronger entropy con-
straints. The “Others” time includes network forward passes and supplementary operations. With
bitrates decreases (i.e., with higher �), more f col is assigned to the m = 1 path, which involves
an autoencoder. This leads to a slight increase in network forward time which is categorized under
“Others”. Notably, during encoding, most time is spent on GPCC, while arithmetic coding remains
efficient. During decoding, the arithmetic decoder’s index search raises decoding complexity over
encoding, while GPCC decoding is faster than encoding since it does not require RD search. Overall,
decoding is faster than encoding.

Table H: Encoding time of different components on the DL3DV-GS dataset, which has over 1.57
million Gaussians on average in the testing set. All times are measured in seconds, with each
component’s percentage share of the total encoding time provided in parentheses. The mask rate
indicates the proportion of color attributes f col assigned to the m = 1 path (i.e., compressed via the
autoencoder). Results are obtained using a single GPU.

� Total time µg f col (m=1) f col (m=0) f geo Mask Others Mask rate

1e� 4 20.47 9.48 (46%) 2.81 (14%) 4.41 (22%) 2.35 (11%) 0.02 (0%) 1.41 (7%) 0.62
2e� 4 18.33 9.46 (52%) 2.97 (16%) 2.63 (14%) 1.83 (10%) 0.02 (0%) 1.42 (8%) 0.67
4e� 4 17.17 9.50 (55%) 3.09 (18%) 1.67 (10%) 1.46 (8%) 0.02 (0%) 1.44 (8%) 0.74
8e� 4 16.44 9.49 (58%) 3.34 (20%) 1.01 (6%) 1.10 (7%) 0.02 (0%) 1.48 (9%) 0.82
16e� 4 15.86 9.44 (60%) 3.21 (20%) 0.68 (4%) 1.00 (6%) 0.02 (0%) 1.51 (10%) 0.89

Table I: Decoding time of different components on the DL3DV-GS dataset, which has over 1.57
million Gaussians on average in the testing set. All times are measured in seconds, with each
component’s percentage share of the total decoding time provided in parentheses. The mask rate
indicates the proportion of color attributes f col assigned to the m = 1 path (i.e., compressed via the
autoencoder). Results are obtained using a single GPU.

� Total time µg f col (m=1) f col (m=0) f geo Mask Others Mask rate

1e� 4 15.93 3.53 (22%) 3.85 (24%) 5.07 (32%) 2.51 (16%) 0.02 (0%) 0.95 (6%) 0.62
2e� 4 14.16 3.52 (25%) 4.21 (30%) 3.28 (23%) 2.14 (15%) 0.02 (0%) 0.99 (7%) 0.67
4e� 4 12.84 3.52 (27%) 4.33 (34%) 2.16 (17%) 1.77 (14%) 0.02 (0%) 1.04 (8%) 0.74
8e� 4 12.13 3.53 (29%) 4.68 (39%) 1.40 (12%) 1.39 (11%) 0.02 (0%) 1.10 (9%) 0.82
16e� 4 11.47 3.52 (31%) 4.67 (41%) 0.87 (8%) 1.24 (11%) 0.02 (0%) 1.15 (10%) 0.89
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I ABLATION ON THE NUMBER OF SPLITS IN CONTEXT MODELS

We conduct further ablation studies on the number of splits in context models, as summarized below.

• Inter-Gaussian context models. In Table J, increasing the number of splits leads to size
reduction with the same fidelity under the given digital precision. On the one hand, test-
ing with only 2 splits using an extreme ratio of 95%, 5% demonstrates poor performance,
underscoring the importance of rational split strategies. After that, the most notable im-
provement occurs when increasing from 3 splits to 4 splits, achieving a size reduction of
0.227 MB. Beyond 4 splits, the size reduction becomes negligible. On the other hand, even
in the extreme 2-split case, the size remains significantly smaller than in the ablation study
shown in Figure 7, where the inter-Gaussian context model is entirely removed. This is be-
cause, while fµg

is unavailable for the first batch (we manually set it to 0 as a placeholder)
in Equation 5, the positional encoding emb(µg) still provides effective context.

