
Discrete-Smoothness in
Online Algorithms with Predictions

Anonymous Author(s)
Affiliation
Address
email

Abstract

In recent years, there has been an increasing focus on designing online algorithms1

with (machine-learned) predictions. The ideal learning-augmented algorithm is2

comparable to the optimum when given perfect predictions (consistency), to the best3

online approximation for arbitrary predictions (robustness), and should interpolate4

between these extremes as a smooth function of the prediction error. In this paper,5

we quantify these guarantees in terms of a general property that we call discrete-6

smoothness and achieve discrete-smooth algorithms for online covering, specifically7

the facility location and set cover problems. For set cover, our work improves the8

results of Bamas, Maggiori, and Svensson (2020) by augmenting consistency and9

robustness with smoothness guarantees. For facility location, our work improves10

on prior work by Almanza et al. (2021) by generalizing to nonuniform costs and11

also providing smoothness guarantees by augmenting consistency and robustness.12

1 Introduction13

The field of learning-augmented online algorithms has gained rapid prominence in recent years.14

The basic premise is to provide an online algorithm with additional (machine-learned) predictions15

about the future to help bypass worst-case lower bounds. Since machine-learned predictions can16

be noisy in general, a key desideratum of the model is that the competitive ratio of the online17

algorithm should degrade gracefully with prediction error. In particular, the cost of the algorithm18

should be bounded against that of the predicted solution (called consistency) or that of an online19

algorithm without predictions (called robustness) and should smoothly interpolate between the two20

with increase in prediction error (called smoothness). (The terms consistency and robustness were21

originally coined by Purohit, Svitkina, and Kumar [38].) While robustness and consistency are22

problem-independent notions, smoothness depends on prediction error which has been defined in23

a problem-specific manner. In this paper, we introduce a novel, problem-independent notion of24

smoothness called discrete-smoothness that applies to any combinatorial problem. As illustrative25

applications of this new framework, we design discrete-smooth (learning-augmented) algorithms for26

two classic problems, facility location and set cover, which improve and generalize previous results27

for these problems due to Almanza et al. (NeurIPS ’21 [1]) and Bamas et al. (NeurIPS ’20 [11]).28

First, we introduce discrete-smoothness. Suppose we are given a problem instance of size 𝑛. Let OPT29

be a solution for this instance. (The reader may think of OPT as an optimal solution, although our30

guarantees will hold for any feasible solution.) Let the predicted solution be 𝑆. Ideally, 𝑆 = OPT;31

therefore, in general, OPT comprises two parts: the predicted part OPT|𝑆 := OPT ∩ 𝑆 and the32

unpredicted part OPT|
𝑆

:= OPT \ 𝑆. On the predicted part OPT|𝑆 , the algorithm has a meaningful33

signal from the prediction but the noise in the signal is given by the overprediction 𝑠Δ := |𝑆 \ OPT|.34

Naturally, the competitive ratio of the algorithm on this part will degrade with increase in this noise.35

On the unpredicted part OPT|
𝑆

, the algorithm does not have any signal from the prediction and cannot36

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.

hope for a better competitive ratio than that of an online algorithm without prediction. Putting the37

two together, a learning-augmented algorithm ALG should satisfy38

ALG ≤ 𝑂 (𝑓 (𝑠Δ)) · OPT|𝑆 +𝑂 (𝑓 (𝑛)) · OPT|
𝑆
, (1)

where 𝑂 (𝑓 (·)) is the competitive ratio without prediction. We call the property of Equation (1)39

discrete-smoothness.40

Let us first argue that Equation (1) recovers consistency and robustness. Consistency follows from41

setting 𝑆 = OPT; then, Equation (1) demands a constant approximation to OPT. Similarly, robustness42

follows from the fact that for any 𝑆, the right hand side of Equation (1) is at most 𝑂 (𝑓 (𝑛)) · OPT.43

Next, we show that the two terms 𝑓 (𝑠Δ) and 𝑓 (𝑛) in Equation (1) are the best possible. For the first44

term, consider a prediction 𝑆 comprising the entire instance (of size 𝑛); in this case, we cannot hope45

for the better than 𝑓 (𝑛)-competitive algorithm; thus, 𝑓 (𝑠Δ) is necessary in the first term. And, for the46

second term, consider an empty prediction 𝑆 = ∅, in which case we again cannot hope for a better47

than 𝑓 (𝑛)-competitive algorithm; thus, 𝑓 (𝑛) is necessary in the second term. Note that the asymmetry48

between these two terms is necessary: specifically, 𝑓 (𝑛) cannot be replaced by 𝑓 (|OPT \ 𝑆 |) since49

that would imply an 𝑓 (OPT)-competitive online algorithm when 𝑆 = ∅. This is impossible, e.g., for50

the set cover problem.51

A technical subtlety of the definition of discrete-smoothness (Equation (1)) is that given a fixed52

prediction 𝑆, the minimum value of the right hand side might actually be a solution OPT that is53

different from an optimal solution to the problem instance. So, although the solution OPT is intuitively54

an optimal solution, we require that a discrete-smooth algorithm satisfy Equation (1) for all feasible55

solutions OPT, and not just optimal solutions.56

1.1 Our Results57

We apply discrete-smoothness to the classic problems of online facility location and set cover. For58

these problems, we obtain results that improve on prior work. We describe these next.59

Online Facility Location with Predictions. In the online facility location problem, we are given60

offline a metric space (𝑋, 𝛿) where each point 𝑣 ∈ 𝑋 has an associated facility opening cost 𝑓𝑣 ≥ 0.61

On receiving an online request for a client at some location 𝑥 ∈ 𝑋 , the online algorithm must connect62

the client to an open facility at some location 𝑣 ∈ 𝑋 incurring connection cost 𝛿 (𝑥, 𝑣). At any time,63

the algorithm is also allowed to open a facility at any location 𝑣 ∈ 𝑋 by incurring the opening cost 𝑓𝑣 .64

(Note that a client cannot update her connection even if a closer facility is opened later.) The total65

cost of the algorithm is the sum of opening costs of opened facilities and connection costs of clients.66

The first result for the online facility location problem is due to Meyerson [33] who obtained a67

randomized algorithm with a competitive ratio of 𝑂 (log 𝑛) for 𝑛 requests. This result was first68

derandomized [18], and later the competitive ratio slightly improved to 𝑂

(
log 𝑛

log log 𝑛

)
[19], by Fotakis.69

This latter bound is asymptotically tight. More recently, the online facility location problem has70

been considered in the context of machine-learned predictions (OFLP) by several papers [20, 1, 22].71

Of these, the work of Almanza et al. [1] is the closest to our work (the other papers use metric72

error measures that are incomparable to our results). In [1], the offline input additionally contains a73

predicted solution of facilities 𝑆 ⊆ 𝑋 , where we denote |𝑆 | = 𝑠. By restricting the available facilities74

to the predicted set, they obtained an 𝑂 (log 𝑠)-competitive algorithm for uniform facility opening75

costs, under the condition that OPT ⊆ 𝑆.76

We improve and generalize the Almanza et al. work by giving a discrete-smooth algorithm for the77

OFLP problem, i.e., an algorithm ALG that satisfies Equation (1):78

Theorem 1.1. There is an algorithm ALG for online (nonuniform) facility location with a predicted79

solution 𝑆 that satisfies for every solution OPT80

ALG ≤ 𝑂 (log 𝑠Δ) · OPT|𝑆 +𝑂 (log 𝑛) · OPT|
𝑆
, (2)

where 𝑠Δ is the number of facilities in 𝑆\OPT and 𝑛 is the number of online requests. Here, OPT|𝑆81

(resp., OPT|
𝑆
) represents the sum of opening costs of facilities in OPT ∩ 𝑆 (resp., OPT \ 𝑆) and82

connection costs of all clients connecting to facilities in OPT ∩ 𝑆 (resp., OPT \ 𝑆).83

This generalizes and improves the Almanza et al. result in three ways:84

2

• The result is generalized from uniform facility opening costs to arbitrary (nonuniform)85

costs. In fact, even for the online facility location problem (without prediction), we get86

an 𝑂 (log𝑚)-competitive algorithm for arbitrary (nonuniform) facility opening costs —87

previously, Almanza et al. only established this for uniform costs.88

• The assumption that OPT ⊆ 𝑆, i.e., the prediction contains the entire solution, is no longer89

required.90

• If OPT ⊆ 𝑆 (i.e., under the assumption of the Almanza et al. result), the competitive ratio91

improves from 𝑂 (log 𝑠) to 𝑂 (log 𝑠Δ). That is, the dependence is only on the prediction92

error and not the entire prediction.93

In some situations, the length of the request sequence 𝑛 can exceed the size of the metric space 𝑚. To94

address this situation, we show that 𝑛 can be replaced by 𝑚 in the above result:95

Theorem 1.2. There is an algorithm ALG for online (nonuniform) facility location with a predicted96

solution 𝑆 that satisfies for every solution OPT97

ALG ≤ 𝑂 (log 𝑠Δ) · OPT|𝑆 +𝑂 (log𝑚) · OPT|
𝑆
, (3)

where 𝑚 is the number of facilities in the metric space overall.98

Online Set Cover with Predictions. In the online set cover problem, we are given offline a universe99

of elements 𝐸 and 𝑚 sets defined on them 𝑈 ⊆ 2𝐸 with nonnegative costs. In each online step, we100

get a new element 𝑒 ∈ 𝐸 . If 𝑒 is not already covered by the current solution, then the algorithm must101

add a new set from 𝑈 that contains 𝑒 to its solution. The total cost of the algorithm is the sum of costs102

of all sets in its solution.103

Alon et al. [3] gave the first algorithm for the online set cover problem by introducing the online104

primal dual method, and obtained a competitive ratio of 𝑂 (log𝑚 log 𝑛) where 𝑛 denotes the number105

of requests. They also proved an almost matching lower bound of Ω
(

log𝑚 log 𝑛
log log𝑚+log log 𝑛

)
. Bamas,106

Maggiori, and Svensson [11] extended their work to online set cover with predictions (OSCP), where107

the offline input additionally contains a predicted solution of sets 𝑆 ⊆ 𝑈. They established consistency108

and robustness bounds for this problem by adapting the online primal dual method to use the predicted109

solution. The cost of their algorithm is bounded by the minimum of 𝑂 (log 𝑛) times the cost of the110

prediction and 𝑂 (log𝑚 log 𝑛) times the optimal cost. However, this algorithm does not provide a111

smoothness guarantee.112

We obtain a discrete-smooth algorithm for the OSCP problem, thereby giving the first algorithm for113

OSCP that goes beyond only consistency and robustness and achieves a smoothness guarantee:114

Theorem 1.3. There is an algorithm ALG for online set cover with a predicted solution 𝑆 that115

satisfies for every solution OPT116

ALG ≤ 𝑂 (log 𝑠Δ log 𝑛) · OPT|𝑆 +𝑂 (log𝑚 log 𝑛) · OPT|
𝑆
, (4)

where 𝑠Δ is the number of sets in 𝑆\OPT. Here, OPT|𝑆 (resp., OPT|
𝑆

) represents the sum of costs of117

sets in OPT ∩ 𝑆 (resp., OPT \ 𝑆).118

1.2 Our Techniques: A Framework for Discrete-Smooth Algorithms119

At a high level, our framework merges two online algorithms to obtain a discrete-smooth algorithm.120

The algorithms differ in the guarantees they provide. The first algorithm ALG1 gets a sharper121

competitive ratio of 𝑂 (𝑓 (𝑠)) but against the optimal solution restricted to the prediction 𝑆. The122

second algorithm ALG2 has the standard competitive ratio of 𝑂 (𝑓 (𝑛)) but against the unconstrained123

optimum OPT. The main challenge in the combiner algorithm (call it ALG) is to decide how to124

route online requests to the two algorithms. The natural choice would be to decide this based on125

whether OPT|𝑆 or OPT
𝑆

serves the request in OPT: in the first case, the request should be routed to126

ALG1 and in the second case, it should be routed to ALG2. But, of course, we do not know OPT and127

therefore don’t know OPT|𝑆 and OPT|
𝑆

.128

Before we describe the combiner strategy, consider the properties that these algorithms need to satisfy.129

• First, consider the subset of requests served by OPT|𝑆 . Intuitively, ALG1 should be compet-130

itive on these requests, which means that we need a stronger property from ALG1 that its131

3

cost on any subset of requests is competitive against the optimal solution for this subset. We132

call this property subset competitiveness.1 Symmetrically, subset competitiveness of ALG2133

ensures that it is competitive on the requests in OPT|
𝑆

.134

• Next, we need a guarantee on the cost of ALG1 on OPT|
𝑆

, and symmetrically, of ALG2 on135

OPT|𝑆 . For this, we first augment ALG1,ALG2 to address the prize-collecting version of136

the original problem, where each online request can be ignored at a penalty cost. (Note that137

this is more general than the original problem where every online request must be served,138

since the latter can be recovered by setting the penalties to be infinitely large.) Setting the139

penalties appropriately, we ensure that the total penalty of the requests in OPT|𝑆 is bounded140

against the cost of ALG1 on those requests (similarly for OPT|
𝑆

).141

• Finally, we require that the cost of ALG1,ALG2 on any set of requests is bounded against the142

total penalty of the requests. We call this strengthened competitiveness w.r.t. penalties the143

Lagrangian property2. Note that this ensures that the cost of ALG1,ALG2 on OPT|
𝑆
,OPT|𝑆144

are respectively bounded.145

Now, we give the formal definition of Lagrangian subset-competitiveness that we motivated above.146

We use ALG(𝑄′ |𝑄) to refer to the total cost of ALG incurred when addressing a subset 𝑄′ ⊆ 𝑄 as147

part of running on an input 𝑄. For any prize collecting solution SOL for input 𝑄, we separate its148

total cost into SOL𝑏 (𝑄) (buying cost) and SOL𝑝 (𝑄) (penalty cost). We formalize the Lagrangian149

subset-competitiveness property below:150

Definition 1.4 (Lagrangian subset-competitive algorithm). Let ALG be a randomized prize-151

collecting algorithm running on an input 𝑄. For any competitive ratio 𝛽, we say that ALG is152

Lagrangian 𝛽-subset-competitive if for every subset 𝑄′ ⊆ 𝑄 we have153

E[ALG(𝑄′ |𝑄)] ≤ 𝛽 · OPT𝑏 (𝑄′) +𝑂 (1) · OPT𝑝 (𝑄′) (5)

If in the equation above we replace the unconstrained optimum (OPT) by the optimal solution that154

can only use the prediction 𝑆, we say that ALG is Lagrangian 𝛽-subset-competitive w.r.t. 𝑆.155

We now give the combiner algorithm:

Algorithm 1: Smooth merging framework (The combiner algorithm)
1 Let ALG1,ALG2 be two prize-collecting Lagrangian subset-competitive algorithms.
2 Event Function UPONREQUEST(𝑞)
3 Let 𝛼 be the minimum penalty such that releasing (𝑞, 𝛼) to ALG1,ALG2 would result in the request

being served in either ALG1 or ALG2. (The value of 𝛼 can be determined by a standard
“guess-and-double”.)

