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CAT PRUNING: CLUSTER-AWARE TOKEN PRUNING
FOR TEXT-TO-IMAGE DIFFUSION MODELS
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1.82×

Figure 1: CAT Pruning in Stable Diffusion v3. The top row depicts the standard denoising process
of Stable Diffusion v3 over 28 inference steps, representing the baseline configuration. The bottom
row demonstrates the generative performance of CAT Pruning, which achieves similar generative
quality while reducing computation cost by 2× and end-to-end inference time by 1.82×.

ABSTRACT

Diffusion models have revolutionized generative tasks, especially in the domain of
text-to-image synthesis; however, their iterative denoising process demands sub-
stantial computational resources. In this paper, we present a novel acceleration
strategy that integrates token-level pruning with caching techniques to tackle this
computational challenge. By employing noise relative magnitude, we identify sig-
nificant token changes across denoising iterations. Additionally, we enhance token
selection by incorporating spatial clustering and ensuring distributional balance.
Our experiments demonstrate reveal a 50%-60% reduction in computational costs
while preserving the performance of the model, thereby markedly increasing the
efficiency of diffusion models.

1 INTRODUCTION

Recent advancements in diffusion models (Ho et al., 2020; Dhariwal & Nichol, 2021; Song & Er-
mon, 2019) have revolutionized generative tasks, especially in the realm of text-to-image synthesis
(Karras et al., 2022). Models such as Stable Diffusion 3 (Esser et al., 2024), and Pixart (Chen et al.,
2023; 2024) have demonstrated their capability to produce diverse and high-quality images based
on user inputs. Despite these successes, the iterative process required for denoising within these
models often leads to lengthy and resource-intensive inference periods.

Recent works (Ma et al., 2024b;a) leverage temporal consistency in diffusion models, focusing on
the reuse of intermediate features across multiple timesteps. These methods cache features at prede-
termined timesteps or within specific blocks, thereby reducing computational overhead by reusing
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these cached features in subsequent timesteps instead of recomputing them. This approach has
proven effective in decreasing the overall computational cost while maintaining generative quality.

While most cache-and-reuse methods focus on bypassing certain blocks, thereby reducing the
overall number of CUDA kernel launches to save computation, few explore optimizations at the
intra-kernel level. Specifically, little attention has been given to reducing the latency within each
individual kernel execution.

As mentioned in (Song et al., 2021; Song & Ermon, 2019), Diffusion involves solving a reverse-time
SDE using a a time-dependent model. Intuitively, not all patches in an single image require the same
precision when it comes to solving the SDE. To further enhance sampling efficiency, we propose a
novel acceleration strategy that combines token-level pruning with cache mechanisms. We update
a subset of tokens at each iteration, taking into account relative noise magnitude, spatial clustering,
and distributional balance.

Our contributions can be listed as follows:

• We observe that token pruning involves ranking token importance while ensuring consistent
selection across timesteps and spatial dimensions.

• We propose a simple method that accelerates diffusion models by doing pruning at token
level according to relative noise magnitude, selection frequencies, and cluster awareness.

• Our experimental results, evaluated on various standard datasets and pretrained diffusion
models, demonstrate that it produces comparable results with 50 % MACs reduction at step
28 and 60 % MACs reduction at step 50 relative to the full size models.

2 RELATED WORK

Diffusion models have emerged as powerful generative frameworks in computer vision. However,
these models are compute-intensive, often constrained by the high computational cost. This com-
putational bottleneck has led to a surge of research focused on accelerating diffusion models. Here,
we highlight three major categories of approaches: parallelization, reduction of sampling steps, and
model pruning.

Parallelization Methods Despite traditional techniques like tensor parallelism, recent works have
introduced novel parallelization strategies specifically tailored to the characteristics of diffusion
models. DistriFusion (Li et al., 2024), for instance, hides the communication overhead within the
computation via asynchronous communication and introduces displaced patch parallelism, while
PipeFusion (Wang et al., 2024c) introduces displaced patch parallelism for Inference of Diffusion
Transformer Models (DiT (Peebles & Xie, 2022)) and ParaDiGMS (Shih et al., 2023) rum sampling
steps in parallel through iterative refinement.