• Intra-Gaussian context models. In Table K, increasing the number of chunks does not
consistently yield size reduction. For 2 chunks, insufficient context information leads to a
size increase. Expanding to 8 or 16 chunks does not always provide further benefits due to
the increased complexity of the model, which makes convergence more challenging.

Table J: Ablation study on the number of splits in the inter-Gaussian context model on the DL3DV-
GS dataset with � = 1e � 4. We change inter-split number of all f col (m = 1), f col (m = 0), and
f geo. Our FCGS employs a default setting of 17%, 17%, 33%, 33% (4 splits).

# Split Batches SIZE (MB) # PSNR (dB) " SSIM " LPIPS #
95%, 5% (2) 28.685 29.264 0.897 0.148

25%, 25%, 50% (3) 27.667 29.264 0.897 0.148
17%, 17%, 33%, 33% (4) 27.440 29.264 0.897 0.148

13%, 13%, 25%, 25%, 25% (5) 27.379 29.264 0.897 0.148

Table K: Ablation study on the number of splits in the intra-Gaussian context model on the DL3DV-
GS dataset with � = 1e � 4. We change intra-split number of f col (m = 1). Our FCGS employs a
default setting of 4 chunks.

# Split Chunks SIZE (MB) # PSNR (dB) " SSIM " LPIPS #
2 28.562 29.267 0.897 0.148
4 27.440 29.264 0.897 0.148
8 27.516 29.264 0.897 0.148
16 27.649 29.265 0.897 0.148
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J VISUALIZATION OF BIT ALLOCATION USING CONTEXT MODELS

We present a visualization of bits per parameter using the proposed inter- and intra-Gaussian context
models, shown in the figure below.

• For the inter-Gaussian context model: From a statistical perspective, each Gaussian in
different batches is expected to hold similar amounts of information on average due to the
random splitting strategy, which ensures an even distribution of Gaussians across the 3D
space. Thus, as batches progress deeper (i.e., B1 ! B4), the bits per parameter decrease.
The most significant reduction occurs between B1 and B2, since B1 lacks inter-Gaussian
context, leading to less accurate probability estimates. For subsequent batches, the re-
duction is less pronounced, as B1 already includes 1/6 of the total Gaussians, providing
sufficient context for accurate prediction. Adding more Gaussians from later batches yields
diminishing benefits. This finding validates our approach of splitting batches with vary-
ing proportions of Gaussians, where the first two batches contain fewer Gaussians. For

the intra-Gaussian context model: In (a), different from that in the inter-Gaussian con-
text model, the information distribution among different chunks is not guaranteed to be
equal, as the latent space is derived from a learnable MLP. As a result, C1 receives the least
information because it lacks intra-Gaussian context, leading to less accurate probability
predictions. Therefore, allocating more information to C1 would make entropy reduction
challenging. To counter this, the neural network compensates by assigning minimal infor-
mation to C1, thereby saving bits. Conversely, C2 receives the most information as it plays
a pivotal role in predicting subsequent chunks (i.e., C3 and C4), while its own entropy
can be reduced by leveraging C1. As a result, the bits per parameter decrease consistently
from C2 to C4 due to the increasingly rich context. In (b), the bit variation reflects differ-
ences among color components, where Green has the least information and is the easiest to
predict.
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Figure C: Visualization of bits per parameter on the DL3DV-GS dataset with � = 16e�4. B1 ! B4
and C1 ! C4 indicate batches and chunks of inter- and intra-Gaussian context models, respectively.
Bit allocation for both color and geometry attributes using inter- and intra-Gaussian context models
is shown. Note that in (a), the bits per parameter for color attributes f col (m = 1) are calculated
in the latent space (i.e., ŷ) as per chunk bits in ŷ

64 for each chunk, where 64 is the number of chan-
nels per chunk of ŷ. This calculation is used for bit allocation visualization of each chunk in ŷ.
This differs slightly from Table G, which takes a holistic view and calculates bits per parameter as
total bits in ŷ

48 , where 48 is the total number of channels for f col (m = 1). The bit values in (a)
are scaled by 100x for readability.
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K ABLATION STUDIES ON THE HYPERPRIOR

We present statistical data for ablation studies, and also conduct ablation experiment over the hy-
perprior, as shown in Table M. This hyperprior follows the approach of Ballé et al. (2018), which is
originally designed for image compression, and we consistently retain it in our FCGS model. In this
section, we investigate the effect of the hyperprior by manually setting ẑ to all zeros to remove the
information contributed from the hyperprior, while still preserving a necessary Gaussian probability
for entropy estimation (which is now predicted from an all-zero hyperprior ẑ instead).