4 Release (𝑞, 𝛼) to both ALG1 and ALG2. Buy the items bought by ALG1,ALG2 as a result of this
step.

156

The algorithm is simple: for a new online request 𝑞, the framework chooses the minimum penalty157

𝛼 which ensures that at least one of the two constituent algorithms ALG1,ALG2 would actually158

serve 𝑞 (instead of paying the penalty). (𝑞, 𝛼) is then presented as a (prize-collecting) request to159

both algorithms. (Recall that the combined algorithm is for the non-prize-collecting problem, but the160

individual algorithms ALG1,ALG2 are for the prize-collecting problem.) At this stage, one of the161

algorithms serves the request (due to the choice of 𝛼) while the other may choose to pay the penalty.162

The combiner algorithm now simply buys all items bought by either algorithm.163

Finally, we state the guarantees of the combiner algorithm informally. (For a formal description, see164

Appendix C.)165

Theorem 1.5. (Informal) If ALG1,ALG2 are Lagrangian 𝛽-subset-competitive algorithms for 𝛽 =166

𝑓 (𝑠), 𝑓 (𝑛) respectively, then Algorithm 1 satisfies the discrete-smoothness property (Equation (1).167

Applications of Theorem 1.5: Section 2 and Appendix B give Lagrangian subset-competitive168

algorithms for facility location, and Section 3 gives a Lagrangian subset-competitive algorithm for set169

1Our subset-competitiveness property is similar to [9].
2Our Lagrangian competitiveness is similar to the Lagrangian multiplier preserving property in approximation

algorithms for prize-collecting problems, e.g., [37, 26].

4

cover. Given these constituent algorithms, we use Theorem 1.5 to prove Theorem 1.1 and Theorem 1.2170

for facility location and Theorem 1.3 for set cover. These proofs are given in Appendix C.6.171

Related Work. There is a growing body of work in online algorithms with predictions in the last172

few years (see, e.g., the surveys [35, 36]). This model was introduced by Lykouris and Vassilvitskii173

for the caching problem [32] and has since been studied for a variety of problem classes: rent or174

buy [27, 25, 21, 41, 5, 39], covering [11], scheduling [27, 41, 10, 28, 34, 30, 8], caching [31, 40, 24,175

13], matching [29, 16, 7, 23], graph problems [6, 22, 1, 14, 4, 20, 9], and so on. Prior works on online176

facility location with predictions either do not consider prediction error [1] or use continuous notions177

of error [22, 20], such as functions of the distances between predicted and optimal facilities. Our178

discrete notion of error refers only to whether an optimal item is predicted. Similarly, prior work on179

online set cover with predictions [11, 4] also does not consider prediction error. Finally, we note that180

discrete prediction error (similar to this paper) as well as hybrids between discrete and continuous181

error have also been considered [42, 9, 14] but the prediction here is on the input rather than the182

solution.183

2 Online Facility Location184

In this section, we consider metric, nonuniform facility location with predictions and present a novel185

prize-collecting algorithm TREEPROXY. This algorithm is Lagrangian 𝑂 (log|𝑆 |)-subset-competitive186

w.r.t. the prediction 𝑆 of possible facilities; thus, it is used in our framework to prove Theorems C.9187

and C.10, which in turn imply Theorems 1.1 and 1.2, respectively. In addition, TREEPROXY is a result188

independent of our framework/predictions: the competitiveness guarantee shown for TREEPROXY189

also achieves 𝑂 (log𝑚) competitiveness where 𝑚 = |𝑋 | is the size of the metric space.190

We prove the following theorem:191

Theorem 2.1. For facility location with predictions, there exists a randomized prize-collecting192

algorithm ALG with a monotone online amortization OA which is Lagrangian 𝑂 (log|𝑆 |)-subset193

competitive using OA w.r.t. 𝑆.194

2.1 The Algorithm195

Weighted hierarchically-separated trees (HSTs). The algorithm starts by embedding the metric196

space into the leaves of a weighted 3-HST, a metric space in which edge weights decrease at least197

exponentially as one descends from the root.198

Definition 2.2. For 𝛾 > 1, a rooted tree with weights 𝑐 to the edges is a weighted 𝛾-HST if for every199

two edges 𝑒1, 𝑒2 such that 𝑒2 is a parent edge of 𝑒1, it holds that 𝑐(𝑒2) ≥ 𝛾𝑐(𝑒1).200

The following result is often used for embedding general metric spaces into weighted HSTs; it201

involves composing the embeddings of Fakcharoenphol et al. [17] and Bansal et al. [12].202

Theorem 2.3 (Due to [17] and [12]). For every metric space (𝑋, 𝛿) and constant 𝛾, there exists a203

distribution D over weighted 𝛾-HSTs of depth 𝑂 (log|𝑋 |) in which the points in 𝑋 are the leaves of204

the HST, such that for every two points 𝑥1, 𝑥2 ∈ 𝑋 we have:205

1. 𝛿 (𝑥1, 𝑥2) ≤ 𝛿𝑇 (𝑥1, 𝑥2) for every 𝑇 in the support of D.206

2. E𝑇∼D [𝛿𝑇 (𝑥1, 𝑥2)] ≤ 𝑂 (log|𝑋 |) · 𝛿 (𝑥1, 𝑥2).207

The algorithm starts by embedding the induced metric space of 𝑆 into a weighted HST using208

Theorem 2.3; 𝑇 denotes the resulting tree, and 𝑟 denotes its root. For each edge 𝑒 ∈ 𝑇 , we denote209

by 𝑐(𝑒) the cost of the edge 𝑒. Denote the set of leaves in the subtree rooted at 𝑣 by 𝐿 (𝑣); note that210

𝐿 (𝑟) = 𝑆. Denote the distance between two nodes 𝑢, 𝑣 in the tree by 𝛿𝑇 (𝑢, 𝑣). For every point 𝑢 ∈ 𝑋 ,211

define 𝑝(𝑢) := arg min𝑢′∈𝑆 𝛿 (𝑢, 𝑢′); that is, 𝑝(𝑢) is the closest predicted point to 𝑢 (abusing notation,212

we similarly define 𝑝(𝑞) for request 𝑞).213

Proxy list. After embedding 𝑆 into the leaves of a tree, the algorithm must open facilities on those214

leaves to serve requests. Intuitively, at any point the algorithm considers some (possibly internal)215

node 𝑣 ∈ 𝑇 , and considers connecting the current request through 𝑣 to a facility in 𝐿 (𝑣). Choosing216

from 𝐿 (𝑣) introduces a tradeoff between the cost of opening the facility and its distance from 𝑣.217

5

For every 𝑣, we identify the leaves in 𝐿 (𝑣) which offer the best points in this tradeoff (i.e., a Pareto218

frontier), and only allow the algorithm to choose from these leaves. This subset is called the proxy219

list of 𝑣, and denoted 𝑃(𝑣) ⊆ 𝐿 (𝑣).220

We now define the proxy list 𝑃(𝑣). For ease of notation, define the logarithmic class operator221

ℓ(𝑥) := ⌊log 𝑥⌋. For node 𝑣 ∈ 𝑇 , we construct the proxy list 𝑃(𝑣) ⊆ 𝐿 (𝑣) using the following222

process:223

1. Start with 𝑉 ← 𝐿 (𝑣).224

2. While there exist distinct 𝑣1, 𝑣2 ∈ 𝑉 such that ℓ(𝑓𝑣1) ≥ ℓ(𝑓𝑣2) and ℓ(𝛿𝑇 (𝑣, 𝑣1)) ≥225

ℓ(𝛿𝑇 (𝑣, 𝑣2)), remove 𝑣1 from 𝑉 .226

3. Output 𝑉 as 𝑃(𝑣).227

We denote by 𝑘 (𝑣) the size of the proxy list 𝑃(𝑣). We order the proxy list of 𝑣 by increasing facility228

cost, thus writing 𝑃(𝑣) = (𝑠𝑣1 , · · · , 𝑠
𝑣
𝑘 (𝑣)). For every 𝑣, 𝑖, we use the shorthands 𝑓 𝑣

𝑖
:= 𝑓𝑠𝑣

𝑖
and229

𝛿𝑣
𝑖

:= 𝛿𝑇
(
𝑣, 𝑠𝑣

𝑖

)
. Slightly abusing notation, for every node 𝑣 ∈ 𝑇 we define 𝑐(𝑣) := 𝑐(𝑒𝑣) where 𝑒𝑣 is230

the edge connecting 𝑣 to its parent node (for 𝑟 , we define 𝑐(𝑟) = ∞). For a more streamlined notation,231

for every node 𝑣 ∈ 𝑇 we define 𝛿𝑣0 := 𝑐(𝑣) and 𝑓 𝑣
𝑘 (𝑣)+1 := ∞.232

Observation 2.4. For every node 𝑣 ∈ 𝑇 , the proxy list 𝑃(𝑣) satisfies:233

1. For every 𝑢 ∈ 𝐿 (𝑣), there exists index 𝑖 such that ℓ(𝑓 𝑣
𝑖
) ≤ ℓ(𝑓𝑢) and ℓ(𝛿𝑣

𝑖
) ≤ ℓ(𝛿𝑇 (𝑣, 𝑢)).234

2. For every distinct 1 ≤ 𝑖 < 𝑗 ≤ 𝑘 (𝑣) + 1, it holds that ℓ(𝑓 𝑣
𝑖
) < ℓ(𝑓 𝑣

𝑗
).235

3. For every distinct 0 ≤ 𝑖 < 𝑗 ≤ 𝑘 (𝑣), it holds that ℓ(𝛿𝑣
𝑖
) > ℓ(𝛿𝑣

𝑗
).236

When 𝑖 = 0, the third item in Observation 2.4 uses the fact that 𝑇 is a weighted 3-HST; thus, the cost237

of an edge is at least twice the distance from the child node of that edge to any descendant leaf.238

Counters. For every node 𝑣 and every 𝑖 ∈ {1, · · · 𝑘 (𝑣) + 1}, we define a counter 𝜆(𝑣, 𝑖) of size 𝑓 𝑣
𝑖

.239

Algorithm description. The algorithm for facility location with predictions is given in Algorithm 2.240

Initially, the algorithm embeds the metric space induced by 𝑆 into a weighted 3-HST 𝑇 , using241

Theorem 2.3; upon each node in this 𝑇 the proxy lists are computed, and the corresponding counters242

are assigned. Upon the release of a request (𝑞, 𝜋), the function UPONREQUEST is triggered. Upon243

receiving (𝑞, 𝜋), it maps the request to the closest point 𝑝(𝑞) in 𝑆 (that is, a leaf of the HST). Then,244

the algorithm attempts to solve the request on the HST through a process of increasing counters,245

which we soon describe. (While the described algorithm raises these counters continuously, the246

process can easily be discretized, replacing the continuous growth with jumping discretely to the next247

event.) The algorithm keeps track of (some measure of) the cost involved; if during UPONREQUEST248

that amount exceeds the penalty 𝜋, the algorithm pays the penalty instead (see Line 9).249

When solving the request on 𝑢 = 𝑝(𝑞), the algorithm climbs up the branch of 𝑢, until a facility is250

found (or opened) to connect 𝑢. At each ancestor 𝑣 of 𝑢, the algorithm invests a growing amount 𝜏𝑣251

in advancing the proxy list of 𝑣 (i.e., buying a facility in 𝑃(𝑣) closer to 𝑣). It raises the counter for252

the next item on the proxy list until full, at which point the relevant proxy facility is opened, and the253

next counter in the proxy list begins to increase. (Note that the same facility can be “opened” more254

than once due to being on multiple proxy lists.) Once 𝜏𝑣 reaches the cost of connecting 𝑣 to an open255

proxy, the algorithm stops increasing counters and makes the connection. When no proxy in 𝑃(𝑣) is256

open, it could be that 𝜏𝑣 exceeds the cost of moving from 𝑣 to its parent 𝑝(𝑣); in this case, we ascend257

the branch and explore proxies for 𝑝(𝑣). Note that the function UPONREQUEST of Algorithm 2258

also returns a value; this return value is the online amortization cost of the request, to be used in the259

analysis of the algorithm. (See Figure 1 for an example.)260

The analysis of Algorithm 2, and the proof of Theorem 2.1, appear in Appendix A.261

3 Online Set Cover262

In this section, we present and analyze an algorithm for prize-collecting fractional set cover which263

uses the well-known multiplicative updates method, and show that it is Lagrangian subset-competitive.264

Using this algorithm together with Algorithm 1 yields Theorem 1.3 (the proof appears in Appendix C).265

6

Algorithm 2: TREEPROXY for Prize-
Collecting Facility Location with Pre-
dictions
1 Initialization
2 Embed the prediction 𝑆 into a weighted

3-HST 𝑇 using Theorem 2.3.
3 For every 𝑣 ∈ 𝑇 , and every

𝑖 ∈ {1, · · · , 𝑘 (𝑣) + 1}, set 𝜆(𝑣, 𝑖) ← 0.
4 For every 𝑣 ∈ 𝑇 , set 𝑡 (𝑣) ← 0.