Reducing Sampling Steps One of the core challenges with diffusion models is the large number of
sampling steps required to produce high-quality outputs, which directly translates to longer inference
times. Recent advancements such as DPM Solver (Lu et al., 2022) and Consistency Models (Song
et al., 2023; Song & Dhariwal, 2023) aim to address this bottleneck by developing fast solvers for
diffusion ODEs and directly mapping noise to data respectively.

Leveraging Feature Redundancy Recognizing the iterative nature of diffusion models and the
minimal changes in feature representations across consecutive steps, a growing body of research
has focused on developing cache-and-reuse mechanisms to reduce inference time. DeepCache (Ma
et al., 2024b) reuses the high-level features of the U-Net (Ronneberger et al., 2015). Block Cache
(Wimbauer et al., 2023) performs caching at a per-block level and adjusts the cached values using a
lightweight ’scale-shift’ mechanism. TGATE (Liu et al., 2024; Zhang et al., 2024) caches the output
of the cross-attention module once it converges. FORA (Selvaraju et al., 2024) reuses the outputs
from the attention and MLP layers to accelerate DiT inference.

3 CAT PRUNING: CLUSTER-AWARE TOKEN PRUNING

Inspired by previous work that accelerates diffusion processes through the exploitation of feature re-
dundancy, we propose cluster-aware token pruning for text-to-image diffusion models, which could
synergize with existing methods that implement caching and reuse at the block and module levels.
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Applying token-level pruning requires addressing three key challenges. First, we need effective
criteria to assess which tokens are critical to the diffusion process. Second, cached features must
remain consistent across timesteps to avoid staleness and ensure reliable results. Finally, Token
selection should be cluster aware, which means considering spatial structure, to prevent loss of
details.
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Denoising Sampling Steps

…
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Figure 2: Method Overview. At each iteration, tokens are dynamically selected using a combination
of the clustering results, noise magnitude, and token staleness. Each part is elaborated in Sec 3.2,
Sec 3.3, and Sec 3.4. It is worth noting that we perform clustering only once at step t0 + 1 to avoid
computational overhead.

3.1 TOKEN PRUNING VIA MASKING

Notation Description
h Hidden states
Ts,t Tokens selected at the iteration t
Tu,t Tokens unselected at iteration t
nt Noise predicted at iteration t
t0 The step before token pruning starts
ft A function which maps token to its frequency at step t
N Total denoising steps
α Percentage of tokens being unpruned

Table 1: Notations used in the paper.

We describe our Algorithm using the notations from Table 1:

Relative Noise Magnitude We utilize the variation in noise across timesteps to select tokens.
Specifically, we introduce the concept of Relative Noise Magnitude, defined as the difference be-
tween the current predicted noise and the noise at step t0, which is defined as nt−nt0 and quantifies
the relative change in noise.
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Algorithm 1 is an example of how our method applies to the attention mechanism, though it can
also be extended to other modules. We use attention here as an illustrative case, and Algorithm 2
describes how we get Ts at each iteration.

Algorithm 1 Attention Forward Pass in CAT Pruning
1: Q,K, V ← Update(Ts)
2: Compute attention:

Attention(Q,K, V )← softmax
(
QK⊤
√
dk

)
V

3: for i ∈ Ts,t do
4: ht[i]←MLP (Attention(Q,K, V )) ▷ Update hidden states of selected tokens
5: end for
6: for i ∈ Tu,t do
7: ht[i]← ht−1[i] ▷ Reuse hidden states for unselected tokens
8: end for

3.2 CORRELATION BETWEEN PREDICTED NOISE AND HISTORICAL NOISE

Previous work has demonstrated that the changes in features across consecutive denoising steps are
minimal. This observation motivates our decision to update only a subset of token features at each
step, thereby reducing computations.