Interestingly, our experiments reveal the hyperprior does not significantly contribute to the compres-
sion performance. This suggests there is less redundancy within each Gaussian attribute in 3DGS
compared to that within each individual image Ballé et al. (2018). Instead, our inter- and intra-
context models, which are for the unique characteristics of 3DGS, have shown more effectiveness.

Table L: Statistical data from ablation studies over MEM on the DL3DV-GS dataset. Data are pre-
sented as PSNR (dB) / SIZE (MB).

� 1e� 4 2e� 4 4e� 4 8e� 4 16e� 4

Ours 29.26 / 27.44 29.22 / 24.15 29.17 / 21.12 29.05 / 18.14 28.86 / 15.83
Ours w m all 0s 29.27 / 38.15 29.23 / 33.87 29.16 / 30.12 28.98 / 25.99 28.69 / 22.84
Ours w m all 1s 28.82 / –

Table M: Statistical data from ablation studies over context models on the DL3DV-GS dataset. Data
are presented as PSNR (dB) / SIZE (MB).

� 1e� 4 2e� 4 4e� 4 8e� 4 16e� 4

Ours 29.26 / 27.44 29.22 / 24.15 29.17 / 21.12 29.05 / 18.14 28.86 / 15.83
Ours w/o intra 29.26 / 29.65 29.22 / 25.94 29.15 / 23.32 29.02 / 18.87 28.82 / 16.80
Ours w/o intra & inter 29.26 / 38.55 29.22 / 35.63 29.14 / 31.15 29.02 / 26.50 28.81 / 23.53
Ours w/o intra & inter & hyper 29.25 / 39.41 29.22 / 34.79 29.17 / 31.29 29.05 / 27.47 28.84 / 24.66

L TRAINING WITH LESS DATA

As outlined in the implementation, we train FCGS on 6670 3DGS scenes generated from the DL3DV
dataset (Ling et al., 2024). Although preparing this training data is time-intensive, it is a one-time
investment: Once trained, FCGS can be directly applied for compression without requiring further
optimization, making the effort highly valuable. To evaluate FCGS’s performance trained on signif-
icantly less data, we conducted experiments using only 100 scenes, as shown in Table N. Even with
this reduced training set, FCGS still delivers strong results, achieving comparable fidelity metrics
with only 12.9% increase in size. This robustness is due to FCGS’s compact and efficient archi-
tecture, with a total model size of less than 10 MB. This finding suggests a promising direction for
future work: training FCGS with a larger and more diverse dataset to further enhance its capability.

Table N: Results of training with less data. Experiments are conducted on the DL3DV-GS dataset
with � = 1e� 4.

# Trainig data SIZE (MB) # PSNR (dB) " SSIM " LPIPS #
Full (# 6670 scenes) 27.440 29.264 0.897 0.148

Subset (# 100 scenes) 30.981 29.256 0.897 0.148
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M BOOST COMPRESSION PERFORMANCE OF PRUNING-BASED APPROACHES

Mini-Splatting (Fang & Wang, 2024) and Trimming (Ali et al., 2024) effectively prune trivial Gaus-
sians, thereby slimming the 3DGS. By applying our FCGS on top of their pruned 3DGS, we can
achieve superior compression performance. We further evaluate this scheme across DL3DV-GS,
MipNeRF360, and Tank&Temples datasets.
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Figure D: Our FCGS boosts the compression performance of pruning-based approaches. Built on
Mini-Splatting (Fang & Wang, 2024) and Trimming (Ali et al., 2024), we achieve superior RD
performance by directly applying FCGS to their pruned 3DGS, without any finetuning.
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N ADDITIONAL QUALITATIVE COMPARISONS
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Figure E: Qualitative comparison with baselines methods. Zoom in for more details. We achieve
substantial size reduction while preserving high fidelity. PSNR (dB) / SIZE (MB) are indicated in
the bottom-right corner of each image.
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