5 Event Function UPONREQUEST(𝑞, 𝜋)
// Upon the next request 𝑞 with penalty 𝜋 in
the sequence

6 Define 𝑢, 𝑣 ← 𝑝(𝑞).
7 Define 𝜏 ← 0, 𝜏𝑣 ← 0.
8 continually increase 𝜏, 𝜏𝑣 and

𝜆(𝑣, 𝑡 (𝑣) + 1) at the same rate until:
9 if 𝜏 + 𝛿 (𝑢, 𝑞) ≥ 𝜋 then // cost for request

exceeds penalty; pay penalty instead.
10 Pay the penalty 𝜋 for the request.
11 return 𝜏 + 𝜋. // return amortized cost.

12 if 𝜆(𝑣, 𝑡 (𝑣) + 1) = 𝑓 𝑣
𝑡 (𝑣)+1 then // counter

for next proxy is full; open facility at
proxy.

13 Open a facility at 𝑠𝑣
𝑡 (𝑣)+1.

14 Increment 𝑡 (𝑣).
15 goto Line 8.

16 if 𝜏𝑣 ≥ 𝛿𝑣
𝑡 (𝑣) then

17 if 𝑡 (𝑣) = 0 then
// escalate the request to parent node.

18 Set 𝑣 ← 𝑝(𝑣).
19 Define 𝜏𝑣 ← 0.
20 goto Line 8.

21 Connect 𝑞 to 𝑠𝑣
𝑡 (𝑣) . // connect request to

closest proxy.
22 return 𝜏 + (𝜏 + 𝛿 (𝑢, 𝑞)). // return

amortized cost.

Figure 1: A possible state of Algorithm 2, immedi-
ately before connecting a request 𝑞. Here, 𝑞 has been
mapped to 𝑢, which is the closest point in 𝑆. The
variable 𝑣, an ancestor of 𝑢, is shown, as is its proxy
list 𝑠𝑣1 , 𝑠

𝑣
2 , 𝑠

𝑣
3 . The counters of the proxy list are also

shown: 𝜆(𝑣, 1) is full (and a facility thus exists in 𝑠𝑣1),
and 𝜆(𝑣, 2) is partial (the last counter to be raised han-
dling 𝑞). At some point, the growth in the counters
of 𝑣 exceeded the distance from 𝑣 to 𝑠𝑣1 , and thus the
connection of 𝑞 to 𝑠𝑣1 is made.

Algorithm 3: Online Prize-Collecting
Fractional Set Cover
1 Initialization
2 Set 𝑥𝑠 ← 0 for every set 𝑠.

3 Event Function UPONREQUEST (𝑞, 𝜋)
4 Set 𝑦𝑞 ← 0.
5 while

∑
𝑠∈𝑈 (𝑞) 𝑥𝑠 ≤ 1 do

6 Set 𝑦𝑞 ← 𝑦𝑞 + 1
7 if 𝜋 ≤ 𝑦𝑞 then
8 Pay penalty 𝜋 for 𝑞.
9 return OA(𝑞, 𝜋) = 3𝜋.

10 foreach 𝑠 ∈ 𝑈 (𝑞) do
11 𝑥𝑠 ← 𝑥𝑠 · (1 + 1

𝑐𝑠
) + 1
|𝑈 (𝑞) |𝑐𝑠

12 return OA(𝑞, 𝜋) = 2𝑦𝑞 .

Preliminaries. In prize-collecting fractional set cover, we are given a universe with elements 𝐸266

and sets 𝑈; we define 𝑚 := |𝑈 |. A solution may fractionally buy sets, according to a cost function267

𝑐. Requests then arrive online, where each request is for covering some element 𝑒 ∈ 𝐸 , which is268

contained in some subfamily of sets from 𝑈. To cover an element, an algorithm must hold fractions of269

sets containing 𝑒 which sum to at least 1. Observe that fractional set cover with predictions conforms270

to the definition of an online covering problem with predictions; in this problem, the items are the271

sets. For prize-collecting fractional set cover, we prove the following theorem.272

Theorem 3.1. There exists a deterministic algorithm ALG for prize-collecting fractional set cover273

that ALG is Lagrangian 𝑂 (log𝑚)-subset-competitive274

Theorem 3.1 implies that, in the framework of Algorithm 1, our algorithm can be used as the general275

component, independent of the prediction. But, given a prediction 𝑆 ⊆ 𝑈, we can simply restrict the276

family of sets used by the algorithm to the given prediction, yields an algorithm competitive against277

OPT𝑆 . Thus, Theorem 3.1 immediately yields the following corollary.278

Corollary 3.2. There exists a deterministic algorithm ALG for prize-collecting fractional set cover279

such that ALG is Lagrangian 𝑂 (log𝑚′)-subset-competitive w.r.t. prediction 𝑆 ⊆ 𝑈, where |𝑆 | = 𝑚′.280

7

The Algorithm. The algorithm for prize-collecting set cover is given in Algorithm 3. The algorithm281

follows the standard multiplicative updates method: while the pending request is uncovered, sets282

containing that request are bought at an exponential rate (see [2, 15]). However, in this prize-283

collecting version, the algorithm never lets its cost for a specific request exceed its penalty. For ease284

of notation, define 𝑈 (𝑞) to be the collection of sets containing 𝑞; that is, 𝑈 (𝑞) := {𝑠 ∈ 𝑈 |𝑞 ∈ 𝑠}.285

Analysis. We prove the two following lemmas:286

Lemma 3.3. For every (𝑞, 𝜋) ∈ 𝑄, it holds that ALG(𝑞, 𝜋) ≤ 3𝜋.287

Lemma 3.4. For every subset 𝑄′ ⊆ 𝑄, we have ALG(𝑄′ |𝑄) ≤ 𝑂 (log𝑚) · OPT(𝑄′), where 𝑄′ is288

the non-prize-collecting input formed from 𝑄′.289

These two lemmas imply penalty-robust subset competitiveness, a property shown in Proposition C.7290

to be equivalent to Lagrangian subset-competitiveness. Thus, we focus on proving these lemmas;291

note that the proof of Lemma 3.4 appears in Appendix E.292

Proposition 3.5. In every iteration of UPONREQUEST(𝑞, 𝜋), it holds that the total buying cost is at293

most 2𝑦𝑞 , where 𝑦𝑞 be the final value of the variable of the same name.294

Proof. Consider each time 𝑦𝑞 is incremented. The total cost of buying sets is the following.295 ∑︁
𝑠∈𝑈 (𝑞)

𝑐𝑠 ·
(
𝑥𝑠 ·

1
𝑐𝑠
+ 1
|𝑈 (𝑞) |𝑐𝑠

)
= 1 +

∑︁
𝑠∈𝑈 (𝑞)

𝑥𝑠 ≤ 2

where the inequality is due to the fact that
∑

𝑠∈𝑈 (𝑞) 𝑥𝑠 ≤ 1. Thus, each time 𝑦𝑞 is incremented by 1,296

the cost of buying sets is at most 2, completing the proof. □297

Proof of Lemma 3.3. Consider UPONREQUEST(𝑞, 𝜋). If it returned through Line 11, it holds that298

𝑦𝑞 ≤ 𝜋; Proposition 3.5 shows that the total buying cost was thus at most 2𝜋, and this cost is also299

ALG(𝑞, 𝜋). Otherwise, the function returned through Line 8; in this case, since 𝑦𝑞 was incremented300

immediately before comparing 𝑦𝑞 to 𝜋, the argument from the proof of Proposition 3.5 implies that301

the total buying cost is at most 2(𝑦𝑞 − 1) (using the final value of 𝑦𝑞). In turn, this is at most 2𝜋. In302

addition, the algorithm paid the penalty of 𝜋; overall, ALG(𝑞, 𝜋) ≤ 3𝜋. □303

Proof of Theorem 3.1. Lemma 3.3 and Lemma 3.4 show that the algorithm is 𝑂 (log𝑚)-PRSC;304

Proposition C.7 then yields that the algorithm is Lagrangian 𝑂 (log𝑚)-subset-competitive. □305

4 Experiments306

Input Generation. Our set cover instances contain 100 elements. (The number of sets will vary in307

the experiments.) Every set contains every element with some constant probability 𝛼 (we choose308

𝛼 = 0.02); that is, the input is represented by a random bipartite graph in which each edge manifests309

independently. Since this may not cover every element, we also add singleton sets for all elements.310

We generate random costs for the sets, independently drawn from a log-normal distribution (𝜇 =311

0, 𝜎 = 1.6).312

For a given input, we generate a prediction in the following way:313

1. Using an LP solver, we obtain an optimal fractional solution to the problem instance.314

2. We randomly round the solution, such that every set appears in the prediction with probability315

proportional to its value in the fractional solution.316

3. We apply noise to the prediction, of two types: false-positive noise, in which every set is317

added to the prediction with some probability 𝑝; and false-negative noise, in which every318

set is removed from the prediction with some probability 𝑞. (The reader should think of 𝑝319

and 𝑞 as the classification error where the predictions were generated using a classifier.)320

4. Finally, we add the singleton sets to the prediction, to ensure that the prediction covers all321

elements.322

Baselines and evaluation. We evaluate our algorithm described in Section 3, denoted323

SMOOTHMERGE, against three baselines: the standard online algorithm without predictions, denoted324

8

𝑝, 𝑞
ON

comp. ratio
PREDON

comp. ratio
BASEMERGE
comp. ratio

SMOOTHMERGE
comp. ratio

0, 0 6.007 (0.244) 1.689 (0.070) 3.102 (0.565) 2.779 (0.122)
0, 0.15 6.007 (0.244) 46.815 (54.436) 6.246 (1.516) 3.820 (0.555)
0, 0.3 6.007 (0.244) 96.156 (76.196) 7.093 (1.358) 4.824 (0.687)

0.005, 0 6.007 (0.244) 1.989 (0.106) 3.648 (0.630) 3.251 (0.184)
0.005, 0.15 6.007 (0.244) 25.983 (30.294) 6.597 (1.642) 4.200 (0.534)
0.005, 0.3 6.007 (0.244) 51.533 (43.375) 7.543 (1.541) 5.120 (0.642)

0.02, 0 6.007 (0.244) 2.631 (0.154) 4.489 (0.660) 4.240 (0.266)
0.02, 0.15 6.007 (0.244) 10.555 (7.549) 7.007 (1.496) 5.024 (0.498)
0.02, 0.3 6.007 (0.244) 17.588 (9.549) 8.156 (1.433) 5.760 (0.569)

Table 1: Competitive ratios for varying 𝑝, 𝑞, in a "mean (standard
deviation)" format. Best values in each row are underlined.

2500 5000 7500 10000 12500 15000 17500 20000
#Sets

5

10

15

20

25

Co
m

pe
tit

iv
e

ra
tio

On
PredOn
BaseMerge
SmoothMerge

Figure 2: The competitive ratio for
varying numbers of sets.

ON; the online algorithm restricted to predicted sets, denoted PREDON; and the standard merging325

BASEMERGE of those two algorithms, which alternates between ON and PREDON whenever the326

overall cost doubles. For every choice of parameters, we measure the costs of the four algorithms;327

these costs are then averaged over 300 different random inputs. We then measure the expected328

competitive ratio of each algorithm. Our experiments were run on an AWS EC2 r5.16xlarge machine.329

We ran the following experiments: (a) we vary the false-positive rate 𝑝 and the false-negative rate 𝑞330

keeping the number of sets fixed at 10000 (Table 1), and (b) we vary the number of sets in the input,331

fixing 𝑝 = 0.005, 𝑞 = 0.15 (Figure 2).332

Experimental Results. We ran two sets of experiments. In the first experiment, we varied the false-333

positive rate 𝑝 and the false-negative rate 𝑞 keeping the number of sets fixed at 10000. The results are334

reported in Table 1. We note that our algorithm SMOOTHMERGE outperforms the standard merging335

algorithm BASEMERGE and the online algorithm without predictions ON consistently across all336

values of 𝑝, 𝑞. SMOOTHMERGE also outperforms PREDON, the online algorithm restricted to the337

prediction, except when there are no false negatives, i.e., 𝑞 = 0. This is to be expected because338

𝑞 = 0 implies that there is a good solution contained in the prediction. When 𝑞 > 0, PREDON339

fails miserably and our algorithm SMOOTHMERGE obtains a competitive ratio that is an order of340

magnitude better than PREDON. This demonstrates the lack of robustness of PREDON because it is341

specifically tuned to correct predictions.342

In the second set of experiments, we varied the number of sets in the input fixing the noise rates 𝑝 =343

0.005, 𝑞 = 0.15. The results are reported in Figure 2. Our algorithm SMOOTHMERGE consistently344

outperforms all the baseline algorithms. In particular, it is able to utilize predictions to outperform345

ON, which the standard merging BASEMERGE is unable to achieve. Moreover, as the number of sets346

in the input grows, the gap between the two merging solutions increases.347

5 Discussion348

In this paper, we presented a novel framework for smooth interpolation between robustness and349

consistency guarantees in learning-augmented online algorithms. We applied this framework to obtain350

new results for two classical problems, set cover and facility location, that improve and generalize351

previous results for these problems. More broadly, predictions for online algorithms are of two forms:352

prediction of the input and that of the solution. The notion of discrete-smoothness applies to any353

online combinatorial problem in the latter category, i.e., where a solution is provided in the form of354

a prediction to the algorithm. In recent years, many problems have been considered in this model355

including rent or buy problems, scheduling, matching, graph problems, etc. For all of these problems,356

the discrete-smoothness framework alleviates the need for problem-specific notions of prediction357

error and instead gives a common framework for arguing about the gradual degradation of solution358

quality with increase in prediction error. We hope that the current work will streamline the desiderata359

for learning-augmented online algorithms by adding this problem-independent notion of smoothness360

to the established (and also problem-independent) properties of consistency and robustness.361

9

References362

[1] Matteo Almanza, Flavio Chierichetti, Silvio Lattanzi, Alessandro Panconesi, and Giuseppe Re.363

Online facility location with multiple advice. In Marc’Aurelio Ranzato, Alina Beygelzimer,364

Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan, editors, Advances in Neural365

Information Processing Systems 34: Annual Conference on Neural Information Processing366

Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual, pages 4661–4673, 2021.367

[2] Noga Alon, Baruch Awerbuch, Yossi Azar, Niv Buchbinder, and Joseph Naor. The online set368

cover problem. In Lawrence L. Larmore and Michel X. Goemans, editors, Proceedings of the369