Furthermore, PFDiff (Wang et al., 2024a) has pointed out a notably high similarity in model out-
puts for the existing ODE solvers in diffusion probabilistic models (DPMs), especially when the
time step size ∆t is not extremely large. Building on these two phenomena, we selectively update
features for tokens that exhibit substantial changes in their output values, while skipping the feature
update and reusing the predicted noise from the previous iteration for the remaining tokens. This
reduces computational overhead while maintaining accuracy.

We further observe that the relative magnitude of the noise predicted by the model is correlated with
the relative magnitude of historical noise. Specifically, nt − nt0 is proportional to nt−1 − nt0 . We
demonstrate this by plotting the L2 norm of relative noise magnitude derived from different prompts
and steps in Figure 3.

Figure 3: Scatter plot showing the norm of the relative noise at the current step versus the norm of
the relative noise at the previous step. We calculate and visualize the Pearson correlation coefficient
between these two values.

Proposition 1. Selecting tokens with larger relative noise in the current step increases the likeli-
hood that these tokens will exhibit a larger relative noise in subsequent steps.

Given that t is the subsequent step of t0, we provide a proof at timestep t (the simpliest case as for
time-step) to substantiate this claim in the appendix.
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3.3 BALANCING NOISE-BASED TOKEN SELECTION WITH DISTRIBUTIONAL
CONSIDERATIONS

In previous iterations, we selected tokens for update based on their relative noise magnitude. While
this method is effective in identifying significant changes, it narrows the selected tokens to a specific
subset practically.

Inspired by the similarity between the denoising process and SGD (Bottou, 2010), we propose to
track the staleness of tokens based on the frequency of each token’s selection, which is akin to
staleness-aware techniques used in asynchronous SGD algorithms (Dean et al., 2012; Zhang et al.,
2015; Zheng et al., 2016).

Predicted Noise (Baseline) 

Chosen Indices

Predicted Noise (w/o balance)

Output (w/o balance)

Output (Baseline)

Figure 4: Visualization of Results Based on Noise Magnitude alone. Selecting tokens purely by
noise magnitude causes the indices to center around the teddy bear’s body (as shown in the first row),
resulting in noticeable noise artifacts (second row) in the background and a lack of smoothness in
the predicted noise.

We visualize the specific indices selected, the predicted noises, and the final generated images when
tokens are chosen solely based on the magnitude of change. As shown in Figure 4, repetitively
focusing on certain tokens degrades the overall image by introducing inconsistencies and unbounded
staleness.

Following the exploration and exploitation (Auer et al., 2002; Sutton & Barto, 1998) trade-off com-
monly used in reinforcement learning (RL) algorithms, we propose a more distributional-balanced
(also staleness-aware) selection strategy. By incorporating the trade-off manually, we ensure that
while tokens with significant noise changes are given certain priority, there is still a promising ex-
ploration of other tokens.

For the exploration part, we perform Frequency Monitoring track the selection of each token. To be
more specific, we employ an exponentially weighted moving average (EWMA) to prioritize recent
selections over earlier ones when measuring frequency:

f0 = I0, (1)
fn = a× fn−1 + In, (2)

where ft shows the moving average at integer time t ≥ 0, and It is an indicator function that equals
1 when the token is selected at step t. The exploitation part continues to use nt − nt0 as a criterion.

As shown in Figure 5, considering the staleness of each token leads to smoother output noise and a
final image that closely resembles the one generated by the full-size model.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Predicted Noise (Baseline) 

Chosen Indices (w/ balance)

Predicted Noise (w/ balance)

Output (w/ balance)

Output (Baseline)

Figure 5: Visualization of Results Based on Noise Magnitude and Token Staleness. Incorporat-
ing both staleness and noise magnitude in token selection yields a more balanced selection distri-
bution, resulting in improved outputs with notably smoother backgrounds and smoother predicted
noises.

3.4 CLUSTERING GIVES RISE TO MORE SPATIAL DETAILS

So far, our ultimate goal is to approximate the output image using token pruning. However, it
happens that toknes at certain positions tend to change synchronously across iterations.

