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1 Implementation Details

1.1 Cortical Ribbon Segmentation Network Architecture

Fig. 1 shows the network architecture of our cortical ribbon segmentation model, which consists of
a 5-level hierarchical encoder-decoder with skip connections. This network takes a 3D brain MRI
as its input and produces a cortex ribbon segmentation map. It is worth noting that the white matter
(WM) segmentation refers to the interior of the WM surface, which contains cortical WM, deep
gray matter, ventricle, hippocampus, and other tissues within the surface. Similarly, grey matter
(GM) segmentation refers to the interior of the pial surface. The output map consists of 5 classes,
namely left hemisphere WM and GM, right hemisphere WM and GM, and background. In the
encoder, at each level, we apply a 3× 3× 3 convolutional layer with a stride of 2 to downsample the
features. In the decoder, upsampling is applied to the features at each scale by 2×, and the features
are concatenated with their counterparts of the encoder via a skip connection, in conjunction with
feature fusion using a 3× 3× 3 convolutional layer with a stride of 1. From the input, features are
learned with a 3 × 3 × 3 convolutional layer with a stride of 1. The output is generated by three
consecutive convolutional layers prior to the final prediction. Each convolutional layer is followed by
a leaky ReLu activation function, except the last one where a Softmax function is adopted before
computing cross-entropy loss with the ground truth.
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Figure 1: UNet architecture for the ribbon segmentation. The output, i.e., the cortical ribbon map is
overlaid on the input image for illustration
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1.2 Cortical Surface Reconstruction Network Architecture and Training details

As shown in Fig. 2, our cortical surface reconstruction (CSR) network has five scales. To save
computation memory, we directly employ a 3× 3× 3 convolution with a stride of 2 to downsample
the input image and do not conduct complex feature fusion via skip connection in the decoding path
of this scale. To enhance the velocity fields (VFs) accuracy, we utilize 2 × 2 × 2 deconvolutions
with a stride of 2 in the decoding path, instead of 2× trilinear upsampling. At the output stage, we
employ three parallel 3× 3× 3 convolution layers to generate VFs for WM, midthickness, and pial
surfaces, respectively. ReLu activation functions are applied after each convolutional layer, except
for the three parallel layers where Softsign functions are adopted. The VFs are then used to compute
diffeomorphic deformations using our proposed DDM (see Fig. 2(c) in our main paper).
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Figure 2: UNet architecture for cortical surface reconstruction.

1.3 Detailed Demographic Information for Datasets in Experiments

Our method has been evaluated on MRI brain scans of subjects aged 18 to 96 from multiple datasets,
including ADNI-1, ADNI-2&GO, OASIS-1, and a Test-retest dataset.

The ADNI-1 dataset1 consisted of 817 T1-weighted (T1w) brain MRIs from subjects aged 55 to 90,
including normal controls (NC), subjects with mild cognitive impairment (MCI), and patients with
Alzheimer’s disease (AD), the ADNI-Go&2 dataset1 consisted of 200 T1w scans from subjects aged
60 to 87, including 100 NCs and 100 ADs, the OASIS-1 dataset2 consisted of 413 T1w scans of
subjects aged 18 to 96 years, including NCs and ADs, and the Test-retest dataset3 consisted of 120
T1w scans of three subjects aged 26 to 31. More details of the datasets can be found on their official
websites.

1.4 Dataset Preprocessing

We preprocessed all the MRIs with the same protocols as following: Based on the standard processing
protocol in FreeSurfer V7.2.0 [3], the original images were conformed and normalized (saved as
orig.mgz), affinely registered to the MNI152 template [1] using the NiftyReg toolbox [8]. The
respective ribbon segmentation maps, SDFs, and pseudo-ground-truth surfaces were also transformed
using the computed transformation.

2 Analysis of cortical thickness estimation on AD and NC patients

We identified 200 subjects (nAD = nNC = 100) from the ADNI-2GO [4] dataset to conduct the
analysis. Fig. 3 shows the details of average cortical thickness in 35 cortical regions estimated
by FreeSurfer and our method. The high similarity between the results generated by our method

1ADNI website https://adni.loni.usc.edu/
2OASIS website https://www.oasis-brains.org/
3Test-retest dataset: http://dx.doi.org/10.6084/m9.figshare.929651
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and FreeSurfer demonstrates the efficacy of our method in accurately capturing cortical thickness,
indicating that our method holds promise for quantifying cortical thickness.
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Figure 3: Average thickness in 35 cortical regions on subjects diagnosed with Alzheimer’s disease
(AD) and normal control (NC). Top: FreeSurfer; Bottom: Ours.

3 More Experimental Results

3.1 Quantitative Results on Right Hemisphere

Quantitative comparison results of our method and state-of-the-art (SOTA) alternatives on the right
hemisphere are summarized in Table 1 as a supplement to Table 2 in the main paper.

3.2 Reproducibility Analysis on Pial Surface

Quantitative reproducibility analysis on the pial surface is summarized in Table 3 as a supplement to
Table 4 in the main paper.