35th Annual ACM Symposium on Theory of Computing, June 9-11, 2003, San Diego, CA, USA,370

pages 100–105. ACM, 2003.371

[3] Noga Alon, Baruch Awerbuch, Yossi Azar, Niv Buchbinder, and Joseph Naor. The online set372

cover problem. SIAM J. Comput., 39(2):361–370, 2009.373

[4] Keerti Anand, Rong Ge, Amit Kumar, and Debmalya Panigrahi. Online algorithms with374

multiple predictions. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvári,375

Gang Niu, and Sivan Sabato, editors, International Conference on Machine Learning, ICML376

2022, 17-23 July 2022, Baltimore, Maryland, USA, volume 162 of Proceedings of Machine377

Learning Research, pages 582–598. PMLR, 2022.378

[5] Keerti Anand, Rong Ge, and Debmalya Panigrahi. Customizing ML predictions for online379

algorithms. In Proceedings of the 37th International Conference on Machine Learning, ICML380

2020, 13-18 July 2020, Virtual Event, volume 119 of Proceedings of Machine Learning Research,381

pages 303–313. PMLR, 2020.382

[6] Antonios Antoniadis, Christian Coester, Marek Elias, Adam Polak, and Bertrand Simon. On-383

line metric algorithms with untrusted predictions. In Proceedings of the 37th International384

Conference on Machine Learning,ICML 2020, 2020.385

[7] Antonios Antoniadis, Themis Gouleakis, Pieter Kleer, and Pavel Kolev. Secretary and online386

matching problems with machine learned advice. In Hugo Larochelle, Marc’Aurelio Ranzato,387

Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin, editors, Advances in Neural Infor-388

mation Processing Systems 33: Annual Conference on Neural Information Processing Systems389

2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020.390

[8] Yossi Azar, Stefano Leonardi, and Noam Touitou. Flow time scheduling with uncertain391

processing time. In Samir Khuller and Virginia Vassilevska Williams, editors, STOC ’21: 53rd392

Annual ACM SIGACT Symposium on Theory of Computing, Virtual Event, Italy, June 21-25,393

2021, pages 1070–1080. ACM, 2021.394

[9] Yossi Azar, Debmalya Panigrahi, and Noam Touitou. Online graph algorithms with predictions.395

In Joseph (Seffi) Naor and Niv Buchbinder, editors, Proceedings of the 2022 ACM-SIAM396

Symposium on Discrete Algorithms, SODA 2022, Virtual Conference / Alexandria, VA, USA,397

January 9 - 12, 2022, pages 35–66. SIAM, 2022.398

[10] Étienne Bamas, Andreas Maggiori, Lars Rohwedder, and Ola Svensson. Learning augmented399

energy minimization via speed scaling. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia400

Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin, editors, Advances in Neural Information401

Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020,402

NeurIPS 2020, December 6-12, 2020, virtual, 2020.403

[11] Étienne Bamas, Andreas Maggiori, and Ola Svensson. The primal-dual method for learning404

augmented algorithms. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina405

Balcan, and Hsuan-Tien Lin, editors, Advances in Neural Information Processing Systems 33:406

Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December407

6-12, 2020, virtual, 2020.408

[12] Nikhil Bansal, Niv Buchbinder, Aleksander Madry, and Joseph Naor. A polylogarithmic-409

competitive algorithm for the k-server problem. In Rafail Ostrovsky, editor, IEEE 52nd Annual410

Symposium on Foundations of Computer Science, FOCS 2011, Palm Springs, CA, USA, October411

22-25, 2011, pages 267–276. IEEE Computer Society, 2011.412

10

[13] Nikhil Bansal, Christian Coester, Ravi Kumar, Manish Purohit, and Erik Vee. Scale-free413

allocation, amortized convexity, and myopic weighted paging. CoRR, abs/2011.09076, 2020.414

[14] Giulia Bernardini, Alexander Lindermayr, Alberto Marchetti-Spaccamela, Nicole Megow, Leen415

Stougie, and Michelle Sweering. A universal error measure for input predictions applied to416

online graph problems. In NeurIPS, 2022.417

[15] Niv Buchbinder and Joseph Naor. The design of competitive online algorithms via a primal-dual418

approach. Found. Trends Theor. Comput. Sci., 3(2-3):93–263, 2009.419

[16] Paul Dütting, Silvio Lattanzi, Renato Paes Leme, and Sergei Vassilvitskii. Secretaries with420

advice. In Péter Biró, Shuchi Chawla, and Federico Echenique, editors, EC ’21: The 22nd421

ACM Conference on Economics and Computation, Budapest, Hungary, July 18-23, 2021, pages422

409–429. ACM, 2021.423

[17] Jittat Fakcharoenphol, Satish Rao, and Kunal Talwar. A tight bound on approximating arbitrary424

metrics by tree metrics. Journal of Computer and System Sciences, 69(3):485–497, 2004.425

Special Issue on STOC 2003.426

[18] Dimitris Fotakis. A primal-dual algorithm for online non-uniform facility location. J. Discrete427

Algorithms, 5(1):141–148, 2007.428

[19] Dimitris Fotakis. On the competitive ratio for online facility location. Algorithmica, 50(1):1–57,429

2008.430

[20] Dimitris Fotakis, Evangelia Gergatsouli, Themis Gouleakis, and Nikolas Patris. Learning431

augmented online facility location. CoRR, abs/2107.08277, 2021.432

[21] Sreenivas Gollapudi and Debmalya Panigrahi. Online algorithms for rent-or-buy with expert433

advice. In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of the 36th434

International Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach,435

California, USA, volume 97 of Proceedings of Machine Learning Research, pages 2319–2327.436

PMLR, 2019.437

[22] Shaofeng H.-C. Jiang, Erzhi Liu, You Lyu, Zhihao Gavin Tang, and Yubo Zhang. Online facility438

location with predictions. In The Tenth International Conference on Learning Representations,439

ICLR 2022, Virtual Event, April 25-29, 2022. OpenReview.net, 2022.440

[23] Zhihao Jiang, Pinyan Lu, Zhihao Gavin Tang, and Yuhao Zhang. Online selection problems441

against constrained adversary. In Marina Meila and Tong Zhang, editors, Proceedings of the442

38th International Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual443

Event, volume 139 of Proceedings of Machine Learning Research, pages 5002–5012. PMLR,444

2021.445

[24] Zhihao Jiang, Debmalya Panigrahi, and Kevin Sun. Online algorithms for weighted caching446

with predictions. In 47th International Colloquium on Automata, Languages, and Programming,447

ICALP 2020, 2020.448

[25] Ali Khanafer, Murali Kodialam, and Krishna P. N. Puttaswamy. The constrained ski-rental449

problem and its application to online cloud cost optimization. In Proceedings of the INFOCOM,450

pages 1492–1500, 2013.451

[26] Jochen Könemann, Sina Sadeghian Sadeghabad, and Laura Sanità. An LMP o(log n)-452

approximation algorithm for node weighted prize collecting steiner tree. In 54th Annual453

IEEE Symposium on Foundations of Computer Science, FOCS 2013, 26-29 October, 2013,454

Berkeley, CA, USA, pages 568–577. IEEE Computer Society, 2013.455

[27] Ravi Kumar, Manish Purohit, and Zoya Svitkina. Improving online algorithms via ML pre-456

dictions. In Samy Bengio, Hanna M. Wallach, Hugo Larochelle, Kristen Grauman, Nicolò457

Cesa-Bianchi, and Roman Garnett, editors, Advances in Neural Information Processing Sys-458

tems 31: Annual Conference on Neural Information Processing Systems 2018, NeurIPS 2018,459

December 3-8, 2018, Montréal, Canada, pages 9684–9693, 2018.460

11

[28] Silvio Lattanzi, Thomas Lavastida, Benjamin Moseley, and Sergei Vassilvitskii. Online schedul-461

ing via learned weights. In Shuchi Chawla, editor, Proceedings of the 2020 ACM-SIAM462

Symposium on Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA, January 5-8, 2020,463

pages 1859–1877. SIAM, 2020.464

[29] Thomas Lavastida, Benjamin Moseley, R. Ravi, and Chenyang Xu. Learnable and instance-465

robust predictions for online matching, flows and load balancing. In Petra Mutzel, Rasmus466

Pagh, and Grzegorz Herman, editors, 29th Annual European Symposium on Algorithms, ESA467

2021, September 6-8, 2021, Lisbon, Portugal (Virtual Conference), volume 204 of LIPIcs, pages468

59:1–59:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.469

[30] Russell Lee, Jessica Maghakian, Mohammad H. Hajiesmaili, Jian Li, Ramesh K. Sitaraman,470

and Zhenhua Liu. Online peak-aware energy scheduling with untrusted advice. In Herman471

de Meer and Michela Meo, editors, e-Energy ’21: The Twelfth ACM International Conference472

on Future Energy Systems, Virtual Event, Torino, Italy, 28 June - 2 July, 2021, pages 107–123.473

ACM, 2021.474

[31] Thodoris Lykouris and Sergei Vassilvitskii. Competitive caching with machine learned advice.475

In Jennifer G. Dy and Andreas Krause, editors, Proceedings of the 35th International Conference476

on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018,477

volume 80 of Proceedings of Machine Learning Research, pages 3302–3311. PMLR, 2018.478

[32] Thodoris Lykouris and Sergei Vassilvitskii. Competitive caching with machine learned advice.479

J. ACM, 68(4):24:1–24:25, 2021.480

[33] Adam Meyerson. Online facility location. In 42nd Annual Symposium on Foundations of481

Computer Science, FOCS 2001, 14-17 October 2001, Las Vegas, Nevada, USA, pages 426–431,482

2001.483

[34] Michael Mitzenmacher. Scheduling with predictions and the price of misprediction. In Thomas484

Vidick, editor, 11th Innovations in Theoretical Computer Science Conference, ITCS 2020,485

January 12-14, 2020, Seattle, Washington, USA, volume 151 of LIPIcs, pages 14:1–14:18.486

Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.487

[35] Michael Mitzenmacher and Sergei Vassilvitskii. Algorithms with predictions. In Tim Rough-488

garden, editor, Beyond the Worst-Case Analysis of Algorithms, pages 646–662. Cambridge489

University Press, 2020.490

[36] Michael Mitzenmacher and Sergei Vassilvitskii. Algorithms with predictions. Commun. ACM,491

65(7):33–35, 2022.492

[37] Anna Moss and Yuval Rabani. Approximation algorithms for constrained node weighted steiner493

tree problems. SIAM J. Comput., 37(2):460–481, 2007.494

[38] Manish Purohit, Zoya Svitkina, and Ravi Kumar. Improving online algorithms via ML pre-495

dictions. In Samy Bengio, Hanna M. Wallach, Hugo Larochelle, Kristen Grauman, Nicolò496

Cesa-Bianchi, and Roman Garnett, editors, Advances in Neural Information Processing Sys-497

tems 31: Annual Conference on Neural Information Processing Systems 2018, NeurIPS 2018,498

December 3-8, 2018, Montréal, Canada, pages 9684–9693, 2018.499

[39] Shufan Wang, Jian Li, and Shiqiang Wang. Online algorithms for multi-shop ski rental with500

machine learned advice. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-501

Florina Balcan, and Hsuan-Tien Lin, editors, Advances in Neural Information Processing502

Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS503

2020, December 6-12, 2020, virtual, 2020.504

[40] Alexander Wei. Better and simpler learning-augmented online caching. In Jaroslaw Byrka505

and Raghu Meka, editors, Approximation, Randomization, and Combinatorial Optimization.506

Algorithms and Techniques, APPROX/RANDOM 2020, August 17-19, 2020, Virtual Conference,507

volume 176 of LIPIcs, pages 60:1–60:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,508

2020.509

12

[41] Alexander Wei and Fred Zhang. Optimal robustness-consistency trade-offs for learning-510

augmented online algorithms. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell,511

Maria-Florina Balcan, and Hsuan-Tien Lin, editors, Advances in Neural Information Processing512

Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS513

2020, December 6-12, 2020, virtual, 2020.514

[42] Chenyang Xu and Benjamin Moseley. Learning-augmented algorithms for online steiner tree. In515

Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI 2022, Thirty-Fourth Conference516

on Innovative Applications of Artificial Intelligence, IAAI 2022, The Twelveth Symposium on517

Educational Advances in Artificial Intelligence, EAAI 2022 Virtual Event, February 22 - March518

1, 2022, pages 8744–8752. AAAI Press, 2022.519

13

A Analysis of Algorithm 2520

For this analysis section, we fix any input 𝑄 = ((𝑞1, 𝜋1), · · · , (𝑞𝑛, 𝜋𝑛)). For both ALG and OPT𝑆521

we use the superscript f to refer only to facility opening costs and c to refer only to connection costs.522

We denote by OA(𝑞, 𝜋) the value returned by UPONREQUEST in Algorithm 2 upon receiving the pair523

(𝑞, 𝜋); we choose (OA(𝑞, 𝜋)) as the online amortization of Algorithm 2.524

Online Amortization. First, we show that the cost of the algorithm is bounded by the online525

amortization:526

Lemma A.1. It holds that ALG(𝑄) ≤ OA(𝑄).527

Proof. We use the subscript 𝑞 to refer to the final value of a variable in UPONREQUEST(𝑞, 𝜋). The528

cost of the algorithm has the following three components:529

1. Penalties paid.530

2. Opening costs for facilities in 𝑆.531

3. Connection costs for facilities in 𝑆.532

Let 𝑄′ ⊆ 𝑄 be the set of requests served by the algorithm (i.e., no penalty was paid).533

Penalties for requests in 𝑄\𝑄′. Consider that whenever a penalty 𝜋 is paid for a request in Line 10,534

the additive term 𝜋 appears in the amortized cost of that request. We charge the penalty cost to that535

term.536

Opening cost. Note that a facility 𝑠𝑣
𝑖

is only opened (at cost 𝑓 𝑣
𝑖

) when the counter 𝜆(𝑣, 𝑖) reaches537

𝑓 𝑣
𝑖

, and that counter is never used again; thus, the total opening cost can be charged to the sum over538

request 𝑞 of the amount by which request 𝑞 raises counters, which is 𝜏𝑞 . We charge this to the term539

𝜏𝑞 in OA(𝑞, 𝜋).540

Connection cost for requests in 𝑄′. Suppose a request (𝑞, 𝜋) ∈ 𝑄′ is connected to some point541