We observe that tokens with spatial adjacency tend to require similar selection frequencies. To ver-
ify this, we perform an ablation study where consecutive rows of the output are selected at each
iteration (i.e. step t0 + 1: row 1,2, step t0 + 2: row 3,4). As demonstrated in Figure 6, a simple
sequential token selection strategy (column 3) yields strong results, even when masking 70% of the
tokens. Furthermore, incorporating clustering information (column 2) enhances detail preservation
compared to its non-clustering counterpart, outperforming the naive sequential strategy. For exam-
ple, in row 1, column 1, there is a lack of windows; in row 1, column 3, the windows appear blurry.
In row 2, column 1, there is an inconsistent smile; in row 2, column 3, the heart is missing. How-
ever, column 2 does not have these issues, as it maintains spatial consistency and incorporates many
details.

Therefore, we maintain that the proposed pruning algorithm should also take the spatial co-relation
into account so as to better appoximate the final output. To achieve this requirement, questions arise
such as:

1. How should we split the output into several spatial co-related clusters?

2. What value should we grant each spatial cluster?

3. How to perform token selection inside each cluster?

Enforcing Spatial-awareness while Clustering Simple clustering is agnostic to spatial relations,
which is essential to the performance. There are several approaches for spatial-aware clustering on
graphs, including graph cuts (Shi & Malik, 1997) and GNN-based methods (Bianchi et al., 2020).
We opt for positional encodings to enforce spatial-awareness due to their simplicity and low com-
putational overhead. Our customized Positional Encoding is formulated as:

pos enc(i · w + j, :) =

{
i
h , if 1 ≤ k ≤ d

2
j
w , if d

2 + 1 ≤ k ≤ d
(3)
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{noise, balance} {cluster, noise, balance} {consecutive rows} Baseline

Figure 6: Comparative Analysis of Token Selection Strategies. The first colomn displays images
generated by selecting tokens based on noise magnitude and distributional balance. The second
colomn incorporates clustering information for enhanced spatial coherence. The third colomn shows
results from a naive strategy of sequential token selection. All three strategies have pruned 70%
tokens, where t0 = 8, N = 28.

where i and j denote the row and column, respectively, and d is the dimension of the noise magni-
tude.

After adding this positional encoding, we perform KMeans (MacQueen, 1967) using L2 as the
clustering metric. We visualize the clustering (n=20) results of several different prompts in Figure 7.

Graph Pooling Fosters Inter-cluster Consistency Meanwhile, we hope the value of each cluster
preserves the feature of specific patches as well as its neighbors, and therefore we introduce 1 light-
weighted Graph Pooling Layer, which is not trainable.

Preserves Distributional Balance within Each Cluster Practically, we notice that it’s also ben-
eficial to introduce distributional balance inside each cluster. Thus for each selected cluster(each
with ∼ 200 tokens, we choose tokens according to their noise magnitude as well as their selection
frequencies. This part is not included in Algorithm 2 just for simplicity.

Summary of Algorithm

Our algorithm proceeds as Algorithm 2:

7
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A cat holding a sign 
that says hello 
world

The Great Pyramid 
of Giza situated in 
front of Mount 
Everest

a mixed media 
image with a 
photograph of a 
woman with long 
orange hair

a girl with long 
curly blonde hair 
and sunglasses

Figure 7: The clustering results of different prompts. For each token, clustering is performed
based on its relative noise magnitude with positional encoding. We use the K-means algorithm with
L2 distance as the clustering metric.