3.3 Impact of Spatial Resolution of SDF and Initialization Surface Granularity

The standard brain MRI image resolution is 2563. As a proof of concept, we applied Marching
Cubes on images at a resolution of 2563 resolution and upsampled WM SDF at a resolution of 5123.
The reconstructed WM surfaces’ mean ASSD was reduced from 0.265mm to 0.254mm but the
computation time increased from 4s to 5min. A similar trend was observed on the pial surfaces
with a lower geometric accuracy. We also increased the mesh granularity by mesh subdivision (∼1s
for a mesh with 130K vertices), but the ASSD barely changed (0.256mm). However, reducing
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Table 1: Quantitative analysis of cortical surface reconstruction on geometric accuracy and surface
quality. The Chamfer distance (CD), average symmetric surface distance (ASSD), Hausdorff distance
(HD), and the ratio of the self-intersecting faces (SIF) were measured for WM and pial surfaces on
the two datasets. The mean value and standard deviation are reported. The best ones are in bold.

R-Pial Surface R-WM Surface
Method CD (mm) ASSD (mm) HD (mm) SIF (%) CD (mm) ASSD (mm) HD (mm) SIF (%)

A
D

N
I

DeepCSR [2] 0.948±0.080 0.597±0.068 1.154±0.207 \ 0.942±0.077 0.589±0.065 1.140±0.195 \
PialNN [7] 0.625±0.037 0.468±0.046 1.005±0.107 0.138±0.090 \ \ \ \

CorticalFlow [5] 0.699±0.042 0.503±0.050 1.113±0.127 0.152±0.091 0.648±0.036 0.481±0.048 1.044±0.110 0.123±0.080
CorticalFlow++ [9] 0.550±0.038 0.413±0.034 0.891±0.071 0.101±0.069 0.548±0.035 0.403±0.032 0.883±0.068 0.071±0.042

cortexODE [6] 0.482±0.019 0.220±0.022 0.461±0.060 0.033±0.017 0.470±0.020 0.207±0.019 0.444±0.018 0.023±0.016
Vox2Cortex [1] 0.593±0.032 0.382±0.029 0.755±0.061 0.071±0.045 0.588±0.029 0.363±0.024 0.741±0.057 0.059±0.035

Ours 0.419±0.018 0.140±0.015 0.299±0.030 0.040±0.027 0.215±0.008 0.073±0.006 0.160±0.015 0.008±0.011

O
A

SI
S

DeepCSR [2] 0.989±0.086 0.619±0.071 1.336±0.215 \ 0.980±0.082 0.601±0.069 1.175±0.202 \
PialNN [7] 0.636±0.033 0.461±0.038 0.995±0.083 0.150±0.101 \ \ \ \

CorticalFlow [5] 0.691±0.042 0.499±0.049 1.087±0.112 0.154±0.093 0.656±0.037 0.466±0.042 0.998±0.099 0.113±0.075
CorticalFlow++ [9] 0.540±0.037 0.405±0.032 0.834±0.060 0.095±0.052 0.536±0.035 0.402±0.031 0.830±0.058 0.088±0.049

cortexODE [6] 0.497±0.023 0.225±0.024 0.473±0.065 0.038±0.027 0.481±0.021 0.214±0.021 0.450±0.022 0.025±0.019
Vox2Cortex [1] 0.598±0.033 0.386±0.031 0.761±0.064 0.072±0.040 0.592±0.031 0.379±0.028 0.752±0.061 0.061±0.037

Ours 0.448±0.015 0.168±0.014 0.353±0.027 0.041±0.032 0.221±0.008 0.080±0.009 0.166±0.016 0.011±0.015

Table 2: Reproducibility analysis.

Method L-Pial Surface
CD (mm) ASSD (mm) HD (mm)

A
D

N
I-

pa
ir Ours 0.519±0.049 0.334±0.057 0.734±0.146

CortexODE 0.521±0.049 0.339±0.055 0.740±0.150
DeepCSR 0.626±0.118 0.412±0.091 0.902±0.238
FreeSurfer 0.554±0.056 0.339±0.069 0.712±0.150

T
R

T

Ours 0.493±0.024 0.276±0.036 0.573±0.070
CortexODE 0.506±0.029 0.272±0.034 0.581±0.079
DeepCSR 0.560±0.055 0.341±0.060 0.668±0.118
FreeSurfer 0.526±0.021 0.283±0.032 0.595±0.068

the resolution substantially increased the reconstruction error (especially for the pial surface). In
summary, simply applying Marching Cubes to SDF at a higher resolution did bring improvement in
terms of geometric accuracy but incurred substantially heavier computational costs. Nevertheless, it
may degrade the surface reconstruction significantly if the surface initialization is obtained based on
SDFs at a lower resolution.

Following previous works, we used mesh with ∼130K vertices in our experiments. To test the impact
of the number of vertices on the downstream tasks, we simplified the meshes by merging neighboring
faces (∼60K), subdivided the mesh by dividing each face into four faces (∼520K), and utilized them
to train different networks. We randomly chose a subset from ADNI-1 (300, 20, and 80 for training,
validation, and test, respectively) to conduct the experiments. The ASSD results are as follows:

Table 3: Reproducibility analysis.

60K 130K 520K
L-WM 0.122 0.074 0.067
L-Pial 0.201 0.156 0.154
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