𝑤 ∈ 𝑆. There exists an index 𝑖 such that 𝑤 = 𝑠
𝑣𝑞
𝑖

. It holds that542

𝛿 (𝑞, 𝑤) ≤ 𝛿
(
𝑞, 𝑢𝑞

)
+ 𝛿

(
𝑢𝑞 , 𝑤

)
≤ 𝛿 (𝑞, 𝑆) + 𝛿𝑇

(
𝑢𝑞 , 𝑤

)
≤ 𝛿 (𝑞, 𝑆) + 𝛿𝑇

(
𝑢𝑞 , 𝑣𝑞

)
+ 𝛿𝑇

(
𝑣𝑞 , 𝑤

)
. (6)

where the first and third inequalities are due to the triangle inequality, and the second inequality is due543

to the definition of 𝑢𝑞 and Theorem 2.3. Now, note that 𝛿𝑇
(
𝑣𝑞 , 𝑤

)
= 𝛿

𝑣𝑞
𝑖
≤ 𝜏

𝑣𝑞
𝑞 from the condition of544

Line 16.545

Enumerate the path in the tree between 𝑢𝑞 and 𝑣𝑞 as 𝑢𝑞 = 𝑤0, 𝑤1, · · · , 𝑤𝑘 = 𝑣𝑞 , and note that546

𝛿𝑇
(
𝑢𝑞 , 𝑣𝑞

)
=

∑𝑘−1
𝑗=0 𝑐

(
𝑤 𝑗

)
. Now, note that the variable 𝑣 advanced from 𝑤 𝑗 to 𝑤 𝑗+1 due to 𝜏

𝑤 𝑗

𝑞 ≥547

𝑐
(
𝑤 𝑗

)
; thus, 𝛿𝑇

(
𝑢𝑞 , 𝑣𝑞

)
=

∑𝑘−1
𝑗=0 𝜏

𝑤 𝑗

𝑞 . Finally, note that
∑𝑘

𝑗=0 𝜏
𝑤 𝑗

𝑞 = 𝜏𝑞; combining, we get548

𝛿𝑇
(
𝑢𝑞 , 𝑣𝑞

)
+ 𝛿𝑇

(
𝑣𝑞 , 𝑤

)
≤

𝑘∑︁
𝑗=0

𝜏𝑤 𝑗 = 𝜏𝑞

Plugging the above into Equation (6), we get 𝛿 (𝑞, 𝑤) ≤ 𝜏𝑞 + 𝛿 (𝑞, 𝑆). We thus charge the connection549

cost of requests from 𝑄′ to the (𝜏𝑞 + 𝛿 (𝑞, 𝑆)) term in OA(𝑞, 𝜋).550

This completes the proof of the lemma. □551

Observation A.2. The online amortization OA of Algorithm 2 is monotone.552

Bounding Amortized Costs. Having shown that the online amortization is valid and monotone, it553

remains to bound the amortized cost of the algorithm. To show that the algorithm is Lagrangian554

subset-competitive, it is enough to show that it is PRSC; see Proposition C.7. We thus focus on555

showing that the algorithm is PRSC using OA w.r.t. 𝑆.556

From this point on, for every node 𝑣 ∈ 𝑇 and index 𝑖 ∈ [𝑘 (𝑣) + 1], we slightly abuse notation and use557

𝜆(𝑣, 𝑖) to refer to both the counter itself, and its value at the end of the algorithm.558

Proposition A.3 (Penalty Robustness). For every (𝑞, 𝜋) ∈ 𝑄, it holds that OA(𝑞, 𝜋) ≤ 2𝜋.559

14

Proof. If UPONREQUEST(𝑞, 𝜋) returns in Line 22, then it must be that the condition in Line 9 has560

failed, and thus 𝜏 + 𝛿 (𝑢, 𝑞) ≤ 𝜋; thus, OA(𝑞, 𝜋) = 𝜏 + (𝜏 + 𝛿 (𝑢, 𝑞)) ≤ 2𝜋.561

Otherwise, UPONREQUEST(𝑞, 𝜋) returned on Line 11, in which case note that since 𝜏 is raised562

continuously from 0, Line 11 ensures that 𝜏 ≤ 𝜋 at all times. Thus, OA(𝑞, 𝜋) = 𝜏 + 𝜋 ≤ 2𝜋,563

completing the proof. □564

It remains to show subset competitiveness for the algorithm. Henceforth, fix any subset of the input565

𝑄′ ⊆ 𝑄.566

Proposition A.4. For every request 𝑞 and 𝑣 ∈ 𝑇 , 𝜏𝑣𝑞 ≤ 𝑐(𝑣).567

Proof. Observe that 𝜏𝑣𝑞 cannot exceed 𝛿𝑣
𝑡 (𝑣) , for some current value of 𝑡 (𝑣), or else the request is568

connected (or escalated to a parent node). The fact that 𝛿𝑣0 = 𝑐(𝑣), together with the fact that 𝛿𝑣
𝑖

is a569

decreasing sequence in 𝑖 (Observation 2.4) complete the proof. □570

We now begin to bound the (amortized) costs of the algorithm. Recall that 𝑄′ is the input 𝑄′ with the571

penalties set to infinity; that is, the prize-collecting input converted to the standard setting. We would572

like to prove the following lemma.573

Lemma A.5. E[OA(𝑄′ |𝑄)] ≤ 𝑂 (log(|𝑆 |)) · OPT𝑆

(
𝑄′

)
.574

When the input consists of requests that are also from 𝑆, both the clients and facilities are from 𝑆, and575

thus on the leaves of the tree 𝑇 . In this case, we define OPT𝑇 to be any solution for the input under576

the metric space induced by the weighted HST 𝑇 . To prove Lemma A.5, we first bound the cost of577

the algorithm against OPT𝑇 on a set of clients mapped to their closest neighbors in 𝑆.578

Lemma A.6. Let 𝑄′
𝑆

be the input formed from 𝑄′ by mapping each request (𝑞, 𝜋) ∈ 𝑄′ to the request579

(𝑝(𝑞), 𝜋). It holds that580

OA(𝑄′ |𝑄) ≤
∑︁

(𝑞,𝜋) ∈𝑄′
𝛿 (𝑞, 𝑆) +𝑂 (𝐷) · OPT 𝑓

𝑇

(
𝑄′

𝑆

)
+𝑂 (1) · OPT𝑐

𝑇

(
𝑄′

𝑆

)
Proof. First, observe both return statements in Algorithm 2 and note that for every request (𝑞, 𝜋) ∈ 𝑄581

it holds that582

OA(𝑞, 𝜋) ≤ 2𝜏𝑞 + 𝛿 (𝑞, 𝑆). (7)

We now focus on bounding
∑
(𝑞,𝜋) ∈𝑄′ 𝜏𝑞 , i.e., total amount by which counters are raised when583

handling 𝑄′. Let 𝑤 be a facility opened in OPT𝑇 (𝑄′𝑆). Let 𝑅 ⊆ 𝑄′ be the set of requests such that584

their corresponding requests in 𝑄′
𝑆

are connected by OPT𝑇 to the facility 𝑤. Using Observation 2.4,585

for every ancestor tree node 𝑣 of 𝑤, we define 𝑖𝑣 to be the minimal index such that ℓ(𝑓 𝑣
𝑖𝑣
) ≤ ℓ(𝑓𝑤)586

and ℓ(𝛿𝑣
𝑖𝑣
) ≤ ℓ(𝛿𝑇 (𝑣, 𝑤)).587

Let 𝑃(𝑤) = (𝑣0 = 𝑤, 𝑣1, · · · , 𝑣𝑘 = 𝑟) be the path from 𝑤 to the root. The sum
∑
(𝑞,𝜋) ∈𝑄′ 𝜏𝑞 can be588

divided as follows:589

1. Raising counters 𝜆(𝑣, 𝑖) for 𝑣 ∈ 𝑃(𝑤), 𝑖 ≤ 𝑖𝑣 . The total amount here is at most590 ∑︁
𝑣∈𝑃 (𝑤)

𝑖𝑣∑︁
𝑖=1

𝜆(𝑣, 𝑖) ≤
∑︁

𝑣∈𝑃 (𝑤)

𝑖𝑣∑︁
𝑖=1

𝑓 𝑣𝑖 ≤
𝑖𝑣∑︁
𝑖=1

2ℓ (𝑓
𝑣
𝑖
)+1 ≤

∑︁
𝑣∈𝑃 (𝑤)

2ℓ (𝑓
𝑣
𝑖𝑣
)+2

≤
∑︁

𝑣∈𝑃 (𝑤)
2ℓ (𝑓𝑤)+2 ≤

∑︁
𝑣∈𝑃 (𝑤)

4 𝑓𝑤 ≤ 4𝐷 𝑓𝑤 .

2. Raising counters 𝜆(𝑣, 𝑖) for 𝑣 ∉ 𝑃(𝑤). Consider a request 𝑞 ∈ 𝑅, and define 𝑢 := 𝑝(𝑞) = 𝑢591

and 𝑣 to be the lowest common ancestor of 𝑢 and 𝑤. The only nodes not in 𝑃(𝑤) in which592

counters are raised when handling 𝑞 are on the path from 𝑢 (inclusive) to 𝑣 (non-inclusive).593

Using Proposition A.4, the total increase in counters for these nodes is at most 𝛿𝑇 (𝑢, 𝑣).594

15

3. Raising counters 𝜆(𝑣, 𝑖) for 𝑣 ∈ 𝑃(𝑤) and 𝑖 > 𝑖𝑣 . Suppose that a request 𝑞 raises such a595

counter 𝜆
(
𝑣 𝑗 , 𝑖

)
for some node 𝑣 𝑗 ∈ 𝑃(𝑤). When such a counter is raised, the proxy 𝑠

𝑣 𝑗

𝑖𝑣𝑗
is596

already open, and thus the total raising of counters of index greater than 𝑖𝑣 𝑗 for 𝑣 𝑗 by 𝑞 is597

at most 𝛿𝑣 𝑗
𝑖𝑣𝑗
≤ 2𝛿𝑣 𝑗𝑤 = 2𝛿𝑇

(
𝑣 𝑗 , 𝑣

)
+ 2𝛿𝑇 (𝑣, 𝑤), where 𝑣 is the lowest common ancestor of 𝑢598

and 𝑤. (Note that other proxies of 𝑣 𝑗 of larger index could be open, but they can only be599

closer to 𝑣 𝑗 , thus limiting the raising of counters even further.)600

Of those two costs, we would like to charge 𝑞 only for 2𝛿𝑇 (𝑣, 𝑤), and charge 2𝛿𝑇
(
𝑣 𝑗 , 𝑣

)
601

in aggregate over all 𝑞. To do so, observe that the counters for nodes in 𝑃(𝑤)\
{
𝑣 𝑗

}
that602

were raised upon request 𝑞 must be of the form 𝜆(𝑣𝑙 , 1) for 𝑣𝑙 ∈
{
𝑣0, · · · , 𝑣 𝑗−1

}
. As the603

request 𝑞 was repeatedly escalated from 𝑣 to 𝑣 𝑗 , the total increase in those counters must604

be at least 𝛿𝑇
(
𝑣, 𝑣 𝑗

)
, and thus 2𝛿𝑇

(
𝑣, 𝑣 𝑗

)
is upper bounded by twice the increase in those605

counters. However, as seen in Item 1, over all requests, these increases sum to at most 4𝐷 𝑓𝑤606

over all 𝑞 ∈ 𝑅; thus, the term 2𝛿𝑇
(
𝑣 𝑗 , 𝑣

)
sums in aggregate to at most 8𝐷 𝑓𝑤 .607

Overall, denoting by 𝑤𝑞 the lowest common ancestor of 𝑝(𝑞) and 𝑤, we get:608 ∑︁
(𝑞,𝜋) ∈𝑅

𝜏(𝑞, 𝜋) ≤ 4𝐷 𝑓𝑤 +
∑︁

(𝑞,𝜋) ∈𝑅
𝛿𝑇 (𝑝(𝑞), 𝑤𝑞) + ©­«8𝐷 𝑓𝑤 +

∑︁
(𝑞,𝜋) ∈𝑅

𝛿𝑇 (𝑤𝑞 , 𝑤)ª®¬
≤ 12𝐷 𝑓𝑤 + 2𝛿𝑇 (𝑝(𝑞), 𝑤).

Summing over all 𝑤, we get609 ∑︁
(𝑞,𝜋) ∈𝑄′

𝜏(𝑞, 𝜋) ≤ 12𝐷 · OPT 𝑓

𝑇

(
𝑄′

𝑆

)
+ 2 · OPT𝑐

𝑇

(
𝑄′

𝑆

)
.

Combining with Equation (7), we get610

OA(𝑄′ |𝑄) ≤
∑︁

(𝑞,𝜋) ∈𝑄′
𝛿 (𝑞, 𝑆) + 24𝐷 · OPT 𝑓

𝑇

(
𝑄′

𝑆

)
+ 4 · OPT𝑐

𝑇

(
𝑄′

𝑆

)
. □

Having bounded the costs of the algorithm against OPT𝑇 , we can now prove Lemma A.5.611

Proof of Lemma A.5. Using Lemma A.6, we get the following.612

E[OA(𝑄′ |𝑄)] ≤
∑︁

(𝑞,𝜋) ∈𝑄′
𝛿 (𝑞, 𝑆) + E

[
𝑂 (log(|𝑆 |)) · OPT 𝑓

𝑇

(
𝑄′

𝑆

)
+𝑂 (1) · OPT𝑐

𝑇

(
𝑄′

𝑆

)]
Now, note that every solution OPT𝑆 (𝑄′𝑆) induces a solution for 𝑄′

𝑆
on 𝑇 , which opens the same613

facilities and makes the same connections (through the tree); the new tree solution has the same614

facility opening costs, and connection costs which are, in expectation, at most 𝑂 (log(|𝑆 |))-times615

greater (see Theorem 2.3). Thus, we have616

E[OA(𝑄′ |𝑄)] ≤
∑︁

(𝑞,𝜋) ∈𝑄′
𝛿 (𝑞, 𝑆) +𝑂 (log(|𝑆 |)) · OPT𝑆

(
𝑄′

𝑆

)
Now, note that any solution OPT𝑆

(
𝑄′

)
induces a solution for 𝑄′

𝑆
of cost

∑
(𝑞,𝜋) ∈𝑄′ 𝛿 (𝑞, 𝑆) +617

OPT𝑆

(
𝑄′

)
, and also note that

∑
(𝑞,𝜋) ∈𝑄′ 𝛿 (𝑞, 𝑆) is a lower bound for OPT𝑆

(
𝑄′

)
. Plugging into the618

displayed equation above completes the proof of the lemma. □619

Proof of Theorem 2.1. Lemma A.1 and Observation A.2 show that the online amortization OA is620

valid and monotone. Proposition A.3 shows penalty robustness, while Lemma A.5 shows subset621

competitiveness; thus, the algorithm is 𝑂 (log|𝑆 |)-PRSC using OA w.r.t. 𝑆. Using Proposition C.7,622

the algorithm is Lagrangian 𝑂 (log|𝑆 |)-subset-competitive using OA w.r.t. 𝑆. □623

16

Algorithm 4: Variant of Fotakis’ Algorithm for Prize-Collecting OFLP
1 Initialization
2 Let 𝑄 ← ∅.
3 Let 𝐹 ← ∅.
4 For every 𝑣 ∈ 𝑋 , let 𝑝(𝑣) ← 0.