Algorithm 2 Finding Indices for CAT Pruning
1: Input: i, t0, ni, nt0
2: indices← []
3: RN ← ni − nt0
4: if i == t0 + 1 then
5: clusters← KMeans(pos enc+ ni − nt0) ▷ Cluster noise
6: graph scores← pool(clusters, ni − nt0 + pos enc) ▷ Aggregate cluster scores
7: top clusters← topk(graph scores)
8: for each c ∈ top clusters do
9: indices← indices ∪ topk((ni − nt0)[j], for j ∈ c)

10: end for
11: else
12: graph scores← pool(clusters, pos enc+ ni − nt0) ▷ Use clusters from t0 + 1
13: top clusters← topk(graph scores)
14: for each c ∈ top clusters do
15: indices← indices ∪ topk((ni − nt0)[j], for j ∈ c)
16: end for
17: indices← indices ∪ topk(−fi(j), forj /∈ indices) ▷ Add stale tokens
18: end if
19: return indices

4 EXPERIMENTS

4.1 SETUPS

Models We evaluate our method on several pretrained Diffusion Models: Stable Diffusion v3 and
Pixart-Σ, which feature superior performance of text-to-image synthesis over various metrics.

8
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Prompt : a cute blue (kitten bee) looking up, psychedelic background, beautiful detailed eyes, chibi

Prompt : a frozen cosmic rose, the petals glitter with a crystalline shimmer, swirling nebulas, 8k unreal engine photorealism, 

ethereal lighting, red, nighttime, darkness, surreal art

𝛼 = 0.1 𝛼 = 0.2 𝛼 = 0.3 𝛼 = 0.5 𝛼 = 0.8 𝛼 = 1

Figure 8: Qualitative Results with different sparsity and different prompts. In these cases, even
α = 0.2 gives strong results.

Datasets We select datasets that are adopted to evaluate text-to-image tasks, including MS-COCO
2017(Lin et al., 2015) and PartiPrompts (Yu et al., 2022), which contain 5K prompts and 1.6K
prompts respectively.

Implementation Details We evaluate our methods using 28 and 50 sampling steps, respectively. For
both Stable Diffusion 3 and Pixart-Σ. We employ classifier-free guidance (Ho, 2022) with guidance
strengths of 7.0 and 4.5, consistent with their official demo settings. All inferences are performed
in float16 precision on a single Nvidia A5000 GPU. Both models generate images at a resolution of
1024 × 1024, reflecting real-world scenarios.

Baselines We use both the output of the standard diffusion model and AT-EDM (Wang et al., 2024b)
as baselines, and the latter is a token pruning technique. For AT-EDM, we implement its algorithm
under the same token budget with our algorithm, which is starting token pruning at step 9 and
pruning 70 % tokens at each iteration. Specifically, since AT-EDM is actually designed for SD-XL,
which utilizes token pruning and similarity-based copy, and in practical 30% token budget is not
suitable for similarity-based copy, so we combine the token selection algorithm in AT-EDM and the
cache-and-reuse mechanism as a baseline.

4.2 MAIN RESULTS

Analysis of Different Levels of Sparsity In Figure 8 and Figure 9, we present visualizations of
generated images across various prompts and sparsity levels, characterized by the percentage of un-
pruned tokens, denoted as α. As α increases, the generated content progressively approximates that
of the full-sized model. Notably, there is little perceptible difference between α = 0.3, 0.5, 0.8, and
α = 1.0 (the standard diffusion model output). However, at α = 0.2, degradation becomes evident,
such as the reduced number of windows and a missing eye in in Figure 9 compared to the standard
output. Based on these observations, we select α = 0.3 as the optimal value for all subsequent
evaluations, striking a balance between model performance and computational efficiency.

Speedups The results in Tab. 2 demonstrate the performance of our method at 28 sampling steps.
For Stable Diffusion 3 on the PartiPrompts dataset, we achieve a significant reduction in total com-
putation, from 168.28T to 90.28T, yielding a 1.82× speedup while maintaining a comparable CLIP
Score (Radford et al., 2021; Hessel et al., 2022). Similarly, for Pixart-Σ, our method delivers a
1.73× speedup with negligible impact on CLIP Score.