5 Event Function UPONREQUEST(𝑞, 𝜋) // Upon the next request 𝑞 in the sequence on point 𝑢 ∈ 𝑋

6 Set 𝑄 ← 𝑄 ∪ {𝑞}.
7 Denote by 𝑣0 the closest open facility to 𝑞.
8 Define 𝜏𝑞 ← min{𝜋, 𝛿 (𝑞, 𝐹),min𝑣∈𝑋{ 𝑓𝑣 − 𝑝(𝑣) + 𝛿 (𝑞, 𝑣)}}
9 if 𝜏𝑞 = 𝛿 (𝑞, 𝐹) then

10 Connect 𝑞 to the closest facility in 𝐹.

11 else if 𝜏𝑞 = 𝑓𝑣 − 𝑝(𝑣) + 𝛿 (𝑞, 𝑣) for some 𝑣 ∈ 𝑋 then
12 Open a facility at 𝑣.
13 Connect 𝑞 to 𝑣.

14 else
15 Pay the penalty 𝜋 for 𝑞.

16 COMPUTEPOTENTIALS()
17 return 2𝜏𝑞 // return amortized cost

18 Function COMPUTEPOTENTIALS()
19 For every 𝑞 ∈ 𝑄, define 𝜆𝑞 = min

{
𝛿 (𝑞, 𝐹), 𝜏𝑞

}
20 For every location 𝑣 ∈ 𝑋 , set 𝑝(𝑣) ← ∑

𝑞∈𝑄
(
𝜆𝑞 − 𝛿 (𝑞, 𝑣)

)+.
B Online Facility Location: The 𝑂 (log 𝑛)-Competitive Algorithm624

In this section, we present and analyze a prize-collecting algorithm for facility location with predic-625

tions whose competitive ratio on the number of requests 𝑛 = |𝑄 |. As is required for using Algorithm 1,626

this algorithm is Lagrangian subset-competitive. This algorithm is based on the work of Fotakis [18]627

for the non-prize-collecting setting. Specifically, we prove the following theorem.628

Theorem B.1. For facility location with predictions, there exists a deterministic prize-collecting629

algorithm ALG with a monotone online amortization OA which is Lagrangian 𝑂 (log 𝑛)-subset-630

competitive using OA.631

B.1 The Algorithm632

Algorithm’s description. This algorithm follows the main principles of Fotakis [18]. Each point633

in the metric space has an associated potential, such that when that potential exceeds the cost of634

opening a facility at that point, the facility is opened. This potential roughly translates to the amount635

by which the cost of the offline solution for known requests would decrease by opening a facility at636

that location. Observing each request, consider the ball centered at that request such that the closest637

open facility lies on the sphere of that ball; the request imposes a potential increase for every point638

inside that ball. However, as the requests now have penalties, these penalties cap the radius of the639

ball, i.e., limit the potential imposed by the requests.640

Specifically, the algorithm assigns each request a cost 𝜏𝑞 , which intuitively is the minimum cost of641

handling the current request. This cost could be the penalty cost, the cost of connecting to an open642

facility, or the cost of opening a facility (beyond the current potential budget) and then connecting to643

it. The algorithm spends an amortized cost of 𝜏𝑞 to serve 𝑞, but a potential ball of radius 𝜏𝑞 is also644

created to serve future requests (at an future cost of at most 𝜏𝑞).645

For every 𝑥, we use 𝑥+ as a shorthand for max{0, 𝑥}. The prize-collecting algorithm based on [18] is646

given in Algorithm 4.647

B.1.1 Analysis648

We now analyze Algorithm 4 and show that it proves Theorem B.1. For this analysis, we fix the649

prize-collecting input 𝑄. Next, we define the online amortization OA such that OA(𝑞, 𝜋) is the value650

returned by UPONREQUEST in Theorem B.1 upon release of (𝑞, 𝜋) ∈ 𝑄.651

17

Online Amortization652

We first prove that OA is valid and monotone.653

Lemma B.2. The online amortization OA for Algorithm 4 is valid, i.e., ALG(𝑄) ≤ OA(𝑄).654

Proof. For each request, observe the variable 𝜏𝑞 , and note that:655

• If the penalty 𝜋 is paid for 𝑞, then 𝜏𝑞 = 𝜋.656

• If 𝑞 is connected to some facility, the connection cost of 𝑞 does not exceed 𝜏𝑞 .657

It remains to bound the opening costs of the algorithm. Observe the evolution of the potential function658 ∑
𝑞∈𝑄 min

{
𝛿 (𝑞, 𝐹), 𝜏𝑞

}
as 𝑄 and 𝐹 grow over time. This function is nonnegative, and grows by659

exactly 𝜏𝑞 upon the release of (𝑞, 𝜋) (after Line 8). Moreover, whenever a facility at 𝑣 is opened (thus660

joining 𝐹), it decreases this amount by exactly 𝑓𝑣 . Thus, the total opening cost can be bounded by661 ∑
𝑞∈𝑄 𝜏𝑞 .662

Overall, we bounded the cost of the algorithm by
∑
(𝑞,𝜋) ∈𝑄 2𝜏𝑞 =

∑
(𝑞,𝜋) ∈𝑄 OA(𝑞, 𝜋). □663

Observation B.3. The online amortization OA given for Algorithm 4 is a monotone online amortiza-664

tion.665

B.2 Bounding Amortized Costs666

Having shown the necessary properties for the online amortization, we proceed to show that Algo-667

rithm 4 is Lagrangian subset-competitive using this amortization. As in Section 2, we first show that668

the algorithm is PRSC (see Proposition C.7); we begin by observing the penalty robustness of the669

algorithm.670

Observation B.4. For every (𝑞, 𝜋) ∈ 𝑄, it holds that OA(𝑞, 𝜋) ≤ 2𝜋.671

We now fix the subset 𝑄′ ⊆ 𝑄 for the sake of proving subset competitiveness. Recall that 𝑄′ is the672

standard input formed from the prize-collecting input 𝑄′ (by setting penalties to infinity).673

Before proving subset-competitiveness, we need to prove the following simple lemma.674

Lemma B.5 (Min trace lemma). Let (𝑎1, · · · , 𝑎𝑘), (𝑏1, · · · , 𝑏𝑘) be two sequences of non-negative675

numbers, and define 𝑐𝑖, 𝑗 = min(𝑎𝑖 , 𝑏 𝑗). Then if there exists 𝑧 such that for every 𝑖 it holds that676 ∑𝑖
𝑗=1 𝑐𝑖, 𝑗 ≤ 𝑧, then it holds that

∑𝑘
𝑖=1 𝑐𝑖,𝑖 = 𝑂 (log 𝑘) · 𝑧.677

Proof. We prove that
∑𝑘

𝑖=1 𝑐𝑖,𝑖 ≤ 𝐻𝑘 · 𝑧 by induction on 𝑘 , where 𝐻𝑘 =
∑𝑘

𝑖=1
1
𝑖

is the 𝑘-th harmonic678

number. Note that the base case, in which 𝑘 = 1, holds as 𝑐1,1 ≤ 𝑧.679

Now, for the general case, note that if we can find 𝑖 such that 𝑐𝑖,𝑖 ≤ 𝑧
𝑘

, then we can complete the proof680

by induction on the sequences (𝑎1, · · · , 𝑎𝑖−1, 𝑎𝑖+1, · · · , 𝑎𝑘) and (𝑏1, · · · , 𝑏𝑖−1, 𝑏𝑖+1, · · · , 𝑏𝑘). (Note681

that the constraints required for this inductive instance are implied by the original constraints.) This682

induction would imply that
∑

𝑖′≠𝑖 𝑐𝑖′ ,𝑖′ ≤ 𝐻𝑘−1 · 𝑧, to which adding 𝑐𝑖,𝑖 would complete the proof.683

It remains to find 𝑖 such 𝑐𝑖,𝑖 ≤ 𝑧
𝑘

. We consider the constraint
∑𝑘

𝑗=1 𝑐𝑘, 𝑗 ≤ 𝑧, and observe the following684

cases.685

Case 1: 𝑐𝑘, 𝑗 are equal for all 𝑗 . In this case, all 𝑐𝑘, 𝑗 are at most 𝑧
𝑘

. In particular, this is true for 𝑐𝑘,𝑘 ;686

thus, choosing 𝑖 = 𝑘 completes the proof.687

Case 2: 𝑐𝑘, 𝑗 are not all equal. In this case, observe 𝑗 that minimizes 𝑐𝑘, 𝑗 , and note that 𝑐𝑘, 𝑗 ≤ 𝑧
𝑘

.688

There exists 𝑗 ′ such that 𝑐𝑘, 𝑗 < 𝑐𝑘, 𝑗′ , which implies 𝑐𝑘, 𝑗 < 𝑎𝑘 , and thus 𝑐𝑘, 𝑗 = 𝑏 𝑗 , yielding 𝑏 𝑗 ≤ 𝑧
𝑘

.689

But this implies 𝑐 𝑗 , 𝑗 ≤ 𝑏 𝑗 ≤ 𝑧
𝑘

, and thus choosing 𝑖 = 𝑗 completes the proof. □690

We can now prove subset-competitiveness, as stated in Lemma B.6.691

Lemma B.6. OA(𝑄′ |𝑄) ≤ 𝑂 (log|𝑄′ |) · OPT
(
𝑄′

)
.692

18

Proof. Let 𝑤 be some facility opened by OPT
(
𝑄′

)
, and denote by 𝑅 ⊆ 𝑄′ the set of requests693

connected to that facility in OPT
(
𝑄′

)
. Define 𝐶𝑤 :=

∑
(𝑞,𝜋) ∈𝑅 𝛿 (𝑤, 𝑞) the total connection cost694

incurred by OPT
(
𝑄′

)
on the facility 𝑤. Enumerate these requests as ((𝑞1, 𝜋1), · · · , (𝑞𝑘 , 𝜋𝑘)), where695

𝑘 = |𝑅 |. For 1 ≤ 𝑖 ≤ 𝑘 , denote by 𝐹𝑖 the set of facilities which were open immediately before the696

release of (𝑞𝑖 , 𝜋𝑖). As a shorthand, we also define 𝜏𝑖 = 𝜏𝑞𝑖 . Consider that the total potential of the697

facility 𝑤 can never exceed its cost 𝑓𝑤; moreover, upon release of (𝑞𝑖 , 𝜋𝑖), the choice of 𝜏𝑖 ensures698

that699

𝑓𝑤 ≥ 𝜏𝑖 − 𝛿 (𝑞𝑖 , 𝑤) +
𝑖−1∑︁
𝑗=1

min(𝜏𝑗 , (𝛿
(
𝑞 𝑗 , 𝐹𝑖

)
− 𝛿

(
𝑞 𝑗 , 𝑤

)
)+)

≥ 𝜏𝑖 − 𝛿 (𝑞𝑖 , 𝑤) +
𝑖−1∑︁
𝑗=1

min(𝜏𝑗 , 𝛿 (𝑞𝑖 , 𝐹𝑖) − 𝛿 (𝑞𝑖 , 𝑤) − 𝛿
(
𝑞 𝑗 , 𝑤

)
− 𝛿

(
𝑞 𝑗 , 𝑤

)
)

≥ 𝜏𝑖 − 𝛿 (𝑞𝑖 , 𝑤) +
𝑖−1∑︁
𝑗=1

min(𝜏𝑗 , 𝜏𝑖 − 𝛿 (𝑞𝑖 , 𝑤)) − 2
𝑖−1∑︁
𝑗=1

𝛿
(
𝑞 𝑗 , 𝑤

)
≥ 𝜏𝑖 − 𝛿 (𝑞𝑖 , 𝑤) +

𝑖−1∑︁
𝑗=1

min(𝜏𝑗 , 𝜏𝑖 − 𝛿 (𝑞𝑖 , 𝑤)) − 2𝐶𝑤

≥
𝑖∑︁
𝑗=1

min(𝜏𝑗 , 𝜏𝑖 − 𝛿 (𝑞𝑖 , 𝑤)) − 2𝐶𝑤 (8)

where the second inequality uses the triangle inequality and the third inequality uses the definition of700

𝜏𝑖 .701

From Equation (8), we have that for every 1 ≤ 𝑖 ≤ 𝑘 it holds that702

𝑖∑︁
𝑗=1

min(𝜏𝑗 , 𝜏𝑖 − 𝛿 (𝑞𝑖 , 𝑤)) ≤ 𝑓𝑤 + 2𝐶𝑤 .

Using Lemma B.5, this yields703

𝑘∑︁
𝑖=1

min(𝜏𝑖 , 𝜏𝑖 − 𝛿 (𝑞𝑖 , 𝑤)) ≤ 𝑂 (log 𝑘) · (𝑓𝑤 + 2𝐶𝑤)

Since 𝜏𝑖 − 𝛿 (𝑞𝑖 , 𝑤) = min(𝜏𝑖 , 𝜏𝑖 − 𝛿 (𝑞𝑖 , 𝑤)), and since
∑𝑘

𝑖=1 𝛿 (𝑞𝑖 , 𝑤) = 𝐶𝑤 , we have704

𝑘∑︁
𝑖=1

𝜏𝑖 ≤ 𝑂 (log 𝑘) · (𝑓𝑤 + 𝐶𝑤) ≤ 𝑂 (log|𝑄′ |) · (𝑓𝑤 + 𝐶𝑤)

Finally, summing over all facilities 𝑤 in OPT(𝑄′) yields705 ∑︁
(𝑞,𝜋) ∈𝑄′

𝜏𝑞 ≤ 𝑂 (log|𝑄′ |)OPT(𝑄′). □

Proof of Theorem B.1. Through Lemma B.2 and Observation B.3, we have that OA is a valid and706

monotone amortization for Algorithm 4. Lemma B.6 and Observation B.4 then yield that the707

algorithm is 𝑂 (log𝑄)-PRSC using OA. Using Proposition C.7 yields that the algorithm is Lagrangian708

𝑂 (log𝑄)-subset-competitive using OA, which completes the proof of the theorem. □709

C The Smooth Combination Framework710

In this section, we analyze the framework in Algorithm 1, and show that given correct constituent711

algorithms ALG1,ALG2, it yields the main theorems of this paper (Theorems 1.1 to 1.3).712

19

C.1 Problem Class and Definitions713

Before analyzing the framework, we first formalize the properties demanded of the online problem714

for our framework to yield meaningful results. Specifically, we define online covering problems with715

predictions, a class of problems which includes both set cover and facility location.716

In online covering problems with predictions, we have a set of items E given offline with associated717

cost 𝑐(𝑒) for 𝑒 ∈ E. A solution comprises any subset of these items, either fully (for integral718

problems) or fractionally (for fractional problems). Requests arrive online and the algorithm must719

augment its solution if needed to satisfy the request. Satisfaction is upward-closed – if a request is720

satisfied by a set of items, it is also satisfied by any superset. In the prediction setting, the algorithm721

is also given offline a predicted solution 𝑆 ⊆ E. In particular, this definition captures both set cover722

and facility location: in set cover, the items are the sets; in facility location, there exist “opening”723

items for facilities, and “connection” items for each facility/request pair.724

For an input 𝑄, we denote by OPT𝑆 (𝑄) a solution to 𝑄 constrained to only buying items from 𝑆,725

while OPT(𝑄) refers to an unconstrained solution. Note the difference between OPT𝑆 and OPT|𝑆726

used in the previous section: OPT𝑆 is a feasible solution that only contains items in 𝑆 while OPT|𝑆727

is only a partial solution OPT ∩ 𝑆 corresponding to the unconstrained optimum OPT. Similarly,728

ALG(𝑄) refers to the algorithm’s solution for 𝑄. Sometimes, we also refer to the cost incurred by729

the algorithm when handling a subset of requests 𝑄′ ⊆ 𝑄; we refer to this cost as ALG(𝑄′ |𝑄).730

C.2 Reduction731

Recall that we seek discrete-smooth algorithms, i.e., satisfying Equation (1). Our first step is to give732

a generic reduction that allows us to slightly weaken the guarantee to the following:733

ALG ≤ 𝑂 (𝑓 (𝑠)) · OPT|𝑆 +𝑂 (𝑓 (𝑛)) · OPT|
𝑆
, (9)

where 𝑂 (𝑓 (·)) is the competitive ratio without predictions; note the substitution of 𝑠Δ with 𝑠. We734

give a reduction from an algorithm that satisfies Equation (9) to one that satisfies Equation (1):735

Theorem C.1. Given an algorithm ALG′ such that ALG′ ≤ 𝑂 (𝑓 (𝑠)) ·OPT|𝑆 +𝑂 (𝑔) ·OPT|𝑆̄ , there736

exists an algorithm ALG such that ALG ≤ 𝑂 (𝑓 (𝑠Δ)) · OPT|𝑆 +𝑂 (𝑔) · OPT|𝑆̄ .737

The basic idea in this theorem is the following: for every integer 𝑖, once the cost of the algorithm738

exceeds 2𝑖 , we buy the cheapest predicted items of total cost at most 2𝑖 , and then remove them from739

the prediction. While 2𝑖 < OPT, the total cost is 𝑂 (1) · OPT; once 2𝑖 exceeds OPT, the size of the740

prediction is at most 𝑠Δ, and Equation (9) implies Equation (1). This detailed proof of the theorem is741

given in Appendix D.742

C.3 Monotonicity and Online Amortization743

Monotonicity. An additional, natural property that we demand from a constituent algorithm in our744

smooth combination framework is that increasing the penalty of input requests does not decrease the745

cost incurred by the algorithm. This is stated formally in the following definition.746

Definition C.2. We say that a prize-collecting algorithm ALG is monotone if, fixing the input request747

prefix ((𝑞𝑖 , 𝜋𝑖))𝑘−1
𝑖=1 and current request (𝑞𝑘 , 𝜋𝑘), then increasing 𝜋𝑘 does not decrease ALG(𝑞𝑘 , 𝜋𝑘).748

Online amortization. Our framework extends to the case where Lagrangian subset-competitiveness749

and monotonicity are satisfied by amortized costs instead of actual costs. This is important because750

for some problems, the actual cost expressly prohibits subset competitiveness. For example, consider751

facility location: given an input of multiple, identical requests with very small penalty, the algorithm752

should eventually stop paying penalties and open a facility. However, for the specific request upon753

which the facility is opened, the cost of the algorithm is much larger than the penalty for that request,754

the latter being optimal for just that request. To overcome this complication, we allow the cost for a755

request to be amortized over previous requests, and call this online amortization.756

First, we define online amortization of costs, and define a “monotone” online amortization which can757

be used in our framework.758

Definition C.3 (online amortization). Let 𝑄 = ((𝑞1, 𝜋1), · · · , (𝑞𝑛, 𝜋𝑛)) be an online input given to759

ALG. An online amortization or OA is a number sequence (OA(𝑞, 𝜋)) (𝑞,𝜋) ∈𝑄 such that:760

20

1. ALG(𝑄) ≤ ∑
(𝑞,𝜋) ∈𝑄 OA(𝑞, 𝜋).761

2. OA(𝑞𝑖 , 𝜋𝑖) is only a function of (𝑞1, 𝜋1), · · · , (𝑞𝑖 , 𝜋𝑖); that is, OA(𝑞𝑖 , 𝜋𝑖) can be calculated762

online.763

When considering the amortized cost of an algorithm, we use similar notation to the actual cost: on764

an input 𝑄, we use OA(𝑄) to denote the total amortized cost. We also use OA(𝑄′ |𝑄) to denote the765

total amortized cost incurred on a request subset 𝑄′ ⊆ 𝑄. In addition, for a request (𝑞, 𝜋) in the input766

𝑄, we use OA(𝑞, 𝜋) to refer to the amortized cost of (𝑞, 𝜋); note that here the input 𝑄 should be clear767

from context.768

Definition C.4 (monotone online amortization). We call an online amortization OA monotone if (a)769

fixing previous requests, increasing the penalty of request (𝑞, 𝜋) never decreases OA(𝑞, 𝜋), and (b)770

when the algorithm pays penalty for (𝑞, 𝜋) then OA(𝑞, 𝜋) ≥ 𝜋.771

C.4 The Main Theorem772

We are now ready to state the main theorem of our algorithmic framework. We use 𝛽1 and 𝛽2 to773

denote the competitive ratios of ALG1 and ALG2; the reader should think of 𝛽1 as 𝑂 (𝑓 (𝑠)) and 𝛽2774

as 𝑂 (𝑓 (𝑛)), i.e., 𝛽2 ≫ 𝛽1.775

Theorem C.5. Consider any online covering problem with predictions P. Let ALG1,ALG2 be two776

algorithms for the prize-collecting version of P with monotone (online amortized) costs OA1, OA2777

respectively such that (a) ALG1 is Lagrangian 𝛽1-subset-competitive using OA1 w.r.t. the prediction778

𝑆, and (b) ALG2 is Lagrangian 𝛽2-subset-competitive using OA2 (against general OPT).779

Then there exists an algorithm ALG for P such that for every partition of the input 𝑄 into 𝑄1, 𝑄2 we780

have781

ALG(𝑄) ≤ 𝑂 (𝛽1) · OPT𝑆 (𝑄1) +𝑂 (𝛽2) · OPT(𝑄2)

We will show later that Theorem C.5 can be used to derive Equation (9) for facility location and set782

cover.783

Proof of Theorem C.5. Consider the framework in Algorithm 1 applied to algorithms ALG1,ALG2.784

The framework ensures that all requests are satisfied, as at least one of the constituent algorithms785

serves each request. Denote by 𝛼(𝑞) the final value assigned to the variable 𝛼 upon request 𝑞; the786

prize-collecting input given to both constituent algorithms is 𝑄∗ = ((𝑞, 𝛼(𝑞)))𝑞∈𝑄. We define 𝑄∗1, 𝑄
∗
2787

be the partition of 𝑄∗ induced by the partition of 𝑄 into 𝑄1, 𝑄2. As the algorithm only buys items788

bought by one of the constituent algorithms, its cost can thus be bounded by ALG1 (𝑄∗) +ALG2 (𝑄∗).789

We now bound ALG1 (𝑄∗); bounding ALG2 (𝑄∗) is identical.790

First, consider the prize-collecting solution which serves 𝑄∗1 optimally subject to using items from 𝑆,791

but pays the penalty for requests from 𝑄∗2; using the Lagrangian subset-competitiveness of ALG1792

against this solution yields793

E[ALG1 (𝑄∗)] ≤ 𝑂 (𝛽1) · OPT𝑆 (𝑄1) + E
𝑂 (1) ·

∑︁
𝑞∈𝑄2

𝛼(𝑞)
 (10)

Now, observe that using the definition of 𝛼 and the fact that ALG2 is monotone, we have that794

𝛼(𝑞) ≤ ALG2 (𝑞, 𝛼(𝑞)); summing over requests in 𝑄2 we get that
∑

𝑞∈𝑄2 𝛼(𝑞) ≤ ALG2
(
𝑄∗2 |𝑄

∗)).795

Plugging into Equation (10), we get796

E[ALG1 (𝑄∗)] ≤ 𝑂 (𝛽1) · OPT𝑆 (𝑄1) + E
[
𝑂 (1) · ALG2

(
𝑄∗2 |𝑄

∗))]
≤ 𝑂 (𝛽1) · OPT𝑆 (𝑄1) +𝑂 (𝛽2) · OPT(𝑄2)

where the second inequality uses the fact that ALG2 is subset competitive to bound its cost on the797

subset 𝑄∗2 against the solution which serves those requests optimally. This completes the bounding of798

costs for ALG1; we can bound E[ALG2 (𝑄∗)] in the same way. Summing the bounds for ALG1 and799

ALG2, we get800

ALG(𝑄) ≤ 𝑂 (𝛽1) · OPT𝑆 (𝑄1) +𝑂 (𝛽2) · OPT(𝑄2)
which completes the proof. □801

21

C.5 Penalty-Robust Subset-Competitive Algorithms802

In proving that a prize-collecting algorithm is Lagrangian subset-competitive (for use in our frame-803

work), we sometimes find it easier to prove that it is penalty-robust subset competitive. As we now804

prove, this latter property is sufficient to prove the former. (In fact, it is easy to see that both properties805

are in fact equivalent.)806

Definition C.6 (PRSC algorithm using online amortization). Let ALG be a randomized prize-807

collecting algorithm equipped with an online amortization OA running on an input 𝑄. We say that808

ALG is 𝛽 penalty-robust subset competitive (PRSC) using OA if both following conditions hold:809

1. For every (𝑞, 𝜋) ∈ 𝑄 we have OA(𝑞, 𝜋) ≤ 𝑂 (1) · 𝜋.810

2. For every subset 𝑄′ ⊆ 𝑄, we have E[OA(𝑄′ |𝑄)] ≤ 𝛽 · OPT(𝑄′).811

(where 𝑄′ is the input formed from 𝑄′ by forcing service, i.e., setting penalties to infinity.)812

If in the second condition of PRSC we replace OPT
(
𝑄′

)
by OPT𝑆

(
𝑄′

)
, we say that ALG is 𝛽-PRSC813

using OA w.r.t. 𝑆.814

Proposition C.7. A 𝛽-PRSC algorithm using OA (w.r.t. 𝑆) is also Lagrangian 𝛽-subset-competitive815

using OA (w.r.t. 𝑆).816

Proof. We prove this for a general solution, restricting to 𝑆 is identical. Consider prize-collecting817

input 𝑄, and any subset 𝑄′ ⊆ 𝑄. Let SOL be the optimal solution for 𝑄′, which pays penalties for818

𝑄′𝑝 and serves 𝑄′
𝑏
= 𝑄′\𝑄′𝑝 optimally. Then it holds that819

E[OA(𝑄′ |𝑄)] = E
[
OA

(
𝑄′𝑏 |𝑄

)]
+ E

[
OA

(
𝑄′𝑝 |𝑄

)]
≤ 𝛽 · OPT

(
𝑄′

𝑏

)
+𝑂 (1) ·

∑︁
(𝑞,𝜋) ∈𝑄′𝑝

𝜋

= 𝛽 · SOL𝑏 (𝑄′) +𝑂 (1) · SOL𝑝 (𝑄′)

where the inequality uses both properties of PRSC. □820

C.6 Proofs of Theorems 1.1, 1.2 and 1.3821

We establish these theorems in three steps. First, we combine various constituent prize-collecting822

algorithms using Theorem C.5 and explicitly state the guarantees for the resulting algorithms. Then,823

we use these guarantees to derive the discrete-smoothness property for the individual problems with824

respect to the size of the prediction (i.e., Equation (9)). Finally, we use Theorem C.1 to make the825

competitive ratio depend on |𝑆\OPT| rather than on |𝑆 |.826

Before proceeding further, we need to precisely define the intersection/difference of a solution with a827

prediction to make Theorem 1.1, Theorem 1.2, and Theorem 1.3 completely formal.828

Definition C.8 (restriction of solution with prediction). Consider an online covering problem with829

items E, let 𝑆 ⊆ E be some prediction. For every solution 𝐴 which buys some items from E:830

• Define 𝐴|𝑆 to be the solution which only buys items from 𝑆, to the same amount as 𝐴.831

• Define 𝐴|
𝑆

to be the solution which only buys items outside 𝑆, to the same amount as 𝐴.832

Facility Location with Predictions. In order to describe facility location as a covering problem, we833

must describe the set of items. Here, the set of items comprises an opening item 𝑏𝑣 for each facility834

and a connection item 𝑐𝑣,𝑞 for each (request, facility) pair. When we informally write that 𝑆 is a set835

of possible facilities, this can be formalized to the set of items 𝑏𝑣 for 𝑣 ∈ 𝑆, plus the connection items836

𝑐𝑣,𝑞 for all 𝑞 in the input and 𝑣 ∈ 𝑆.837

Due to Theorem 2.1 and Theorem B.1, we have that both Algorithm 2 and Algorithm 4 can serve838

as constituent algorithms in our framework. Combining both algorithms using Theorem C.5 thus839

implies the following theorem.840

22

Theorem C.9. For facility location with predictions, there exists a randomized algorithm ALG such841

that for every input 𝑄, and for every partition of 𝑄 into 𝑄1, 𝑄2, we have842

E[ALG(𝑄)] ≤ 𝑂 (log|𝑆\OPT|) · OPT𝑆 (𝑄1) +𝑂 (log|𝑄2 |) · OPT(𝑄2).