We further evaluate our method under the N = 50 setting: we could achieve about 2× speedup while
maintaining the overall performance and getting better CLIP Score compared to AT-EDM(Wang
et al., 2024b).
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Prompt : beautiful anime artwork, a cute anime catgirl that looks depressed holding a piece of paper with a 

smile drawn on it over her mouth, she is about to cry

Prompt : A teddy bear wearing a motorcycle helmet and cape is standing in front of Loch Awe with Kilchurn Castle behind 

him

𝛼 = 0.1 𝛼 = 0.2 𝛼 = 0.3 𝛼 = 0.5 𝛼 = 0.8 𝛼 = 1

Figure 9: Qualitative Results with different sparsity and different prompts. We find α = 0.3 a
sweet spot for the tradeoff between computation efficiency as well as the image quality.

Method PartiPrompts COCO2017
MACs ↓ Throughput ↑ Speed ↑ CLIP Score ↑ MACs ↓ Throughput ↑ Speed ↑ CLIP Score ↑

SD3 - 28 steps 168.28T 0.119 1.00× 32.33 168.28T 0.113 1.00 × 32.47
Ours - 28 steps 90.28T 0.217 1.82× 32.03 90.28T 0.212 1.87 × 32.21
AT-EDM - 28 steps 93.48T 0.166 1.40× 31.07 93.48T 0.170 1.51× 30.59

Pixart-Σ - 28 steps 120.68 T 0.151 1.00 × 31.12 120.68 T 0.143 1.00× 31.36
Ours - 28 steps 60.08 T 0.262 1.73 × 31.06 60.08 T 0.258 1.80× 30.02
AT-EDM - 28 steps 62.08T 0.238 1.57 × 24.30 62.08T 0.244 1.71× 14.66

Table 2: Comparison of different methods on PartiPrompts and COCO2017 datasets. All methods
here adopt 28 sampling steps.

Method PartiPrompts COCO2017
MACs ↓ Throughput ↑ Speed ↑ CLIP Score ↑ MACs ↓ Throughput ↑ Speed ↑ CLIP Score ↑

SD3 - 50 steps 300.50 T 0.062 1.00 × 32.92 300.50 T 0.062 1.00× 32.20
Ours - 50 steps 136.70 T 0.134 2.15 × 32.72 136.70 T 0.130 2.08 × 32.18
AT-EDM - 50 steps 143.42T 0.107 1.72 × 28.48 143.42T 0.102 1.64× 28.20

Pixart-Σ - 50 steps 215.40T 0.079 1.00× 31.41 215.40T 0.078 1.00 × 31.20
Ours - 50 steps 88.24 T 0.166 2.09 × 31.36 88.24 T 0.160 2.04 × 30.62
AT-EDM - 50 steps 92.44T 0.148 1.87 × 17.08 92.44T 0.147 1.88 × 11.00

Table 3: Comparison of different methods on PartiPrompts and COCO2017 datasets 50 Steps. All
methods here adopt 50 sampling steps.

5 CONCLUSION

In this paper, we introduce a novel acceleration strategy for diffusion models that combines token-
level pruning with cache mechanisms. By selectively updating a subset of tokens at each iteration,
we significantly reduce computational overhead while preserving model performance.

Our experiments demonstrated that the proposed method effectively maintains generative quality,
achieving up 50% reduction in MACs at 28-denosing-step and 60 % at 50-denosing-step. We eval-
uated our approach on standard datasets and pretrained diffusion models, showing that it produces
results comparable to the original models.
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A APPENDIX

A.1 PROOF OF PROPOSITON 1.
Let Ts,t−1 and Tu,t−1 denote the selected and unselected token sets, respectively. At step t− 1, we
assume:

n[i], i ∈ Ts,t−1 > n[i], i ∈ Tu,t−1

For the hidden states h at step t:
ht[Tu,t] = ht−1[Tu,t],

ht[Ts,t] = Update(Ts,t)

Thus, h for the unselected tokens remains unchanged, while the selected tokens are changed based
on their current activations using a model specific function Update.
From this, we have:

MSE(ht, ht−1)[i], i ∈ Ts,t > MSE(ht, ht−1)[i], i ∈ Tu,t

Since the predicted noise is a function of the hidden states, the magnitude of the predicted noise
relative to noise at step t0 is directly tied to the change in hidden states.

As a result, at each step, we select tokens based on their relative noise magnitude.
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