We obtain an additional result, which is useful for small metric spaces, from combining two instances843

of Algorithm 2, one for the entire metric space 𝑋 and one for the predictions 𝑆.844

Theorem C.10. For facility location with predictions, there exists a randomized algorithm ALG845

such that for every input 𝑄, and for every partition of 𝑄 into 𝑄1, 𝑄2, we have846

E[ALG(𝑄)] ≤ 𝑂 (log|𝑆\OPT|) · OPT𝑆 (𝑄1) +𝑂 (log|𝑋 |) · OPT(𝑄2).

Proof of Theorem 1.1. Consider a solution OPT to facility location on a set of requests 𝑄. Partition847

𝑄 into 𝑄1, 𝑄2 such that 𝑄1 contains all requests from 𝑄 that are connected to a facility in OPT|𝑆848

(and 𝑄2 is complementary). Using the algorithm ALG from Theorem C.9, we have849

ALG(𝑄) ≤ 𝑂 (log|𝑆 |) · OPT𝑆 (𝑄1) +𝑂 (log|𝑄2 |) · OPT(𝑄2). (11)

Now note that OPT|𝑆 is a solution to 𝑄1 that only uses facility and connection items from 𝑆, and thus850

OPT𝑆 (𝑄1) ≤ OPT|𝑆 . Moreover, OPT|
𝑆

is a solution to 𝑄2, and thus OPT𝑆 (𝑄2) ≤ OPT|
𝑆

. Plugging851

into Equation (12), and noting that |𝑄2 | ≤ |𝑄 |, we get852

ALG(𝑄) ≤ 𝑂 (log|𝑆 |) · OPT|𝑆 +𝑂 (log|𝑄 |) · OPT|
𝑆
.

We now plug the above equation into Theorem C.1, thus replacing the dependence on |𝑆 | with853

dependence on |𝑆\OPT|. □854

Proof of Theorem 1.2. Identical to the proof of Theorem 1.1, but using Theorem C.10. □855

Set Cover with Predictions. Theorem 3.1 implies that Algorithm 3 is Lagrangian subset-competitive.856

In addition, it is easy to see that Algorithm 3 is monotone, as defined in Definition C.2. Thus, the857

algorithm can serve as a constituent algorithm in our framework. From combining two instances of858

Algorithm 3, Theorem C.5 thus implies the following theorem.859

Theorem C.11. For fractional set cover with predictions, with universe (𝐸,𝑈) and a prediction860

𝑆 ⊆ 𝑈, there exists a deterministic algorithm ALG such that for every input 𝑄, and for every partition861

of 𝑄 into 𝑄1, 𝑄2, we have862

ALG(𝑄) ≤ 𝑂 (log|𝑆 |) · OPT𝑆 (𝑄1) +𝑂 (log|𝑈 |) · OPT(𝑄2).

Using standard rounding techniques (see [3, 15]) for online set cover, we can round the fractional863

solution online at a loss of 𝑂 (log|𝑄 |). In addition, we can then apply Theorem C.1 to replace |𝑆 |864

with |𝑆\OPT|. Thus, Theorem C.11 yields the following corollary.865

Corollary C.12. For (integral) set cover with predictions, with universe (𝐸,𝑈) and a prediction866

𝑆 ⊆ 𝑈, there exists a randomized algorithm ALG such that for every input 𝑄, and for every partition867

of 𝑄 into 𝑄1, 𝑄2, we have868

E[ALG(𝑄)] ≤ 𝑂 (log|𝑄 | log|𝑆\OPT|) · OPT𝑆 (𝑄1) +𝑂 (log|𝑄 | log|𝑈 |) · OPT(𝑄2).

Proof of Theorem 1.3. Consider a solution OPT to set cover on a set of requests 𝑄. Partition 𝑄869

into 𝑄1, 𝑄2 such that 𝑄1 contains all requests from 𝑄 that belong to a set in OPT|𝑆 (and 𝑄2 is870

complementary). Using the randomized algorithm ALG from Corollary C.12, we have871

ALG(𝑄) ≤ 𝑂 (log|𝑄 | log|𝑆 |) · OPT𝑆 (𝑄1) +𝑂 (log|𝑄 | log|𝑈 |) · OPT(𝑄2). (12)

Now note that OPT|𝑆 is a solution to 𝑄1 that only uses sets from 𝑆, and thus OPT𝑆 (𝑄1) ≤ OPT|𝑆 .872

Moreover, OPT|
𝑆

is a solution to 𝑄2, and thus OPT𝑆 (𝑄2) ≤ OPT|
𝑆
. Plugging into Equation (12),873

we get874

ALG(𝑄) ≤ 𝑂 (log|𝑄 | log|𝑆 |) · OPT|𝑆 +𝑂 (log|𝑄 | log|𝑈 |) · OPT|
𝑆
.

□875

23

D Proof of Theorem C.1: Reduction from Equation 9 to Equation 1876

In this section, we give the proof of Theorem C.1 whose goal is to give a reduction from Equation (9)877

to Equation (1). This replaces 𝑠 in the bound of Equation (9) with the term 𝑠𝛿 , where 𝑠𝛿 := |𝑆\OPT|,878

in order to obtain Equation (1).879

Proof of Theorem C.1. Assume, without loss of generality, that the cheapest item in E costs 1.880

Consider the following construction of the algorithm ALG using the algorithm ALG′:881

1 Initialize 𝑖 ← 0, 𝑆′ ← 𝑆, 𝐵← 0, and define the item cost function 𝑐′ ← 𝑐.
2 Let 𝐴 be an instance of ALG′ with prediction set 𝑆′, and cost function 𝑐′.
3 for incoming request 𝑞 do
4 while True do
5 Simulate sending 𝑞 to 𝐴, and let 𝑐 be the resulting cost.
6 if 𝐵 + 𝑐 < 2𝑖 then break
7 Spend 2𝑖 budget in buying the cheapest items in 𝑆′, let the bought subset of items be 𝑇 .
8 Set 𝑆′ ← 𝑆′\𝑇 , 𝐵← 0, 𝑖 ← 𝑖 + 1.
9 For every 𝑒 ∈ 𝑇 , set 𝑐′ (𝑒) ← 0.

10 Reset 𝐴 to be a new instance of ALG′, given 𝑆′ as prediction, and using the (modified) cost function
𝑐′.

11 Send 𝑞 to 𝐴, and set 𝐵← 𝐵 + 𝑐.

882

For integer ℓ, define phase ℓ to be the subsequence of requests in which variable 𝑖 takes value ℓ. The883

cost of the algorithm can be charged to a constant times 2 𝑗 , where 𝑗 is the penultimate value of 𝑖884

in the algorithm. If 2 𝑗−1 < OPT, then the cost of the algorithm is at most 𝑂 (1) · OPT and we are885

done. Henceforth, suppose OPT ≤ 2 𝑗−1. Define 𝑆′
𝑗
, 𝐴 𝑗 , 𝑐

′
𝑗

to be the values of the variables 𝑆′, 𝐴886

and 𝑐′ during phase 𝑗 . When considering the cost of a solution relative to a cost function, we place887

that cost function as superscript (e.g., OPT𝑐′
𝑗). Before the beginning of phase 𝑗 , the algorithm spent888

at least OPT budget on buying the cheapest items in the (remaining) prediction; it thus holds that889 ���𝑆′𝑗 ��� ≤ |𝑆\OPT|. Let 𝑞1, · · · , 𝑞𝑘 be the requests of phase 𝑗 ; moreover, let 𝑞𝑘+1 be the request upon890

which the variable 𝑖 was incremented to 𝑗 + 1. From the definition of 𝑞𝑘+1, it holds that the cost of891

the instance of 𝐴 in phase 𝑗 on (𝑞1, · · · , 𝑞𝑘 , 𝑞𝑘+1) is at least 2 𝑗 ; thus, the total cost of the algorithm892

can be charged to this cost, which we denote by 𝛼. But, through Equation (9), and from the fact that893

OPT is a solution which serves (𝑞1, · · · , 𝑞𝑘+1), we have894

𝛼 ≤ 𝑂 (𝑓 (|𝑆\OPT|)) · OPT𝑐′
𝑗 |𝑆′

𝑗
+𝑂 (𝑔) · OPT𝑐′

𝑗 |
𝑆′
𝑗

≤ 𝑂 (𝑓 (|𝑆\OPT|)) · OPT|𝑆′
𝑗
+𝑂 (𝑔) ·

(
OPT𝑐′

𝑗 |
𝑆
+ OPT𝑐′

𝑗 |𝑆\𝑆′
𝑗

)
≤ 𝑂 (𝑓 (|𝑆\OPT|)) · OPT|𝑆 +𝑂 (𝑔) · OPT|

𝑆
□

E Proof of Lemma 3.4895

Proof of Lemma 3.4. First, note that ALG(𝑞, 𝜋) ≤ 3𝑦𝑞 , where 𝑦𝑞 is the final value of the variable of896

that name: Proposition 3.5 implies that the buying cost is at most 2𝑦𝑞 , while a penalty of 𝜋 is paid897

only if 𝜋 ≤ 𝑦𝑞 . We show that
∑
(𝑞,𝜋) ∈𝑄′ 𝑦𝑞 ≤ 𝑂 (log𝑚) · OPT(𝑄′); since ALG(𝑞, 𝜋) ≤ 3 · 𝑦𝑞 , this898

would complete the proof of the lemma. Consider the (standard) primal and dual LPs for fractional899

set cover of 𝑄′ without penalties (i.e. solving 𝑄′). The primal LP is given by:900

min
∑︁
𝑠∈𝑈

𝑥𝑠 · 𝑐(𝑠) such that ∀𝑞 ∈ 𝑄′ :
∑︁
𝑠 |𝑞∈𝑠

𝑥𝑠 ≥ 1 and ∀𝑠 ∈ 𝑈 : 𝑥𝑠 ≥ 0.

and the dual LP is given by:901

max
∑︁
𝑞∈𝑄′

𝑦𝑞 such that ∀𝑠 ∈ 𝑈 :
∑︁
𝑞 |𝑞∈𝑠

𝑦𝑞 ≤ 𝑐(𝑠) and ∀𝑞 ∈ 𝑄′ : 𝑦𝑞 ≥ 0.

We claim that the dual solution
{
𝑦𝑞

}
𝑞∈𝑄′ violates dual constraints by at most 𝑂 (log𝑚); thus, scaling902

it down by that factor yields a feasible dual solution, and a lower bound to OPT
(
𝑄′

)
.903

24

Consider the dual constraint corresponding to the set 𝑠; we want to bound the term
∑

𝑞∈𝑄′ |𝑞∈𝑠 𝑦𝑞 .904

Through induction on 𝑘 , we can prove that once
∑

𝑞∈𝑄′ |𝑞∈𝑠 𝑦𝑞 = 𝑘 for some integer 𝑘 , it holds that905

𝑥𝑠 ≥ 1
𝑚

((
1 + 1

𝑐𝑠

) 𝑘
− 1

)
. Thus, once 𝑘 = Θ(𝑐𝑠 log𝑚) we have 𝑥𝑠 ≥ 1, and

∑
𝑞∈𝑠 𝑦𝑞 would increase906

no more. This implies that scaling down
{
𝑦𝑞

}
𝑞∈𝑄′ by Θ(log𝑚) yields a feasible dual solution, which907

lower bounds OPT(𝑄′), and completes the proof.908

It remains to prove the inductive claim. For the base case where 𝑘 = 0, the claim holds trivially. Now,909

assume that the claim holds for 𝑘 − 1, and consider point in which
∑

𝑞∈𝑄′ |𝑞∈𝑠 𝑦𝑞 is incremented from910

𝑘 − 1 to 𝑘; let 𝑥, 𝑥′ be the old and new amounts by which 𝑠 is held in the algorithm. We have911

𝑥′ = 𝑥 ·
(
1 + 1

𝑐(𝑠)

)
+ 1
𝑈 (𝑞)𝑐(𝑠) ≥

1
𝑚

((
1 + 1

𝑐(𝑠)

) 𝑘
− 1 − 1

𝑐(𝑠)

)
+ 1
𝑚𝑐(𝑠) ≥

1
𝑚

((
1 + 1

𝑐(𝑠)

) 𝑘
− 1

)
(13)

where the inequality uses the inductive hypothesis as well as the fact that |𝑈 (𝑞) | ≤ 𝑚. □912

25

	Introduction
	Our Results
	Our Techniques: A Framework for Discrete-Smooth Algorithms

	Online Facility Location
	The Algorithm

	Online Set Cover
	Experiments
	Discussion
	Analysis of Algorithm 2
	Online Facility Location: The O(log n)-Competitive Algorithm
	The Algorithm
	Analysis

	Bounding Amortized Costs

	The Smooth Combination Framework
	Problem Class and Definitions
	Reduction
	Monotonicity and Online Amortization
	The Main Theorem
	Penalty-Robust Subset-Competitive Algorithms
	Proofs of Theorems 1.1, 1.2 and 1.3

	Proof of Theorem C.1: Reduction from Equation 9 to Equation 1
	Proof of Lemma 3.4

